[go: up one dir, main page]

CN106238100B - Titanium dioxide nanoplate loads the preparation and application process of MIL-100 (Fe) composite photocatalyst material - Google Patents

Titanium dioxide nanoplate loads the preparation and application process of MIL-100 (Fe) composite photocatalyst material Download PDF

Info

Publication number
CN106238100B
CN106238100B CN201610607408.4A CN201610607408A CN106238100B CN 106238100 B CN106238100 B CN 106238100B CN 201610607408 A CN201610607408 A CN 201610607408A CN 106238100 B CN106238100 B CN 106238100B
Authority
CN
China
Prior art keywords
titanium dioxide
mil
loaded
photocatalytic material
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610607408.4A
Other languages
Chinese (zh)
Other versions
CN106238100A (en
Inventor
王戈
刘欣
党蕊
王芃
刘丽萍
高鸿毅
董文钧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201610607408.4A priority Critical patent/CN106238100B/en
Publication of CN106238100A publication Critical patent/CN106238100A/en
Application granted granted Critical
Publication of CN106238100B publication Critical patent/CN106238100B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

一种二氧化钛纳米片负载MIL‑100(Fe)复合光催化材料的制备及应用方法,属于二氧化钛光催化领域,特别涉及二氧化钛纳米片负载多孔金属有机骨架(MOFs)复合材料领域。本发明将钛酸四丁酯和氢氟酸一起在常温下搅拌均匀,放入水热反应釜中反应,经分离、洗涤、烘干后得到二氧化钛纳米片;再将二氧化钛纳米片均匀分散在三氯化铁无水乙醇溶液中,在常温下磁力搅拌15min,经抽滤分离后将得到产物分散在均苯三甲酸无水乙醇溶液中,在50~80℃水浴反应20~50min,经抽滤分离后得到的产物,重复2~50次,得到二氧化钛纳米片负载MIL‑100(Fe)复合光催化材料;该方法制备出的催化剂特别适用于可见光照射下催化降解高浓度有机染料(如:亚甲基蓝),达到很高的降解率。

The invention discloses a method for preparing and applying a composite photocatalytic material loaded with titanium dioxide nanosheets MIL‑100 (Fe), which belongs to the field of titanium dioxide photocatalysis, and in particular relates to the field of titanium dioxide nanosheets loaded porous metal-organic framework (MOFs) composite materials. In the present invention, tetrabutyl titanate and hydrofluoric acid are stirred evenly at room temperature, put into a hydrothermal reaction kettle for reaction, and titanium dioxide nanosheets are obtained after separation, washing and drying; then titanium dioxide nanosheets are uniformly dispersed in three Ferric chloride anhydrous ethanol solution, magnetically stirred at room temperature for 15 minutes, after separation by suction filtration, the obtained product was dispersed in trimesic acid anhydrous ethanol solution, reacted in a water bath at 50-80°C for 20-50 minutes, and filtered by suction The product obtained after separation is repeated 2 to 50 times to obtain a composite photocatalytic material loaded with titanium dioxide nanosheets MIL‑100 (Fe); the catalyst prepared by this method is particularly suitable for catalytic degradation of high-concentration organic dyes (such as methylene blue ), reaching a high degradation rate.

Description

二氧化钛纳米片负载MIL-100(Fe)复合光催化材料的制备及 应用方法Preparation and application of MIL-100(Fe) composite photocatalytic materials supported by titanium dioxide nanosheets application method

技术领域technical field

本发明涉及二氧化钛光催化领域,特别涉及二氧化钛纳米片负载多孔金属有机骨架(MOFs)复合材料领域。该方法制备出的催化剂特别适用于可见光照射下催化降解高浓度有机染料(如:亚甲基蓝),达到很高的降解率。The invention relates to the field of titanium dioxide photocatalysis, in particular to the field of titanium dioxide nanosheet-loaded porous metal-organic framework (MOFs) composite materials. The catalyst prepared by the method is particularly suitable for catalytically degrading high-concentration organic dyes (such as methylene blue) under visible light irradiation, and achieves a high degradation rate.

