CN106252449A - Local doping front-surface field back contact battery and preparation method thereof and assembly, system - Google Patents
Local doping front-surface field back contact battery and preparation method thereof and assembly, system Download PDFInfo
- Publication number
- CN106252449A CN106252449A CN201610740237.2A CN201610740237A CN106252449A CN 106252449 A CN106252449 A CN 106252449A CN 201610740237 A CN201610740237 A CN 201610740237A CN 106252449 A CN106252449 A CN 106252449A
- Authority
- CN
- China
- Prior art keywords
- silicon substrate
- crystalline silicon
- front surface
- type crystalline
- back surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 145
- 229910021419 crystalline silicon Inorganic materials 0.000 claims abstract description 136
- 238000002161 passivation Methods 0.000 claims abstract description 34
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims abstract description 27
- 239000011574 phosphorus Substances 0.000 claims description 32
- 229910052698 phosphorus Inorganic materials 0.000 claims description 32
- 238000005468 ion implantation Methods 0.000 claims description 31
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 28
- 239000002253 acid Substances 0.000 claims description 24
- 238000000137 annealing Methods 0.000 claims description 23
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 18
- 229910052796 boron Inorganic materials 0.000 claims description 18
- 238000002513 implantation Methods 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 15
- 239000000243 solution Substances 0.000 claims description 15
- 150000002500 ions Chemical class 0.000 claims description 11
- -1 phosphorus ions Chemical class 0.000 claims description 11
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 238000005245 sintering Methods 0.000 claims description 8
- 230000002378 acidificating effect Effects 0.000 claims description 6
- 239000012670 alkaline solution Substances 0.000 claims description 6
- 238000005538 encapsulation Methods 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical group [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 5
- 238000010884 ion-beam technique Methods 0.000 claims description 5
- 238000007639 printing Methods 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 4
- 238000007650 screen-printing Methods 0.000 claims description 4
- 229910017107 AlOx Inorganic materials 0.000 claims description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 3
- 229910004205 SiNX Inorganic materials 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- 239000002002 slurry Substances 0.000 claims description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims 1
- 239000007943 implant Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 7
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 239000002131 composite material Substances 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 42
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 229910052710 silicon Inorganic materials 0.000 description 13
- 239000010703 silicon Substances 0.000 description 13
- 210000003850 cellular structure Anatomy 0.000 description 6
- 238000005215 recombination Methods 0.000 description 6
- 229910000838 Al alloy Inorganic materials 0.000 description 5
- 238000000231 atomic layer deposition Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000006798 recombination Effects 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/14—Photovoltaic cells having only PN homojunction potential barriers
- H10F10/146—Back-junction photovoltaic cells, e.g. having interdigitated base-emitter regions on the back side
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/129—Passivating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明涉及一种局部掺杂前表面场背接触电池及其制备方法和组件、系统。本发明的局部掺杂前表面场背接触电池,包括N型晶体硅基体,N型晶体硅基体的前表面从内到外依次为局部掺杂n+前表面场和前表面钝化减反膜,N型晶体硅基体的背表面从内到外依次为交替排列的背表面p+掺杂区域和背表面n+掺杂区域、背表面钝化膜和背表面金属电极。其有益效果是:只在N型晶体硅基体的前表面局部区域进行n+掺杂,其余区域不掺杂,从而制得局部掺杂的前表面场,这种结构既降低了前表面场自身的复合又能给N型晶体硅基体提供优异的场钝化效果,所制电池具有较高的开路电压、短路电流和转换效率。
The invention relates to a locally doped front surface field back contact battery and a preparation method, component and system thereof. The locally doped front surface field back contact battery of the present invention comprises an N-type crystalline silicon substrate, the front surface of the N-type crystalline silicon substrate is sequentially locally doped n+ front surface field and a front surface passivation anti-reflection film from the inside to the outside, The back surface of the N-type crystalline silicon substrate is alternately arranged in sequence from the inside to the outside with p+ doped regions and n+ doped regions on the back surface, a passivation film on the back surface and metal electrodes on the back surface. Its beneficial effect is: n+ doping is only carried out on the local area of the front surface of the N-type crystalline silicon substrate, and the rest of the area is not doped, so as to obtain a locally doped front surface field. This structure not only reduces the front surface field itself. The composite can provide an excellent field passivation effect for the N-type crystalline silicon substrate, and the fabricated battery has higher open-circuit voltage, short-circuit current and conversion efficiency.
Description
技术领域technical field
本发明涉及太阳能电池技术领域,具体涉及一种局部掺杂前表面场背接触电池及其制备方法和组件、系统。The invention relates to the technical field of solar cells, in particular to a locally doped front surface field back contact cell and a preparation method, component and system thereof.
背景技术Background technique
太阳能电池是一种将光能转化为电能的半导体器件,较低的生产成本和较高的能量转化效率一直是太阳能电池工业追求的目标。对于目前常规太阳能电池,其p+掺杂区域接触电极和n+掺杂区域接触电极分别位于电池片的正反两面。电池的正面为受光面,正面金属接触电极的覆盖必将导致一部分入射的太阳光被金属电极所遮挡反射,造成一部分光学损失。普通晶硅太阳能电池的正面金属电极的覆盖面积在7%左右,减少金属电极的正面覆盖可以直接提高电池的能量转化效率。A solar cell is a semiconductor device that converts light energy into electrical energy. Lower production costs and higher energy conversion efficiency have always been the goals pursued by the solar cell industry. For conventional solar cells, the p+ doped region contact electrodes and the n+ doped region contact electrodes are respectively located on the front and back sides of the battery sheet. The front of the battery is the light-receiving surface, and the coverage of the metal contact electrodes on the front will inevitably cause a part of the incident sunlight to be blocked and reflected by the metal electrodes, resulting in a part of optical loss. The coverage area of the front metal electrode of an ordinary crystalline silicon solar cell is about 7%, and reducing the front coverage of the metal electrode can directly improve the energy conversion efficiency of the cell.
背接触电池,是一种将p+掺杂区域和n+掺杂区域均放置在电池背面(非受光面)的电池,该电池的受光面无任何金属电极遮挡,从而有效增加了电池片的短路电流,使电池片的能量转化效率得到提高。由于PN结位于电池的背面,光生载流子的产生主要在前表面附近,载流子需要穿过整个硅片厚度到达背面的地方才能被收集。如果前表面钝化不好,光生载流子会很容易在到达背面之前就被复合而降低效率。因此,良好的前表面钝化显得尤为重要。The back contact cell is a cell in which both the p+ doped region and the n+ doped region are placed on the back of the cell (non-light-receiving surface). The light-receiving surface of the cell is not blocked by any metal electrodes, thereby effectively increasing the short-circuit current of the cell. , so that the energy conversion efficiency of the cell is improved. Since the PN junction is located on the back of the cell, photogenerated carriers are mainly generated near the front surface, and the carriers need to pass through the entire thickness of the silicon wafer to reach the back to be collected. If the passivation of the front surface is not good, the photogenerated carriers will be easily recombined before reaching the back surface, reducing the efficiency. Therefore, good front surface passivation is particularly important.
常见的背接触电池前表面钝化的手段是在前表面引入一个n+/n的高低结,称之为前表面场。前表面场可以给N型硅基体提供良好的场钝化效果,降低光生载流子在前表面的复合速率。前表面场一般是通过磷扩散或者离子注入的方法形成的。磷的掺杂浓度越高,前表面场自身的复合越大,钝化后的暗饱和电流密度J0也越高;但如果磷的掺杂浓度过低,其对N型硅基体的场钝化效果又会变弱。因此,寻找一种既能提供优异的场钝化效果同时自身复合又低的前表面场,是进一步提高背接触电池转换效率的关键。A common method of passivating the front surface of a back contact battery is to introduce an n+/n high-low junction on the front surface, which is called the front surface field. The front surface field can provide a good field passivation effect for the N-type silicon substrate and reduce the recombination rate of photogenerated carriers on the front surface. The front surface field is generally formed by phosphorus diffusion or ion implantation. The higher the doping concentration of phosphorus, the greater the recombination of the front surface field itself, and the higher the dark saturation current density J 0 after passivation; but if the doping concentration of phosphorus is too low, it will passivate the field of N-type silicon substrate. The effect will be weakened again. Therefore, finding a front surface field that can provide excellent field passivation effect while self-recombination and low front surface field is the key to further improve the conversion efficiency of back contact cells.
发明内容Contents of the invention
本发明的目的在于提供一种局部掺杂前表面场背接触电池及其制备方法和组件、系统。本发明的局部掺杂前表面场背接触电池采用局部掺杂的前表面场,既减少了前表面场自身的复合又能给N型晶体硅基体提供优异的场钝化效果,所制电池具有较高的开路电压、短路电流和转换效率。The purpose of the present invention is to provide a local doping front surface field back contact cell and its preparation method, assembly and system. The locally doped front surface field back contact battery of the present invention adopts a locally doped front surface field, which not only reduces the recombination of the front surface field itself but also provides an excellent field passivation effect for the N-type crystalline silicon substrate, and the manufactured battery has Higher open circuit voltage, short circuit current and conversion efficiency.