背景技术Background technique

目前,二氧化钛光催化剂因具有稳定、无毒、价廉等优点而引起了国内外研究者的广泛关注,在废水处理、空气净化、抗菌除臭、自清洁等领域具有广阔的应用前景。锐钛矿相单晶二氧化钛纳米片具有较高比例的高能活性面(001),能够更加有效促进催化反应的进行,因而得到了很大的关注。但是光响应范围小、光生电子和空穴复合率大导致的较低的光量子效率和较慢的反应速率限制了二氧化钛的实际应用。At present, titanium dioxide photocatalyst has attracted extensive attention of researchers at home and abroad due to its advantages of stability, non-toxicity and low price, and has broad application prospects in wastewater treatment, air purification, antibacterial and deodorizing, self-cleaning and other fields. Anatase-phase single-crystal titanium dioxide nanosheets have a higher proportion of high-energy active surfaces (001), which can more effectively promote the catalytic reaction, and thus have received great attention. However, the small photoresponse range and the high recombination rate of photogenerated electrons and holes lead to low photon quantum efficiency and slow reaction rate, which limit the practical application of titanium dioxide.

金属有机骨架(MOFs)是一种指过渡金属离子与有机配体通过自组装形成的具有周期性网络结构的晶体多孔材料。在光照条件下配体向金属传递电荷过程中,会产生高活性电子和空穴从而具有催化活性。二氧化钛负载MOFs复合体系材料具有较高的吸附性以及特殊的接触界面结构因而能够大大加快光催化反应的进程。Metal-organic frameworks (MOFs) are crystalline porous materials with periodic network structures formed by self-assembly of transition metal ions and organic ligands. During the charge transfer process from the ligand to the metal under light conditions, highly active electrons and holes will be generated to have catalytic activity. TiO2-loaded MOFs composite system material has high adsorption and special contact interface structure, so it can greatly accelerate the process of photocatalytic reaction.

二氧化钛-MOFs材料中MOFs的种类一般有两种(1)以Ti金属为中心原子;(2)以非Ti金属为中心原子。Ti金属为中心原子时,配体一般为均苯三甲酸、对苯二甲酸或者带有氨基的对苯二甲酸。制备过程中加入Ti的前驱体和有机配体,在水热条件下同时生成二氧化钛和MOFs,形成复合光催化材料。以非Ti金属为中心原子时,将二氧化钛纳米材料、MOFs中心金属的金属盐以及配体同时加入反应体系中,最终得到二氧化钛负载MOFs复合光催化材料。而后者因为反应条件苛刻制备较困难、可进行光催化反应的MOFs种类较少,很少有报道。There are generally two types of MOFs in titanium dioxide-MOFs materials (1) with Ti metal as the central atom; (2) with non-Ti metal as the central atom. When Ti metal is the central atom, the ligand is generally trimesic acid, terephthalic acid or terephthalic acid with amino groups. Ti precursors and organic ligands are added during the preparation process to simultaneously generate titanium dioxide and MOFs under hydrothermal conditions to form a composite photocatalytic material. When non-Ti metal is used as the central atom, titanium dioxide nanomaterials, metal salts of MOFs central metals and ligands are added to the reaction system at the same time, and finally a titanium dioxide-loaded MOFs composite photocatalytic material is obtained. The latter is difficult to prepare due to harsh reaction conditions, and there are few types of MOFs that can perform photocatalytic reactions, so there are few reports.

吴等(吴棱,黄林娟,沈丽娟,秦娜,熊锦华,福州大学)Ti-MOF(MIL-125(Ti)-NH2)为自模板在一定比例的氧气和氮气的气氛(氧气:氮气=1:5~1:10)下煅烧合成大比表面积且N自掺杂TiO2多面体。通过这种模板法,很好地复制了MOF的形貌,并且微孔结构很大的提高了TiO2的比表面积,比表面积达262.3m2/g,且对MOF配体的调控,可以对TiO2进行N、F、S元素掺杂,以提高TiO2的可见光光催化性能。但该方法得到的MIL-125(Ti)-NH2材料需要依赖非金属元素掺杂才能达到可见光催化性能,投入实际生产应用中还有很大的距离。Wu et al. (Wu Ling, Huang Linjuan, Shen Lijuan, Qin Na, Xiong Jinhua, Fuzhou University) Ti-MOF (MIL-125(Ti)-NH 2 ) was self-templated in a certain ratio of oxygen and nitrogen atmosphere (oxygen: nitrogen = 1 :5~1:10) to synthesize large specific surface area and N self-doped TiO 2 polyhedra. Through this template method, the morphology of MOF is well copied, and the microporous structure greatly improves the specific surface area of TiO 2 , the specific surface area reaches 262.3m 2 /g, and the regulation of MOF ligands can TiO 2 is doped with N, F, and S elements to improve the visible light photocatalytic performance of TiO 2 . However, the MIL-125(Ti)-NH 2 material obtained by this method needs to rely on the doping of non-metallic elements to achieve visible photocatalytic performance, and there is still a long way to go before it can be put into practical production and application.

郑等(郑静,祁鹏宇,李辰齐,胡丽萍,石磊,张敏,徐菁利,上海工程技术大学)TiO2纳米材料与可溶性钴盐、均苯三甲酸溶解于去离子水,置于密闭反应釜中,加热至135~150℃,保持20~28小时;然后将温度降至118~122℃,保持4.5~6小时;之后再降温至98~105℃保温4.5~6小时,最后使其自然降至室温静置11~14h;取沉淀充分洗涤,得到TiO2/Co-MOF复合材料。所得材料具有很好的热稳定性和化学稳定性,对染料有很强的吸附性,可作为吸附剂。该方法较为繁琐,能量消耗较多,并且并未说明对可见光具有响应性。Zheng et al. (Zheng Jing, Qi Pengyu, Li Chenqi, Hu Liping, Shi Lei, Zhang Min, Xu Jingli, Shanghai University of Engineering and Technology) dissolved TiO 2 nanomaterials, soluble cobalt salts, and trimesic acid in deionized water and placed them in a closed reactor. Heat to 135-150°C and keep it for 20-28 hours; then lower the temperature to 118-122°C and keep it for 4.5-6 hours; then lower the temperature to 98-105°C and keep it for 4.5-6 hours, and finally let it cool down to room temperature naturally Stand still for 11-14 hours; take the precipitate and wash it thoroughly to obtain a TiO 2 /Co-MOF composite material. The obtained material has good thermal stability and chemical stability, has strong adsorption to dyes, and can be used as an adsorbent. This method is cumbersome, energy-intensive, and does not demonstrate responsiveness to visible light.

以Fe为中心的,均苯三甲酸为配体的MOF——MIL-100(Fe)具有可见光光催化性能的同时还具有较好的水稳定性和热稳定性。本发明首次利用二氧化钛纳米片与MIL-100(Fe)进行复合,使用层层包覆的方法制备了一种将MIL-100(Fe)负载到二氧化钛纳米片上的高效能可见光催化剂。The Fe-centered, trimesic acid-liganded MOF——MIL-100(Fe) has visible-light photocatalytic performance and good water and thermal stability. In the present invention, titanium dioxide nanosheets and MIL-100(Fe) are combined for the first time, and a high-efficiency visible light catalyst that loads MIL-100(Fe) on titanium dioxide nanosheets is prepared by using a layer-by-layer coating method.

发明内容Contents of the invention

本发明提供了一种二氧化钛纳米片负载MIL-100(Fe)复合材料的制备方法,使负载MIL-100(Fe)的二氧化钛纳米片催化剂具有优异的光催化性能。The invention provides a method for preparing a titanium dioxide nanosheet loaded MIL-100 (Fe) composite material, which enables the titanium dioxide nanosheet catalyst loaded with the MIL-100 (Fe) to have excellent photocatalytic performance.