为实现上述发明目的,本发明采取的技术方案为:For realizing above-mentioned purpose of the invention, the technical scheme that the present invention takes is:
一种局部掺杂前表面场背接触电池,包括N型晶体硅基体,N型晶体硅基体的前表面包括局部掺杂n+前表面场和非掺杂区域,在局部掺杂n+前表面场和非掺杂区域的表面设置有前表面钝化减反膜;N型晶体硅基体的背表面从内到外依次为掺杂区域、背表面钝化膜和与掺杂区域欧姆接触的金属电极,掺杂区域包括相互交替排列的背表面n+掺杂区域和背表面p+掺杂区域,背表面n+掺杂区域设置有n+金属电极,背表面p+掺杂区域设置有p+金属电极。A kind of locally doped front surface field back contact cell, comprising N-type crystalline silicon substrate, the front surface of N-type crystalline silicon substrate includes local doping n+ front surface field and non-doped region, in local doping n+ front surface field and The surface of the non-doped region is provided with a passivation anti-reflection film on the front surface; the back surface of the N-type crystalline silicon substrate is sequentially composed of a doped region, a passivation film on the back surface and a metal electrode in ohmic contact with the doped region from the inside to the outside. The doping region includes back surface n+ doping regions and back surface p+ doping regions alternately arranged, the back surface n+ doping regions are provided with n+ metal electrodes, and the back surface p+ doping regions are provided with p+ metal electrodes.
其中,局部掺杂n+前表面场的面积小于或者等于N型晶体硅基体前表面面积的20%。Wherein, the area of the locally doped n+ front surface field is less than or equal to 20% of the front surface area of the N-type crystalline silicon substrate.
其中,局部掺杂n+前表面场为线条状图案,线条状图案宽100~200μm,线条状图案之间的非掺杂区域宽500~1000μm;或者局部掺杂n+前表面场为点状图案,点状图案的点直径为200~400μm。Wherein, the surface field before local doping of n+ is a line-like pattern, the width of the line-like pattern is 100-200 μm, and the width of the non-doped region between the line-like patterns is 500-1000 μm; or the surface field before local doping of n+ is a dot-like pattern, The dot diameter of the dot pattern is 200 to 400 μm.
其中,局部掺杂n+前表面场的方阻为50~150Ω/sqr,结深为0.2~2.0μm;背表面n+掺杂区域的方阻为20~150Ω/sqr,结深为0.3~2.0μm;背表面p+掺杂区域的方阻为20~150Ω/sqr,结深为0.3~2.0μm。Among them, the square resistance of the front surface field of local doping n+ is 50~150Ω/sqr, and the junction depth is 0.2~2.0μm; the square resistance of the n+ doped region on the back surface is 20~150Ω/sqr, and the junction depth is 0.3~2.0μm ; The square resistance of the p+ doped region on the back surface is 20-150 Ω/sqr, and the junction depth is 0.3-2.0 μm.
本发明的一种局部掺杂前表面场背接触电池的制备方法,包括以下步骤:A kind of preparation method of local doping front surface field back contact cell of the present invention, comprises the following steps:
(1)、分别对N型晶体硅基体的前表面和背表面进行掺杂处理,在N型晶体硅基体的背表面形成相互交替排列的背表面硼离子注入区域和背表面磷离子注入区域,在N型晶体硅基体的前表面形成局部磷离子注入区域和无离子注入的非掺杂区域;(1), respectively doping the front surface and the back surface of the N-type crystalline silicon substrate, forming alternately arranged back surface boron ion implantation regions and rear surface phosphorus ion implantation regions on the back surface of the N-type crystalline silicon substrate, Forming a local phosphorus ion implantation region and a non-doped region without ion implantation on the front surface of the N-type crystalline silicon substrate;
(2)、将N型晶体硅基体进行高温退火处理;退火完成后形成局部掺杂n+前表面场、背表面n+掺杂区域和背表面p+掺杂区域;(2) Perform high-temperature annealing treatment on the N-type crystalline silicon substrate; after the annealing is completed, form a locally doped n+ front surface field, an n+ doped region on the back surface, and a p+ doped region on the back surface;
(3)、然后在N型晶体硅基体的前表面形成钝化减反膜,在N型晶体硅基体的背表面形成钝化膜;(3), then form a passivation anti-reflection film on the front surface of the N-type crystalline silicon substrate, and form a passivation film on the back surface of the N-type crystalline silicon substrate;
(4)、在N型晶体硅基体的背表面制备分别与背表面n+掺杂区域和背表面p+掺杂区域欧姆接触的金属电极。(4) Prepare metal electrodes on the back surface of the N-type crystalline silicon substrate which are respectively in ohmic contact with the n+ doped region on the back surface and the p+ doped region on the back surface.
其中,步骤(1)中,局部磷离子注入区域的面积小于或者等于N型晶体硅基体前表面面积的20%;Wherein, in step (1), the area of the local phosphorus ion implantation region is less than or equal to 20% of the front surface area of the N-type crystalline silicon substrate;
N型晶体硅基体前表面的局部磷离子注入区域的磷离子的注入剂量为1×1015cm-2~4×1015cm-2,离子注入时,在N型晶体硅基体前表面和离子束之间设置掩膜,掩膜上设置线条状开口,线条状开口宽100~200μm,线条状开口之间的非开孔区域宽500~1000μm;或者掩膜上设置点状开口,点状开口的点直径为200~400μm。The implantation dose of phosphorus ions in the local phosphorus ion implantation region on the front surface of the N-type crystalline silicon substrate is 1×10 15 cm -2 to 4×10 15 cm -2 . During ion implantation, the front surface of the N-type crystalline silicon substrate and the ion A mask is set between the beams, and line-shaped openings are set on the mask. The width of the line-shaped openings is 100-200 μm, and the width of the non-opening area between the line-shaped openings is 500-1000 μm; The dot diameter is 200-400 μm.
本发明的一种局部掺杂前表面场背接触电池的制备方法,包括以下步骤:A kind of preparation method of local doping front surface field back contact cell of the present invention, comprises the following steps:
(1)、分别对N型晶体硅基体的前表面和背表面进行掺杂处理,在N型晶体硅基体的背表面形成相互交替排列的背表面硼离子注入区域和背表面磷离子注入区域,在N型晶体硅基体的前表面注入磷离子;(1), respectively doping the front surface and the back surface of the N-type crystalline silicon substrate, forming alternately arranged back surface boron ion implantation regions and rear surface phosphorus ion implantation regions on the back surface of the N-type crystalline silicon substrate, Implanting phosphorus ions on the front surface of the N-type crystalline silicon substrate;
(2)、将N型晶体硅基体进行高温退火处理,退火完成后形成n+前表面场、背表面n+掺杂区域和背表面p+掺杂区域;然后在N型晶体硅基体的背表面印刷一层覆盖整个背表面的耐酸掩膜,在N型晶体硅基体的前表面印刷一层选择性覆盖N型晶体硅基体的前表面耐酸掩膜;将N型晶体硅基体放入酸性刻蚀液中,刻蚀掉未被耐酸掩膜覆盖的n+前表面场,将N型晶体硅基体放入碱性溶液中,去除N型晶体硅基体前表面的耐酸掩膜和背表面的耐酸掩膜;(2) Perform high-temperature annealing treatment on the N-type crystalline silicon substrate. After the annealing is completed, an n+ front surface field, an n+ doped region on the back surface, and a p+ doped region on the back surface are formed; An acid-resistant mask covering the entire back surface, and a layer of acid-resistant mask selectively covering the front surface of the N-type crystalline silicon substrate is printed on the front surface of the N-type crystalline silicon substrate; the N-type crystalline silicon substrate is placed in an acidic etching solution , etch away the n+ front surface field not covered by the acid-resistant mask, put the N-type crystalline silicon substrate into an alkaline solution, and remove the acid-resistant mask on the front surface of the N-type crystalline silicon substrate and the acid-resistant mask on the back surface;
(3)、然后在N型晶体硅基体的前表面形成钝化减反膜,在N型晶体硅基体的背表面形成钝化膜;(3), then form a passivation anti-reflection film on the front surface of the N-type crystalline silicon substrate, and form a passivation film on the back surface of the N-type crystalline silicon substrate;
(4)、在N型晶体硅基体的背表面制备与背表面n+掺杂区域和背表面p+掺杂区域欧姆接触的金属电极。(4) Prepare a metal electrode in ohmic contact with the n+ doped region on the back surface and the p+ doped region on the back surface on the back surface of the N-type crystalline silicon substrate.
其中,步骤(2)中,选择性覆盖N型晶体硅基体的前表面耐酸掩膜的面积小于或者等于N型晶体硅基体前表面的面积的20%;耐酸掩膜为线条状开口,线条状开口宽100-200μm,线条状开口之间的非开孔区域宽500-1000μm;或者耐酸掩膜为点状开口,点状开口的点直径为200~400μm。Wherein, in step (2), the area of the acid-resistant mask selectively covering the front surface of the N-type crystalline silicon substrate is less than or equal to 20% of the area of the front surface of the N-type crystalline silicon substrate; The width of the opening is 100-200 μm, and the width of the non-opening area between the linear openings is 500-1000 μm; or the acid-resistant mask has point openings, and the point diameter of the point openings is 200-400 μm.