一种二氧化钛纳米片负载MIL-100(Fe)复合材料的制备方法,包括以下步骤:A kind of preparation method of titanium dioxide nano sheet loaded MIL-100 (Fe) composite material, comprises the following steps:

1)将钛酸四丁酯和氢氟酸一起在常温下搅拌均匀,放入水热反应釜中150~220℃反应15~24h,经分离、洗涤、烘干后得到二氧化钛纳米片。1) Stir tetrabutyl titanate and hydrofluoric acid evenly at room temperature, put them into a hydrothermal reaction kettle at 150-220° C. for 15-24 hours, and obtain titanium dioxide nanosheets after separation, washing and drying.

2)将步骤1)中的二氧化钛纳米片均匀分散在三氯化铁无水乙醇溶液中,在常温下磁力搅拌15min,经抽滤分离后将得到产物分散在均苯三甲酸无水乙醇溶液中,在50~80℃水浴反应20~50min,经抽滤分离后得到的产物,然后重复步骤2)2~50次,得到二氧化钛纳米片负载MIL-100(Fe)复合光催化材料。2) Uniformly disperse the titanium dioxide nanosheets in step 1) in ferric chloride absolute ethanol solution, stir magnetically at room temperature for 15 min, and disperse the obtained product in trimesic acid absolute ethanol solution after separation by suction filtration , react in a water bath at 50-80° C. for 20-50 minutes, and separate the product obtained by suction filtration, then repeat step 2) 2-50 times to obtain a composite photocatalytic material loaded with titanium dioxide nanosheets MIL-100 (Fe).

步骤1)中,作为优选,所述的钛酸四丁酯、氢氟酸质量比为1:0.1~0.3:。有利于得到尺寸不同以及结晶性较好的二氧化钛纳米片,从而使得最终制备的二氧化钛纳米片负载MIL-100(Fe)复合材料具有较好的可见光光催化性能。进一步优选,所述的钛酸四丁酯、氢氟酸的质量比为1:0.2~0.25。有利于得到尺寸不同以及结晶性较好的二氧化钛纳米片,从而使得最终制备的二氧化钛纳米片负载MIL-100(Fe)复合材料具有更好的可见光光催化性能。In step 1), preferably, the mass ratio of tetrabutyl titanate to hydrofluoric acid is 1:0.1-0.3:. It is beneficial to obtain titanium dioxide nanosheets with different sizes and better crystallinity, so that the finally prepared titanium dioxide nanosheets loaded MIL-100(Fe) composite material has better visible light photocatalytic performance. Further preferably, the mass ratio of tetrabutyl titanate to hydrofluoric acid is 1:0.2-0.25. It is beneficial to obtain titanium dioxide nanosheets with different sizes and better crystallinity, so that the finally prepared titanium dioxide nanosheets loaded MIL-100(Fe) composite material has better visible light photocatalytic performance.

作为优选,在高温反应釜中150~220℃反应15~24h,通过水热合成的方法,在该优选条件下反应,有利于得到结晶性较好,形貌比较均匀二氧化钛纳米片。进一步优选,在高温反应釜中200~220℃反应20~22h,能够得到结晶性更好,有利于得到形貌更加均匀的二氧化钛纳米片。Preferably, react in a high-temperature reactor at 150-220° C. for 15-24 hours, and react under the preferred conditions by hydrothermal synthesis method, which is beneficial to obtain titanium dioxide nanosheets with better crystallinity and relatively uniform morphology. Further preferably, reacting in a high-temperature reactor at 200-220° C. for 20-22 hours can obtain better crystallinity, which is beneficial to obtain titanium dioxide nanosheets with more uniform morphology.