其中,步骤(2)中,酸性刻蚀液为HF和HNO3的混合溶液;碱性溶液为氢氧化钾溶液、氢氧化钠溶液、四甲基氢氧化铵溶液或乙二胺溶液。Wherein, in step (2), the acidic etching solution is a mixed solution of HF and HNO3 ; the alkaline solution is potassium hydroxide solution, sodium hydroxide solution, tetramethylammonium hydroxide solution or ethylenediamine solution.
其中,步骤(1)中,对N型晶体硅基体的背表面进行掺杂处理的方法是:首先在N型晶体硅基体背表面进行离子注入,注入元素为硼,注入剂量为0.5×1015cm-2~3×1015cm-2,然后在N型晶体硅基体背表面进行选择性地离子注入,注入元素为磷,注入剂量为3×1015cm-2~8×1015cm-2;离子注入磷时,在N型晶体硅基体背表面和离子束之间设置掩膜,掩膜上设置线条状开口,线条状开口宽50~400μm。Wherein, in step (1), the method for doping the back surface of the N-type crystalline silicon substrate is: firstly, ion implantation is performed on the back surface of the N-type crystalline silicon substrate, the implanted element is boron, and the implantation dose is 0.5×10 15 cm -2 ~3×10 15 cm -2 , and then perform selective ion implantation on the back surface of the N-type crystalline silicon substrate, the implanted element is phosphorus, and the implantation dose is 3×10 15 cm -2 ~8×10 15 cm - 2. When ion implanting phosphorus, a mask is set between the back surface of the N-type crystalline silicon substrate and the ion beam, and line-shaped openings are set on the mask, and the width of the line-shaped openings is 50-400 μm.
其中,步骤(2)中,退火的峰值温度为800~1100℃,退火时间为30~200min,环境气源为N2和O2;Wherein, in step (2), the peak annealing temperature is 800-1100° C., the annealing time is 30-200 min, and the ambient gas source is N 2 and O 2 ;
步骤(3)中,钝化减反膜的制备方法是在N型晶体硅基体的前表面利用PECVD设备先沉积一层厚度为5~30nm的SiOx介质膜,然后在SiOx介质膜上再沉积一层厚度为40~80nm的SiNx介质膜;钝化膜的制备方法是在N型晶体硅基体的背表面利用PECVD设备或ALD设备制作一层厚度为4~20nm的AlOx介质膜,然后在AlOx介质膜的表面再沉积一层厚度为20~50nm的SiNx介质膜;In step (3), the preparation method of the passivation anti-reflection film is to deposit a layer of SiO x dielectric film with a thickness of 5 to 30 nm on the front surface of the N-type crystalline silicon substrate using PECVD equipment, and then on the SiO x dielectric film. Deposit a layer of SiN x dielectric film with a thickness of 40-80nm; the preparation method of the passivation film is to use PECVD equipment or ALD equipment to make a layer of AlO x dielectric film with a thickness of 4-20nm on the back surface of the N-type crystalline silicon substrate, Then deposit a layer of SiNx dielectric film with a thickness of 20-50nm on the surface of the AlOx dielectric film;
步骤(4)中,金属电极的制备方法是通过丝网印刷的方法在处理后的N型晶体硅基体的背表面p+掺杂区域上印刷银铝浆,在背表面n+掺杂区域上印刷银浆,然后进行烧结处理。In step (4), the preparation method of the metal electrode is to print silver-aluminum paste on the p+ doped region of the back surface of the treated N-type crystalline silicon substrate by screen printing, and print silver on the n+ doped region of the back surface. slurry, followed by sintering.
其中,进行步骤(1)之前,首先对N型晶体硅基体的前表面作制绒处理,N型晶体硅基体的电阻率为0.5~15Ω·cm,N型晶体硅基体的厚度为50~300μm;Wherein, before step (1), at first the front surface of the N-type crystalline silicon substrate is textured, the resistivity of the N-type crystalline silicon substrate is 0.5-15Ω·cm, and the thickness of the N-type crystalline silicon substrate is 50-300 μm ;
进行步骤(3)之前,将N型晶体硅基体放入清洗机中进行清洗、烘干处理。Before step (3), put the N-type crystalline silicon substrate into a cleaning machine for cleaning and drying.
本发明还提供了一种太阳能电池组件,包括由上至下依次设置的前层材料、封装材料、太阳能电池、封装材料、背层材料,太阳能电池是上述的一种局部掺杂前表面场背接触电池。The present invention also provides a solar cell module, which includes a front layer material, an encapsulation material, a solar cell, an encapsulation material, and a back layer material arranged sequentially from top to bottom. The solar cell is the above-mentioned partially doped front surface field back Touch the battery.
本发明还提供了一种太阳能电池系统,包括一个以上的太阳能电池组件,太阳能电池组件是上述的太阳能电池组件。The present invention also provides a solar cell system, which includes more than one solar cell component, and the solar cell component is the above solar cell component.
本发明的技术优点主要体现在:Technical advantage of the present invention is mainly reflected in:
只在N型晶体硅基体的前表面局部区域进行n+掺杂,其余区域不掺杂,从而制得局部掺杂的前表面场,这种结构既降低了前表面场自身的复合又能给N型晶体硅基体提供优异的场钝化效果,所制电池具有较高的开路电压、短路电流和转换效率。N+ doping is only carried out on the local area of the front surface of the N-type crystalline silicon substrate, and the rest of the area is not doped, so as to obtain a locally doped front surface field. This structure not only reduces the recombination of the front surface field itself but also gives N The type crystalline silicon substrate provides excellent field passivation effect, and the fabricated battery has high open circuit voltage, short circuit current and conversion efficiency.
本发明的局部掺杂前表面场背接触电池在完成前后表面的钝化膜覆盖后,其隐开路电压(Implied Voc)可达700mV以上,暗饱和电流密度J0<20fA/cm2,印刷电极制成的背接触电池后,其短波段的内量子效率达95%以上,性能优于现有的电池。After the partial doping front surface field back contact battery of the present invention is covered with a passivation film on the front and rear surfaces, its implied open circuit voltage (Implied Voc) can reach more than 700mV, and the dark saturation current density J 0 <20fA/cm 2 , printed electrodes After the fabricated back-contact battery, the internal quantum efficiency of the short-wave band reaches more than 95%, and the performance is better than that of the existing battery.
附图说明Description of drawings
图1为本发明实施例1和实施例2的局部掺杂前表面场背接触电池的制备方法步骤一后的电池结构截面示意图。1 is a schematic cross-sectional view of the battery structure after step 1 of the method for preparing a surface field back contact battery before local doping in Example 1 and Example 2 of the present invention.
图2为本发明实施例1和实施例2的局部掺杂前表面场背接触电池的制备方法步骤二后的电池结构截面示意图。2 is a schematic cross-sectional view of the battery structure after step 2 of the method for preparing a surface field back contact battery before local doping in Example 1 and Example 2 of the present invention.
图3为本发明实施例1和实施例2的局部掺杂前表面场背接触电池的制备方法步骤三后的电池结构截面示意图。3 is a schematic cross-sectional view of the battery structure after step 3 of the method for preparing a surface field back contact battery before local doping in Example 1 and Example 2 of the present invention.
图4为本发明实施例1的局部掺杂前表面场背接触电池的制备方法步骤四后的电池结构截面示意图。4 is a schematic cross-sectional view of the cell structure after step 4 of the method for preparing a surface field back contact cell before local doping in Example 1 of the present invention.
图5为本发明实施例1的局部掺杂前表面场背接触电池的制备方法步骤五后的电池结构截面示意图。5 is a schematic cross-sectional view of the cell structure after step 5 of the method for preparing a surface field back contact cell before local doping in Example 1 of the present invention.
图6为本发明实施例1的局部掺杂前表面场背接触电池的制备方法步骤六后的电池结构截面示意图。6 is a schematic cross-sectional view of the battery structure after step six of the method for preparing a surface field back contact battery before local doping in Example 1 of the present invention.
图7为本发明实施例1的局部掺杂前表面场背接触电池的制备方法步骤七后的电池结构截面示意图。7 is a schematic cross-sectional view of the battery structure after step 7 of the method for preparing a surface field back contact battery before local doping in Example 1 of the present invention.
图8为本发明实施例2的局部掺杂前表面场背接触电池的制备方法步骤四后的电池结构截面示意图。8 is a schematic cross-sectional view of the battery structure after step 4 of the method for preparing a surface field back contact battery before local doping in Example 2 of the present invention.
图9为本发明实施例2的局部掺杂前表面场背接触电池的制备方法步骤五后的电池结构截面示意图。9 is a schematic cross-sectional view of the battery structure after step five of the method for preparing a surface field back contact battery before local doping in Example 2 of the present invention.
图10为本发明实施例2的局部掺杂前表面场背接触电池的制备方法步骤六后的电池结构截面示意图。10 is a schematic cross-sectional view of the battery structure after step six of the method for preparing a surface field back contact battery before local doping in Example 2 of the present invention.
图11为本发明实施例2的局部掺杂前表面场背接触电池的制备方法步骤七后的电池结构截面示意图。11 is a schematic cross-sectional view of the battery structure after step 7 of the method for preparing a surface field back contact battery before local doping in Example 2 of the present invention.
图12为本发明实施例2的局部掺杂前表面场背接触电池的制备方法步骤八后的电池结构截面示意图。12 is a schematic cross-sectional view of the battery structure after step eight of the method for preparing a surface field back contact battery before local doping in Example 2 of the present invention.
图13为本发明实施例2的局部掺杂前表面场背接触电池的制备方法步骤九后的电池结构截面示意图。13 is a schematic cross-sectional view of the battery structure after step nine of the method for preparing a surface field back contact battery before local doping in Example 2 of the present invention.
图14为本发明实施例2的局部掺杂前表面场背接触电池的制备方法步骤十后的电池结构截面示意图。14 is a schematic cross-sectional view of the battery structure after step ten of the method for preparing a surface field back contact battery before local doping in Example 2 of the present invention.
图15为本发明实施例1和实施例2的局部掺杂前表面场背接触电池的制备方法步骤三中使用的掩膜结构示意图。FIG. 15 is a schematic diagram of the mask structure used in Step 3 of the method for preparing a local doped front surface field back contact cell according to Embodiment 1 and Embodiment 2 of the present invention.
图16为本发明实施例1的局部掺杂前表面场背接触电池的制备方法步骤四中使用的条状开孔掩膜结构示意图。FIG. 16 is a schematic diagram of the structure of a strip-shaped opening mask used in Step 4 of the method for preparing a locally doped front surface field back contact cell according to Embodiment 1 of the present invention.
图17为本发明实施例1的局部掺杂前表面场背接触电池的制备方法步骤四中使用的点状开孔掩膜结构示意图。FIG. 17 is a schematic diagram of the structure of a point-shaped opening mask used in Step 4 of the method for preparing a locally doped front surface field back contact cell according to Embodiment 1 of the present invention.
图18为本发明实施例2的局部掺杂前表面场背接触电池的制备方法步骤六中使用的条状开孔网版结构示意图。18 is a schematic diagram of the structure of the strip-shaped apertured screen used in step 6 of the method for preparing a front surface field back contact cell with local doping in Example 2 of the present invention.
图19为本发明实施例2的局部掺杂前表面场背接触电池的制备方法步骤六中使用的点状开孔网版结构示意图。FIG. 19 is a schematic diagram of the structure of the dot-shaped apertured screen used in step 6 of the method for preparing a front surface field back contact cell with local doping in Example 2 of the present invention.
具体实施方式detailed description
下面将结合实施例以及附图对本发明加以详细说明,需要指出的是,所描述的实施例仅旨在便于对本发明的理解,而对其不起任何限定作用。The present invention will be described in detail below in conjunction with the embodiments and the accompanying drawings. It should be noted that the described embodiments are only intended to facilitate the understanding of the present invention, rather than limiting it in any way.
本发明涉及的点状图案的点直径,点状图案如果是圆点,则点直径为圆的直径,如果点状图案为非规则形点状(如方形、椭圆形或者其它无规则的形状),则点直径为图案内连线的最长边的长度。The dot diameter of the dot pattern that the present invention relates to, if the dot pattern is a dot, then the dot diameter is the diameter of a circle, if the dot pattern is an irregular dot shape (such as a square, an ellipse or other irregular shapes) , then the dot diameter is the length of the longest side of the interconnection line in the pattern.
参见图13所示,本实施例的一种局部掺杂前表面场背接触电池,包括N型晶体硅基体,N型晶体硅基体的前表面包括局部掺杂n+前表面场13和非掺杂区域,在局部掺杂n+前表面场13和非掺杂区域的表面设置有前表面钝化减反膜;N型晶体硅基体的背表面从内到外依次为掺杂区域、背表面钝化膜和与掺杂区域欧姆接触的金属电极,掺杂区域包括相互交替排列的背表面n+掺杂区域12和背表面p+掺杂区域11,背表面n+掺杂区域12设置有n+金属电极32,背表面p+掺杂区域11上设置有p+金属电极31。本实施例的局部掺杂前表面场背接触电池,只在N型晶体硅基体的前表面局部区域进行n+掺杂,其余区域不掺杂,从而制得局部掺杂的前表面场,这种结构既降低了前表面场自身的复合又能给N型晶体硅基体提供优异的场钝化效果,所制电池具有更高的开路电压、短路电流和转换效率。Referring to Fig. 13, a locally doped front surface field back contact battery of this embodiment includes an N-type crystalline silicon substrate, and the front surface of the N-type crystalline silicon substrate includes a locally doped n+ front surface field 13 and a non-doped In the region, the front surface passivation anti-reflection film is provided on the surface of the local doped n+ front surface field 13 and the non-doped region; the back surface of the N-type crystalline silicon substrate is sequentially doped region, back surface passivation film and a metal electrode in ohmic contact with the doped region, the doped region includes back surface n+ doped regions 12 and back surface p+ doped regions 11 arranged alternately, the back surface n+ doped region 12 is provided with an n+ metal electrode 32, A p+ metal electrode 31 is disposed on the p+ doped region 11 on the back surface. In the locally doped front surface field back contact cell of this embodiment, n+ doping is only performed on the local front surface area of the N-type crystalline silicon substrate, and the remaining areas are not doped, thereby making a locally doped front surface field. The structure not only reduces the recombination of the front surface field itself, but also provides an excellent field passivation effect for the N-type crystalline silicon substrate, and the fabricated battery has higher open-circuit voltage, short-circuit current and conversion efficiency.
申请人通过大量试验发现,局部掺杂n+前表面场13的面积小于或者等于N型晶体硅基体前表面的面积的20%时,所得到的背接触电池具有更优的性能,还能够降低成本。局部掺杂n+前表面场13可以为线条状图案,线条状图案宽100~200μm,线条状图案之间的非掺杂区域宽500~1000μm;局部掺杂n+前表面场13还可以为点状图案,点状图案的点直径为200~400μm。局部掺杂n+前表面场13的方阻为50~150Ω/sqr,结深为0.2~2.0μm;背表面n+掺杂区域12的方阻为20~150Ω/sqr,结深为0.3~2.0μm;背表面p+掺杂区域11的方阻为20~150Ω/sqr,结深为0.3~2.0μm。The applicant found through a large number of experiments that when the area of the locally doped n+ front surface field 13 is less than or equal to 20% of the area of the front surface of the N-type crystalline silicon substrate, the resulting back contact cell has better performance and can also reduce costs . The local doping n+ front surface field 13 can be a line-like pattern, the width of the line-like pattern is 100-200 μm, and the width of the non-doped area between the line-like patterns is 500-1000 μm; the local doping n+ front surface field 13 can also be a point shape Pattern, the dot diameter of the dot pattern is 200-400 μm. The square resistance of the locally doped n+ front surface field 13 is 50-150 Ω/sqr, and the junction depth is 0.2-2.0 μm; the square resistance of the n+ doped region 12 on the back surface is 20-150 Ω/sqr, and the junction depth is 0.3-2.0 μm ; The square resistance of the p+ doped region 11 on the back surface is 20-150 Ω/sqr, and the junction depth is 0.3-2.0 μm.
优选地,p+金属电极31为银铝合金电极,n+金属电极32为银电极。背表面p+掺杂区域11为线条状图案,线条状图案的宽为200~3000μm;背表面n+掺杂区域12为线条状图案,线条状开口图案的宽为200~2000μm。N型晶体硅基体的电阻率为0.5~15Ω·cm;N型晶体硅基体的厚度为50~300μm。钝化减反膜为厚度为5~30nm的SiO2介质膜20和厚度为40~80nm的SiNx介质膜22;钝化膜为厚度为4~20nm的AlOx介质膜21和厚度为20~50nm的SiNx介质膜23。Preferably, the p+ metal electrode 31 is a silver aluminum alloy electrode, and the n+ metal electrode 32 is a silver electrode. The p+ doped region 11 on the back surface is a line pattern with a width of 200-3000 μm; the n+ doped region 12 on the back surface is a line pattern with a width of 200-2000 μm. The resistivity of the N-type crystalline silicon substrate is 0.5-15 Ω·cm; the thickness of the N-type crystalline silicon substrate is 50-300 μm. The passivation anti-reflection film is a SiO2 dielectric film 20 with a thickness of 5-30nm and a SiNx dielectric film 22 with a thickness of 40-80nm; the passivation film is an AlOx dielectric film 21 with a thickness of 4-20nm and a thickness of 20-20nm. SiN x dielectric film 23 of 50nm.
以下以两个实施例对本发明的局部掺杂前表面场背接触电池的制备方法进行详述。The preparation method of the local doped front surface field back contact battery of the present invention will be described in detail below with two examples.