作为优选,步骤1)中所述的水浴反应温度为60~70℃,时间为30~40min,经抽滤分离后得到的产物,重复步骤2)次数为15~20次As a preference, the water bath reaction temperature described in step 1) is 60-70°C, the time is 30-40min, and the product obtained after suction filtration and separation, repeats step 2) for 15-20 times

步骤2)中,作为优选,所述的二氧化钛纳米片、三氯化铁无水乙醇溶液、均苯三甲酸无水乙醇溶液的质量比为1:0.2~0.5:0.1~0.4,使得MIL-100(Fe)能够负载到二氧化钛纳米片上,从而体现出良好的可见光催化活性。进一步优选,所述的二氧化钛纳米片、三氯化铁无水乙醇溶液、均苯三甲酸无水乙醇溶液的质量比为1:0.30~0.35:0.25~0.30。有利于得到MIL-100(Fe)负载均匀的复合材料,从而体现出更好的可见光催化活性。In step 2), as a preference, the mass ratio of titanium dioxide nanosheets, ferric chloride absolute ethanol solution, and trimesic acid absolute ethanol solution is 1:0.2~0.5:0.1~0.4, so that MIL-100 (Fe) can be loaded on TiO2 nanosheets, thus exhibiting good catalytic activity under visible light. Further preferably, the mass ratio of titanium dioxide nanosheets, ferric chloride absolute ethanol solution, and trimesic acid absolute ethanol solution is 1:0.30-0.35:0.25-0.30. It is beneficial to obtain a composite material with uniform loading of MIL-100(Fe), thereby showing better catalytic activity under visible light.

本发明制备的二氧化钛纳米片负载MIL-100(Fe)复合光催化剂应用于光催化降解实验,将20mg二氧化钛纳米片负载MIL-100(Fe)复合材料加入浓度为50mg/L的亚甲基蓝水溶液中,再加入0.2ml H2O2,超声分散均匀后暗反应60min,待达到吸附平衡时,放置于300w波长大于420nm的氙汞灯下进行光催化降解反应。以可见光为光源,亚甲基蓝为目标降解物进行光催化降解处理,取得了很好的降解效果。The titanium dioxide nanosheet loaded MIL-100 (Fe) composite photocatalyst prepared by the present invention is applied to the photocatalytic degradation experiment, and 20 mg titanium dioxide nanosheet loaded MIL-100 (Fe) composite material is added in the methylene blue aqueous solution whose concentration is 50 mg/L, and then Add 0.2ml H 2 O 2 , ultrasonically disperse evenly, and react in dark for 60 minutes. When the adsorption equilibrium is reached, place it under a 300w xenon mercury lamp with a wavelength greater than 420nm for photocatalytic degradation reaction. Visible light was used as the light source and methylene blue was used as the target degradation product for photocatalytic degradation treatment, and a good degradation effect was achieved.

采用本发明制备出负载MIL-100(Fe)的二氧化钛纳米片光催化剂具有以下几个优点:(1)具有很高的吸附性,利用MIL-100(Fe)的多孔性可以吸附有机物分子,从而使催化剂的光催化活性面与降解底物充分接触以提高光催化效率;(2)提高光量子效率,二氧化钛与MIL-100(Fe)之间能够高效地进行电子的转移以提高电子-空穴的分离效率,从而加快催化反应的进行,在较短时间内可以降解高浓度的有机物;(3)具有可见光光响应,MIL-100(Fe)的负载能够促进催化剂对可见光的吸收,使材料具有可见光催化活性;(4)制备方法简单;该制备方法能够通过简单的水热反应很好的得到形貌易控的二氧化钛纳米片,通过层层包覆的方法得到负载均匀的复合材料,制备参数易于控制,重复性好。Adopting the present invention to prepare the titanium dioxide nanosheet photocatalyst loaded with MIL-100 (Fe) has the following advantages: (1) has very high adsorptivity, utilizes the porosity of MIL-100 (Fe) to adsorb organic molecules, thereby Make the photocatalytic active surface of the catalyst fully contact with the degradation substrate to improve the photocatalytic efficiency; (2) improve the photon quantum efficiency, and the transfer of electrons between titanium dioxide and MIL-100(Fe) can be efficiently carried out to improve the electron-hole ratio. Separation efficiency, so as to speed up the catalytic reaction, can degrade high concentration of organic matter in a short time; (3) has a visible light photoresponse, MIL-100 (Fe) loading can promote the catalyst to absorb visible light, so that the material has visible light Catalytic activity; (4) The preparation method is simple; this preparation method can obtain titanium dioxide nanosheets with easy-to-control morphology through a simple hydrothermal reaction, and obtain a uniformly loaded composite material through a layer-by-layer coating method, and the preparation parameters are easy. control, good repeatability.