实施例1Example 1
本实施例的局部掺杂前表面场背接触电池的制备方法,包括以下步骤:The preparation method of the local doping front surface field back contact cell of this embodiment includes the following steps:
(1)、选择156mm×156mm的N型晶体硅基体10,并对N型晶体硅基体10的前表面作制绒处理;N型晶体硅基体10的电阻率为0.5~15Ω·cm,优选1~5Ω·cm;N型晶体硅基体10的厚度为50~300μm,优选80~200μm;完成本步骤后的电池结构如图1所示。(1), select the N-type crystalline silicon substrate 10 of 156mm * 156mm, and do texture processing to the front surface of the N-type crystalline silicon substrate 10; The resistivity of the N-type crystalline silicon substrate 10 is 0.5~15Ω·cm, preferably 1 ~5Ω·cm; the thickness of the N-type crystalline silicon substrate 10 is 50-300 μm, preferably 80-200 μm; the battery structure after this step is shown in FIG. 1 .
(2)、使用离子注入机在步骤(1)处理后的N型晶体硅基体10背表面进行离子注入,注入元素为硼,注入剂量为0.5×1015cm-2~3×1015cm-2,优选1.5×1015cm-2~2.5×1015cm-2。完成本步骤后的电池结构如图2所示。(2) Using an ion implanter to perform ion implantation on the back surface of the N-type crystalline silicon substrate 10 treated in step (1), the implanted element is boron, and the implantation dose is 0.5×10 15 cm −2 to 3×10 15 cm −2 2 , preferably 1.5×10 15 cm -2 to 2.5×10 15 cm -2 . The structure of the battery after this step is shown in FIG. 2 .
(3)、使用离子注入机在步骤(2)处理后的N型晶体硅基体10背表面进行选择性地离子注入,注入元素为磷,注入剂量为3×1015cm-2~8×1015cm-2,优选4×1015cm-2~6×1015cm-2。离子注入时,在N型晶体硅基体10背表面和离子束之间设置掩膜40。掩膜40的材质为石墨,如图15所示,掩膜40上设置线条状开口41,线条状开口41宽50~400μm,优选100~300μm。掩膜40上的开孔图案还可以为其他任意排布的周期或准周期阵列,其图案可以根据需要有多种选择,此处不作限定,仅进行举例列举。掩膜40上的开口区域对应的N型晶体硅基体10背表面注入有硼和磷,其他区域则仅为硼注入。控制磷注入的剂量大于硼注入的剂量。完成本步骤后的电池结构如图3所示。(3) Using an ion implanter to perform selective ion implantation on the back surface of the N-type crystalline silicon substrate 10 treated in step (2), the implanted element is phosphorus, and the implantation dose is 3×10 15 cm −2 to 8×10 15 cm -2 , preferably 4×10 15 cm -2 to 6×10 15 cm -2 . During ion implantation, a mask 40 is set between the back surface of the N-type crystalline silicon substrate 10 and the ion beam. The material of the mask 40 is graphite. As shown in FIG. 15 , the mask 40 is provided with linear openings 41 with a width of 50-400 μm, preferably 100-300 μm. The pattern of openings on the mask 40 can also be any other periodic or quasi-periodic array, and the pattern can be selected in various ways according to needs, which is not limited here and is only listed as an example. The back surface of the N-type crystalline silicon substrate 10 corresponding to the opening area on the mask 40 is implanted with boron and phosphorus, and only boron is implanted in other areas. The dose of phosphorus implantation is controlled to be larger than the dose of boron implantation. The structure of the battery after this step is shown in FIG. 3 .
(4)、使用离子注入机在步骤(3)处理后的N型晶体硅基体10前表面进行选择性地离子注入,注入元素为磷,注入剂量为1×1015cm-2~4×1015cm-2,优选1×1015cm-2~3×1015cm-2。离子注入时,在N型晶体硅基体10前表面和离子束之间设置掩膜50。掩膜50的材质为石墨,如图16所示,掩膜50上设置线条状开口51,线条状开口51宽100~200μm,线条状开口51之间的非开孔区域宽500~1000μm。如图17所示,掩膜50上还可以设置点状开口52,点状开口52的直径为200~400μm。掩膜50上的开孔图案还可以为其他任意排布的周期或准周期阵列,其图案可以根据需要有多种选择,此处不作限定,仅进行举例列举。注意掩膜50上的开口部分的面积不超过N型晶体硅基体10前表面的面积的20%。完成本步骤后的电池结构如图4所示。(4) Using an ion implanter to perform selective ion implantation on the front surface of the N-type crystalline silicon substrate 10 treated in step (3), the implanted element is phosphorus, and the implantation dose is 1×10 15 cm −2 to 4×10 15 cm -2 , preferably 1×10 15 cm -2 to 3×10 15 cm -2 . During ion implantation, a mask 50 is set between the front surface of the N-type crystalline silicon substrate 10 and the ion beam. The material of the mask 50 is graphite. As shown in FIG. 16 , the mask 50 is provided with linear openings 51 with a width of 100-200 μm, and a non-opening area between the linear openings 51 is 500-1000 μm wide. As shown in FIG. 17 , dot-like openings 52 may also be provided on the mask 50 , and the diameter of the dot-like openings 52 is 200-400 μm. The pattern of openings on the mask 50 can also be any other periodic or quasi-periodic array, and the pattern can be selected in various ways according to the needs, which are not limited here, but are only listed as examples. Note that the area of the opening on the mask 50 does not exceed 20% of the area of the front surface of the N-type crystalline silicon substrate 10 . The battery structure after completing this step is shown in FIG. 4 .
(5)、将步骤(4)处理后的N型晶体硅基体10放入退火炉中进行高温退火处理,退火的峰值温度为800~1100℃,优选为850~1000℃,退火时间为30~200min,优选为60~200min,环境气源优选为N2和O2。退火完成后即形成局部掺杂n+前表面场13、背表面n+掺杂区域12和背表面p+掺杂区域11。其中掩膜40上的开口对应的N型晶体硅基体10背表面区域为背表面n+掺杂区域12,这是因为该区域注入的磷的剂量大于硼的剂量,同时硼在硅中的固溶度要低于磷,所以退火后该区域为n+掺杂。背表面其他区域为背表面p+掺杂区域11。其中局部掺杂n+前表面场13的方阻为50~150Ω/sqr,结深为0.2~2.0μm。背表面n+掺杂区域12的方阻为20~150Ω/sqr,结深为0.3~2.0μm。背表面p+掺杂区域11的方阻为20~150Ω/sqr,结深为0.3~2.0μm。完成本步骤后的电池结构如图5所示。(5), put the N-type crystalline silicon substrate 10 processed in step (4) into an annealing furnace for high-temperature annealing treatment, the peak annealing temperature is 800-1100° C., preferably 850-1000° C., and the annealing time is 30-1000° C. 200 min, preferably 60-200 min, and the ambient gas source is preferably N 2 and O 2 . After the annealing is completed, the locally doped n+ front surface field 13 , the back surface n+ doped region 12 and the back surface p+ doped region 11 are formed. Wherein the opening on the mask 40 corresponds to the N-type crystalline silicon substrate 10 back surface area is the back surface n+ doped area 12, this is because the dose of phosphorus implanted in this area is greater than the dose of boron, and the solid solution of boron in silicon The degree is lower than that of phosphorus, so the region is n+ doped after annealing. Other regions on the back surface are p+ doped regions 11 on the back surface. Wherein the square resistance of the surface field 13 in front of the local doping n+ is 50-150 Ω/sqr, and the junction depth is 0.2-2.0 μm. The square resistance of the n+ doped region 12 on the back surface is 20-150 Ω/sqr, and the junction depth is 0.3-2.0 μm. The square resistance of the p+ doped region 11 on the back surface is 20-150 Ω/sqr, and the junction depth is 0.3-2.0 μm. The battery structure after this step is shown in FIG. 5 .
(6)、将步骤(5)处理后的N型晶体硅基体10放入清洗机中,进行清洗并烘干。然后在N型晶体硅基体10的前表面用PECVD(等离子增强化学气相沉积)的方式先沉积一层厚度为5~30nm的SiOx介质膜20,然后在SiOx介质膜20上再沉积一层SiNx介质膜22,膜的厚度为40~80nm;在N型晶体硅基体10的背表面用PECVD或ALD(原子层沉积)的方式制作一层AlOx介质膜21,膜的厚度为4~20nm,然后在AlOx介质膜21的表面再沉积一层SiNx膜23,SiNx膜23的厚度为20~50nm。硅基体前表面的SiOx介质膜20与SiNx介质膜22的作用为硅基体前表面的钝化和光的减反射;硅基体背表面的AlOx介质膜21与SiNx介质膜23的作用为硅基体背表面的钝化,同时SiNx介质膜23也起到了对AlOx介质膜21的保护作用。完成本步骤后的电池结构如图6所示。(6) Put the N-type crystalline silicon substrate 10 treated in step (5) into a washing machine, wash and dry. Then on the front surface of the N-type crystalline silicon substrate 10, a layer of SiO x dielectric film 20 with a thickness of 5-30 nm is first deposited by PECVD (plasma enhanced chemical vapor deposition), and then a layer of SiO x dielectric film 20 is deposited on the SiO x dielectric film 20. SiN x dielectric film 22, the thickness of the film is 40-80nm; on the back surface of the N-type crystalline silicon substrate 10, a layer of AlO x dielectric film 21 is made by PECVD or ALD (atomic layer deposition), and the thickness of the film is 4-80 nm. 20 nm, and then deposit a layer of SiN x film 23 on the surface of the AlO x dielectric film 21, the thickness of the SiN x film 23 is 20-50 nm. The SiO x dielectric film 20 and the SiN x dielectric film 22 on the front surface of the silicon substrate act as passivation on the front surface of the silicon substrate and anti-reflection of light; the AlO x dielectric film 21 and the SiN x dielectric film 23 on the back surface of the silicon substrate function as The back surface of the silicon substrate is passivated, and the SiN x dielectric film 23 also protects the AlO x dielectric film 21 . The structure of the battery after this step is shown in FIG. 6 .
(7)、通过丝网印刷的方法在步骤(6)处理后的N型晶体硅基体10的背表面p+掺杂区域11上印刷银铝合金浆料,在背表面n+掺杂区域12上印刷银浆。印刷结束后将N型晶体硅基体10传送入带式烧结炉进行烧结形成欧姆接触,烧结后银铝合金浆料形成与背表面p+掺杂区域11欧姆接触的p+金属电极31,与背表面n+掺杂区域12欧姆接触的n+金属电极32。完成本步骤后的电池结构如图7所示。至此即完成本发明局部掺杂前表面场背接触电池的制作。(7), print silver-aluminum alloy paste on the back surface p+ doped region 11 of the N-type crystalline silicon substrate 10 processed in step (6) by screen printing, and print on the back surface n+ doped region 12 Silver paste. After the printing is finished, the N-type crystalline silicon substrate 10 is transferred into a belt-type sintering furnace for sintering to form an ohmic contact. After sintering, the silver-aluminum alloy paste forms a p+ metal electrode 31 in ohmic contact with the p+ doped region 11 on the back surface, and is connected to the n+ The doped region 12 is in ohmic contact with the n+ metal electrode 32 . The battery structure after completing this step is shown in FIG. 7 . So far, the fabrication of the surface field back contact cell before the partial doping of the present invention is completed.
实施例2Example 2
本实施例的局部掺杂前表面场背接触电池的制备方法,包括以下步骤:The preparation method of the local doping front surface field back contact cell of this embodiment includes the following steps:
(1)、选择156mm×156mm的N型晶体硅基体10,并对N型晶体硅基体10的前表面作制绒处理;N型晶体硅基体10的电阻率为0.5~15Ω·cm,优选1~5Ω·cm;N型晶体硅基体10的厚度为50~300μm,优选80~200μm;完成本步骤后的电池结构如图1所示。(1), select the N-type crystalline silicon substrate 10 of 156mm * 156mm, and do texture processing to the front surface of the N-type crystalline silicon substrate 10; The resistivity of the N-type crystalline silicon substrate 10 is 0.5~15Ω·cm, preferably 1 ~5Ω·cm; the thickness of the N-type crystalline silicon substrate 10 is 50-300 μm, preferably 80-200 μm; the battery structure after this step is shown in FIG. 1 .
(2)、使用离子注入机在步骤(1)处理后的N型晶体硅基体10背表面进行离子注入,注入元素为硼,注入剂量为0.5×1015cm-2~3×1015cm-2,优选1.5×1015cm-2~2.5×1015cm-2。完成本步骤后的电池结构如图2所示。(2) Using an ion implanter to perform ion implantation on the back surface of the N-type crystalline silicon substrate 10 treated in step (1), the implanted element is boron, and the implantation dose is 0.5×10 15 cm −2 to 3×10 15 cm −2 2 , preferably 1.5×10 15 cm -2 to 2.5×10 15 cm -2 . The structure of the battery after this step is shown in FIG. 2 .
(3)、使用离子注入机在步骤(2)处理后的N型晶体硅基体10背表面进行选择性地离子注入,注入元素为磷,注入剂量为3×1015cm-2~8×1015cm-2,优选4×1015cm-2~6×1015cm-2。离子注入时,在N型晶体硅基体10背表面和离子束之间设置掩膜40。掩膜40的材质为石墨,如图15所示,掩膜40上设置线条状开口41,线条状开口41宽50~400μm,优选100~300μm。掩膜40上的开孔图案还可以为其他任意排布的周期或准周期阵列,其图案可以根据需要有多种选择,此处不作限定,仅进行举例列举。掩膜40上的开口区域对应的N型晶体硅基体10背表面注入有硼和磷,其他区域则仅为硼注入。控制磷注入的剂量大于硼注入的剂量。完成本步骤后的电池结构如图3所示。(3) Using an ion implanter to perform selective ion implantation on the back surface of the N-type crystalline silicon substrate 10 treated in step (2), the implanted element is phosphorus, and the implantation dose is 3×10 15 cm −2 to 8×10 15 cm -2 , preferably 4×10 15 cm -2 to 6×10 15 cm -2 . During ion implantation, a mask 40 is set between the back surface of the N-type crystalline silicon substrate 10 and the ion beam. The material of the mask 40 is graphite. As shown in FIG. 15 , the mask 40 is provided with linear openings 41 with a width of 50-400 μm, preferably 100-300 μm. The pattern of openings on the mask 40 can also be any other periodic or quasi-periodic array, and the pattern can be selected in various ways according to needs, which is not limited here and is only listed as an example. The back surface of the N-type crystalline silicon substrate 10 corresponding to the opening area on the mask 40 is implanted with boron and phosphorus, and only boron is implanted in other areas. The dose of phosphorus implantation is controlled to be larger than the dose of boron implantation. The structure of the battery after this step is shown in FIG. 3 .
(4)、使用离子注入机在步骤(3)处理后的N型晶体硅基体10前表面进行离子注入,注入元素为磷,注入剂量为1×1015cm-2~4×1015cm-2,优选1×1015cm-2~3×1015cm-2。完成本步骤后的电池结构如图8所示。(4) Using an ion implanter to perform ion implantation on the front surface of the N-type crystalline silicon substrate 10 treated in step (3), the implanted element is phosphorus, and the implantation dose is 1×10 15 cm −2 to 4×10 15 cm −2 2 , preferably 1×10 15 cm -2 to 3×10 15 cm -2 . The battery structure after completing this step is shown in FIG. 8 .
(5)、将步骤(4)处理后的N型晶体硅基体10放入退火炉中进行高温退火处理,退火的峰值温度为800~1100℃,优选为850~1000℃,退火时间为30~200min,优选为60~200min,环境气源优选为N2和O2。退火完成后即形成n+前表面场14、背表面n+掺杂区域12和背表面p+掺杂区域11。其中掩膜40上的开口对应的N型晶体硅基体10背表面区域为背表面n+掺杂区域12,这是因为该区域注入的磷的剂量大于硼的剂量,同时硼在硅中的固溶度要低于磷,所以退火后该区域为n+掺杂。背表面其他区域为背表面p+掺杂区域11。其中n+前表面场14的方阻为50~150Ω/sqr,结深为0.2~2.0μm。背表面n+掺杂区域12的方阻为20~150Ω/sqr,结深为0.3~2.0μm。背表面p+掺杂区域11的方阻为20~150Ω/sqr,结深为0.3~2.0μm。完成本步骤后的电池结构如图9所示。(5), put the N-type crystalline silicon substrate 10 processed in step (4) into an annealing furnace for high-temperature annealing treatment, the peak annealing temperature is 800-1100° C., preferably 850-1000° C., and the annealing time is 30-1000° C. 200 min, preferably 60-200 min, and the ambient gas source is preferably N 2 and O 2 . After the annealing is completed, the n+ front surface field 14 , the back surface n+ doped region 12 and the back surface p+ doped region 11 are formed. Wherein the opening on the mask 40 corresponds to the N-type crystalline silicon substrate 10 back surface area is the back surface n+ doped area 12, this is because the dose of phosphorus implanted in this area is greater than the dose of boron, and the solid solution of boron in silicon The degree is lower than that of phosphorus, so the region is n+ doped after annealing. Other regions on the back surface are p+ doped regions 11 on the back surface. Wherein the square resistance of the n+ front surface field 14 is 50-150 Ω/sqr, and the junction depth is 0.2-2.0 μm. The square resistance of the n+ doped region 12 on the back surface is 20-150 Ω/sqr, and the junction depth is 0.3-2.0 μm. The square resistance of the p+ doped region 11 on the back surface is 20-150 Ω/sqr, and the junction depth is 0.3-2.0 μm. The battery structure after completing this step is shown in FIG. 9 .