本发明催化剂载体是利用水热反应法制备的二氧化钛纳米片,大小约为50~60nm,为锐钛矿相结构。以三氯化铁为铁源,均苯三甲酸为配体水浴条件下得到负载MIL-100(Fe)的光催化复合材料。将制备的MIL-100(Fe)负载的二氧化钛纳米片光催化剂应用于光催化降解实验,以可见光为光源,高浓度亚甲基蓝为目标降解物进行光催化降解处理,取得了很好的降解效果。The catalyst carrier of the present invention is a titanium dioxide nano sheet prepared by a hydrothermal reaction method, the size of which is about 50-60 nm, and an anatase phase structure. The photocatalytic composite material loaded with MIL-100(Fe) was obtained under the conditions of ferric chloride as iron source and trimesic acid as ligand in water bath. The prepared MIL-100(Fe)-loaded titanium dioxide nanosheet photocatalyst was applied to the photocatalytic degradation experiment. Visible light was used as the light source and high concentration of methylene blue was used as the target degradation product for photocatalytic degradation treatment, and a good degradation effect was achieved.

附图说明Description of drawings

图1为实施例1制备的二氧化钛纳米片的透射电镜图(TEM)Fig. 1 is the transmission electron microscope figure (TEM) of the titania nanosheet that embodiment 1 prepares

图2为实施例1制备的MIL-100(Fe)负载二氧化钛纳米片的扫描电镜图(SEM)Fig. 2 is the scanning electron micrograph (SEM) of the MIL-100 (Fe) loaded titania nanosheet prepared in embodiment 1

图3为实施例1制备的MIL-100(Fe)负载二氧化钛纳米片的透射电镜图(TEM)Fig. 3 is the transmission electron micrograph (TEM) of the MIL-100 (Fe) loaded titania nanosheet prepared in embodiment 1

图4为实施例1制备的MIL-100(Fe)负载二氧化钛纳米片的XRD图Fig. 4 is the XRD figure of the MIL-100 (Fe) loaded titania nanosheet prepared in embodiment 1

图5为实施例1制备的MIL-100(Fe)负载二氧化钛纳米片的光催化降解曲线。Fig. 5 is the photocatalytic degradation curve of the MIL-100(Fe) loaded titanium dioxide nanosheets prepared in Example 1.

具体实施方式Detailed ways

以下结合实例对本发明的方法作进一步的说明。这些实例进一步描述和说明了本发明范围内的实施方案。给出的实例仅用于说明的目的,对本发明不构成任何限定,在不背离本发明精神和范围的条件下可对其进行各种改变。Below in conjunction with example the method of the present invention is described further. These examples further describe and demonstrate embodiments within the scope of the present invention. The examples given are for the purpose of illustration only and do not constitute any limitation to the present invention, and various changes can be made thereto without departing from the spirit and scope of the present invention.

实施例1Example 1

(1)将5ml质量分数为40%的氢氟酸加入25ml的钛酸四丁酯中,于25℃下搅拌均匀,放入100ml的高压反应釜中,200℃反应20h。待反应结束后,用去离子水和乙醇清洗到中性,干燥后得到二氧化钛纳米片粉末。(1) Add 5ml of hydrofluoric acid with a mass fraction of 40% to 25ml of tetrabutyl titanate, stir evenly at 25°C, put it into a 100ml autoclave, and react at 200°C for 20h. After the reaction is finished, it is washed to neutrality with deionized water and ethanol, and dried to obtain titanium dioxide nanosheet powder.

(2)称取0.027g六水合三氯化铁溶于10m的乙醇中,超声使其充分溶解,然后将0.10g制备好的二氧化钛纳米片分散到上述溶液中,超声分散均匀后,常温下磁力搅拌15min后,抽滤分离得到有Fe3+吸附的二氧化钛纳米片;称取0.021g均苯三甲酸溶于10m的乙醇中,超声使其充分溶解,将吸附Fe3+的二氧化钛纳米片