(6)、在步骤(5)处理后的N型晶体硅基体10的背表面印刷一层耐酸掩膜26,耐酸掩膜26覆盖整个背表面。在N型晶体硅基体10的前表面印刷一层耐酸掩膜25,耐酸掩膜25仅仅局部覆盖N型晶体硅基体10的前表面。印刷使用的网版如图18所示,其中线条状开口61宽100-200μm,线条状开口61之间的非开孔区域宽500-1000μm,对应的过墨后的耐酸掩膜25的图案为条状;还可以使用如图19所示的网版进行印刷,其中点状开口62的直径为200~400μm,对应的过墨后的耐酸掩膜25的图案则为点状。完成本步骤后的电池结构如图10所示。(6) Print a layer of acid-resistant mask 26 on the back surface of the N-type crystalline silicon substrate 10 treated in step (5), and the acid-resistant mask 26 covers the entire back surface. An acid-resistant mask 25 is printed on the front surface of the N-type crystalline silicon substrate 10 , and the acid-resistant mask 25 only partially covers the front surface of the N-type crystalline silicon substrate 10 . The screen used for printing is shown in Figure 18, wherein the width of the line-shaped openings 61 is 100-200 μm, and the width of the non-opening area between the line-shaped openings 61 is 500-1000 μm. The corresponding pattern of the acid-resistant mask 25 after overinking is strips; the screen as shown in Figure 19 can also be used for printing, wherein the diameter of the dotted openings 62 is 200-400 μm, and the pattern of the acid-resistant mask 25 corresponding to the ink is dotted. The battery structure after completing this step is shown in FIG. 10 .
(7)、将步骤(6)处理后的N型晶体硅基体10放入酸性刻蚀液中,n+前表面场14中未被耐酸掩膜覆盖的区域将被刻蚀掉,剩下的区域即为局部掺杂n+前表面场13。酸性刻蚀液采用体积比为1∶4∶10的HF/HNO3/H2O溶液。完成本步骤后的电池结构如图11所示。(7), put the N-type crystalline silicon substrate 10 processed in step (6) into an acidic etching solution, the area not covered by the acid-resistant mask in the n+ front surface field 14 will be etched away, and the remaining area That is, the local doping n+ front surface field 13 . The acidic etching solution adopts HF/HNO 3 /H 2 O solution with a volume ratio of 1:4:10. The battery structure after completing this step is shown in FIG. 11 .
(8)、将步骤(7)处理后的N型晶体硅基体10放入碱性溶液中,去除N型晶体硅基体10前表面的耐酸掩膜25和背表面的耐酸掩膜26。碱性溶液可以为氢氧化钾、氢氧化钠、四甲基氢氧化铵或乙二胺。完成本步骤后的电池结构如图12所示。(8) Put the N-type crystalline silicon substrate 10 treated in step (7) into an alkaline solution, and remove the acid-resistant mask 25 on the front surface of the N-type crystalline silicon substrate 10 and the acid-resistant mask 26 on the back surface. The alkaline solution can be potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide or ethylenediamine. The battery structure after completing this step is shown in FIG. 12 .
(9)、将步骤(8)处理后的N型晶体硅基体10放入清洗机中,进行清洗并烘干。然后在N型晶体硅基体10的前表面用PECVD(等离子增强化学气相沉积)的方式先沉积一层厚度为5~30nm的SiOx介质膜20,然后在SiOx介质膜20上再沉积一层SiNx介质膜22,膜的厚度为40~80nm;在N型晶体硅基体10的背表面用PECVD或ALD(原子层沉积)的方式制作一层AlOx介质膜21,膜的厚度为4~20nm,然后在AlOx介质膜21的表面再沉积一层SiNx膜23,SiNx膜23的厚度为20~50nm。硅基体前表面的SiOx介质膜20与SiNx介质膜22的作用为硅基体前表面的钝化和光的减反射;硅基体背表面的AlOx介质膜21与SiNx介质膜23的作用为硅基体背表面的钝化,同时SiNx介质膜23也起到了对AlOx介质膜21的保护作用。完成本步骤后的电池结构如图13所示。(9) Put the N-type crystalline silicon substrate 10 treated in step (8) into a washing machine, wash and dry. Then on the front surface of the N-type crystalline silicon substrate 10, a layer of SiO x dielectric film 20 with a thickness of 5-30 nm is first deposited by PECVD (plasma enhanced chemical vapor deposition), and then a layer of SiO x dielectric film 20 is deposited on the SiO x dielectric film 20. SiN x dielectric film 22, the thickness of the film is 40-80nm; on the back surface of the N-type crystalline silicon substrate 10, a layer of AlO x dielectric film 21 is made by PECVD or ALD (atomic layer deposition), and the thickness of the film is 4-80 nm. 20 nm, and then deposit a layer of SiN x film 23 on the surface of the AlO x dielectric film 21, the thickness of the SiN x film 23 is 20-50 nm. The SiO x dielectric film 20 and the SiN x dielectric film 22 on the front surface of the silicon substrate act as passivation on the front surface of the silicon substrate and anti-reflection of light; the AlO x dielectric film 21 and the SiN x dielectric film 23 on the back surface of the silicon substrate function as The back surface of the silicon substrate is passivated, and the SiN x dielectric film 23 also protects the AlO x dielectric film 21 . The battery structure after this step is shown in FIG. 13 .
(10)、通过丝网印刷的方法在步骤(9)处理后的N型晶体硅基体10的背表面p+掺杂区域11上印刷银铝合金浆料,在背表面n+掺杂区域12上印刷银浆。印刷结束后将N型晶体硅基体10传送入带式烧结炉进行烧结形成欧姆接触,烧结后银铝合金浆料形成与背表面p+掺杂区域11欧姆接触的p+金属电极31,与背表面n+掺杂区域12欧姆接触的n+金属电极32。完成本步骤后的电池结构如图14所示。至此即完成本发明局部掺杂前表面场背接触电池的制作。(10), silver-aluminum alloy paste is printed on the back surface p+ doped region 11 of the N-type crystalline silicon substrate 10 processed in step (9) by screen printing, and printed on the back surface n+ doped region 12 Silver paste. After the printing is finished, the N-type crystalline silicon substrate 10 is transferred into a belt-type sintering furnace for sintering to form an ohmic contact. After sintering, the silver-aluminum alloy paste forms a p+ metal electrode 31 in ohmic contact with the p+ doped region 11 on the back surface, and is connected to the n+ The doped region 12 is in ohmic contact with the n+ metal electrode 32 . The battery structure after this step is shown in FIG. 14 . So far, the fabrication of the surface field back contact cell before the partial doping of the present invention is completed.
本发明还提供了一种太阳能电池组件,包括由上至下依次设置的前层材料、封装材料、太阳能电池、封装材料、背层材料,太阳能电池是上述的一种局部掺杂前表面场背接触电池。The present invention also provides a solar cell module, which includes a front layer material, an encapsulation material, a solar cell, an encapsulation material, and a back layer material arranged sequentially from top to bottom. The solar cell is the above-mentioned partially doped front surface field back Touch the battery.
本发明还提供了一种太阳能电池系统,包括一个以上的太阳能电池组件,太阳能电池组件是上述的太阳能电池组件。The present invention also provides a solar cell system, which includes more than one solar cell component, and the solar cell component is the above solar cell component.
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting the protection scope of the present invention, although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand , the technical solution of the present invention may be modified or equivalently replaced without departing from the spirit and scope of the technical solution of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610740237.2A CN106252449B (en) | 2016-08-26 | 2016-08-26 | Local doping front-surface field back contact battery and preparation method thereof and component, system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610740237.2A CN106252449B (en) | 2016-08-26 | 2016-08-26 | Local doping front-surface field back contact battery and preparation method thereof and component, system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106252449A true CN106252449A (en) | 2016-12-21 |
CN106252449B CN106252449B (en) | 2017-09-26 |
Family
ID=57596854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610740237.2A Active CN106252449B (en) | 2016-08-26 | 2016-08-26 | Local doping front-surface field back contact battery and preparation method thereof and component, system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106252449B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106981544A (en) * | 2017-04-10 | 2017-07-25 | 泰州中来光电科技有限公司 | The preparation method and battery and its component, system of full back contact solar cell |
CN112701174A (en) * | 2020-12-29 | 2021-04-23 | 泰州中来光电科技有限公司 | Back emitter passivation contact battery and preparation method, assembly and system thereof |
CN114038921A (en) * | 2021-11-05 | 2022-02-11 | 晶科能源(海宁)有限公司 | Solar cell and photovoltaic module |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7339110B1 (en) * | 2003-04-10 | 2008-03-04 | Sunpower Corporation | Solar cell and method of manufacture |
WO2010049268A1 (en) * | 2008-10-31 | 2010-05-06 | Bosch Solar Energy Ag | Solar cell and method for producing the same |
CN101764180A (en) * | 2009-12-31 | 2010-06-30 | 中山大学 | Method for manufacturing local front-surface field N-type solar cell |
WO2010111107A2 (en) * | 2009-03-26 | 2010-09-30 | Bp Corporation North America Inc. | Apparatus and method for solar cells with laser fired contacts in thermally diffused doped regions |
WO2011084053A2 (en) * | 2010-01-06 | 2011-07-14 | Stichting Energieonderzoek Centrum Nederland | Solar panel module and method for manufacturing such a solar panel module |
CN102709385A (en) * | 2012-05-08 | 2012-10-03 | 常州天合光能有限公司 | Production method for full back electrode solar cells |
CN102714229A (en) * | 2010-01-06 | 2012-10-03 | 荷兰能源建设基金中心 | Solar cell and method for manufacturing of such a solar cell |
CN103022264A (en) * | 2013-01-08 | 2013-04-03 | 奥特斯维能源(太仓)有限公司 | Process for simultaneously forming front surface field and rear surface field of n-shaped battery with full-back electrode |
CN103337561A (en) * | 2013-07-12 | 2013-10-02 | 苏州润阳光伏科技有限公司 | Fabrication method of surface fields of full-back-contact solar cell |
CN103531653A (en) * | 2012-07-06 | 2014-01-22 | 茂迪股份有限公司 | Back contact solar cell and manufacturing method thereof |
CN103618027A (en) * | 2013-11-15 | 2014-03-05 | 中电电气(南京)光伏有限公司 | Method using ion implantation to form selective doping and preparing efficient crystalline silicon solar cell |
CN103646983A (en) * | 2013-11-29 | 2014-03-19 | 常州天合光能有限公司 | Back emitter symmetric hetero-junction solar cell and preparation method thereof |
CN103794679A (en) * | 2014-01-26 | 2014-05-14 | 晶澳(扬州)太阳能科技有限公司 | Method for manufacturing back contact solar cell |
CN104465885A (en) * | 2014-12-23 | 2015-03-25 | 常州天合光能有限公司 | Production method for achieving local metallization of all-back-contact electrode solar cell |
CN105390555A (en) * | 2015-12-25 | 2016-03-09 | 常州天合光能有限公司 | Full-back-electrode solar cell structure and preparation method therefor |
CN105489711A (en) * | 2016-01-26 | 2016-04-13 | 常州天合光能有限公司 | Preparation method of front surface field with ultralow surface concentration of interdigitated back contact cell |
CN105514206A (en) * | 2016-01-16 | 2016-04-20 | 常州天合光能有限公司 | Back-contact heterojunction solar cell and preparation method thereof |
CN105870212A (en) * | 2016-04-06 | 2016-08-17 | 乐叶光伏科技有限公司 | Two-dimensional electrode of crystalline silicon solar cell and preparation method of two-dimensional electrode |
-
2016
- 2016-08-26 CN CN201610740237.2A patent/CN106252449B/en active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7339110B1 (en) * | 2003-04-10 | 2008-03-04 | Sunpower Corporation | Solar cell and method of manufacture |
WO2010049268A1 (en) * | 2008-10-31 | 2010-05-06 | Bosch Solar Energy Ag | Solar cell and method for producing the same |
WO2010111107A2 (en) * | 2009-03-26 | 2010-09-30 | Bp Corporation North America Inc. | Apparatus and method for solar cells with laser fired contacts in thermally diffused doped regions |
WO2010111107A3 (en) * | 2009-03-26 | 2011-09-09 | Bp Corporation North America Inc. | Apparatus and method for solar cells with laser fired contacts in thermally diffused doped regions |
CN101764180A (en) * | 2009-12-31 | 2010-06-30 | 中山大学 | Method for manufacturing local front-surface field N-type solar cell |
WO2011084053A2 (en) * | 2010-01-06 | 2011-07-14 | Stichting Energieonderzoek Centrum Nederland | Solar panel module and method for manufacturing such a solar panel module |
CN102714229A (en) * | 2010-01-06 | 2012-10-03 | 荷兰能源建设基金中心 | Solar cell and method for manufacturing of such a solar cell |
CN102709385A (en) * | 2012-05-08 | 2012-10-03 | 常州天合光能有限公司 | Production method for full back electrode solar cells |
CN103531653A (en) * | 2012-07-06 | 2014-01-22 | 茂迪股份有限公司 | Back contact solar cell and manufacturing method thereof |
CN103022264A (en) * | 2013-01-08 | 2013-04-03 | 奥特斯维能源(太仓)有限公司 | Process for simultaneously forming front surface field and rear surface field of n-shaped battery with full-back electrode |
CN103337561A (en) * | 2013-07-12 | 2013-10-02 | 苏州润阳光伏科技有限公司 | Fabrication method of surface fields of full-back-contact solar cell |
CN103618027A (en) * | 2013-11-15 | 2014-03-05 | 中电电气(南京)光伏有限公司 | Method using ion implantation to form selective doping and preparing efficient crystalline silicon solar cell |
CN103646983A (en) * | 2013-11-29 | 2014-03-19 | 常州天合光能有限公司 | Back emitter symmetric hetero-junction solar cell and preparation method thereof |
CN103794679A (en) * | 2014-01-26 | 2014-05-14 | 晶澳(扬州)太阳能科技有限公司 | Method for manufacturing back contact solar cell |
CN104465885A (en) * | 2014-12-23 | 2015-03-25 | 常州天合光能有限公司 | Production method for achieving local metallization of all-back-contact electrode solar cell |
CN105390555A (en) * | 2015-12-25 | 2016-03-09 | 常州天合光能有限公司 | Full-back-electrode solar cell structure and preparation method therefor |
CN105514206A (en) * | 2016-01-16 | 2016-04-20 | 常州天合光能有限公司 | Back-contact heterojunction solar cell and preparation method thereof |
CN105489711A (en) * | 2016-01-26 | 2016-04-13 | 常州天合光能有限公司 | Preparation method of front surface field with ultralow surface concentration of interdigitated back contact cell |
CN105870212A (en) * | 2016-04-06 | 2016-08-17 | 乐叶光伏科技有限公司 | Two-dimensional electrode of crystalline silicon solar cell and preparation method of two-dimensional electrode |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106981544A (en) * | 2017-04-10 | 2017-07-25 | 泰州中来光电科技有限公司 | The preparation method and battery and its component, system of full back contact solar cell |
CN112701174A (en) * | 2020-12-29 | 2021-04-23 | 泰州中来光电科技有限公司 | Back emitter passivation contact battery and preparation method, assembly and system thereof |
CN114038921A (en) * | 2021-11-05 | 2022-02-11 | 晶科能源(海宁)有限公司 | Solar cell and photovoltaic module |
CN114038921B (en) * | 2021-11-05 | 2024-03-29 | 晶科能源(海宁)有限公司 | Solar cells and photovoltaic modules |
US11949038B2 (en) | 2021-11-05 | 2024-04-02 | Jinko Solar (Haining) Co., Ltd. | Solar cell and photovoltaic module |
US12230731B2 (en) | 2021-11-05 | 2025-02-18 | Jinko Solar (Haining) Co., Ltd. | Solar cell and photovoltaic module |
US12310141B2 (en) | 2021-11-05 | 2025-05-20 | Jinko Solar (Haining) Co., Ltd. | Solar cell and photovoltaic module |
Also Published As
Publication number | Publication date |
---|---|
CN106252449B (en) | 2017-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102623517B (en) | Back contact type crystalline silicon solar cell and production method thereof | |
CN119008722A (en) | Interdigital back contact type solar cell with p-type conductivity | |
CN107195699A (en) | One kind passivation contact solar cell and preparation method | |
CN106374009A (en) | A passivated contact IBC battery and its preparation method, assembly and system | |
CN108538962A (en) | A kind of preparation method of the IBC batteries of passivation contact | |
CN106252425A (en) | The method for metallising of a kind of full back contacts photovoltaic cell and battery, assembly and system | |
EP4576226A1 (en) | Back contact solar cell and method for preparing same | |
CN105826409B (en) | A kind of preparation method of local back field N-type solar cell | |
KR20130092494A (en) | Solar cell and method of manufacturing the same | |
CN106299024A (en) | The preparation method of a kind of back contact solar cell and battery thereof and assembly, system | |
US20120094421A1 (en) | Method of manufacturing solar cell | |
CN215731736U (en) | Passivated contact structure and solar cell using same | |
CN103904138A (en) | Full back side contact crystalline silicon cell and preparation method thereof | |
CN113506832A (en) | Passivated contact structure, preparation method thereof, and solar cell using the same | |
CN110165002A (en) | A kind of preparation method of solar battery and solar battery | |
CN106252449B (en) | Local doping front-surface field back contact battery and preparation method thereof and component, system | |
CN105826408A (en) | Local back surface field N type solar cell, preparation method, assembly and system | |
CN116387370A (en) | P-type back contact cell structure, manufacturing method and solar cell | |
CN106229351B (en) | A kind of back contacts crystal silicon solar energy battery and preparation method and component, system | |
TW201411861A (en) | Solar cell and manufacturing method thereof | |
JP2013110406A (en) | Photoelectric conversion element manufacturing method and photoelectric conversion element | |
JP6426486B2 (en) | Method of manufacturing solar cell element | |
KR101198430B1 (en) | Bifacial Photovoltaic Localized Emitter Solar Cell and Method for Manufacturing Thereof | |
CN102683504B (en) | The method of crystal silicon solar energy battery manufacture craft is improved by ion implantation arsenic | |
JP5645734B2 (en) | Solar cell element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |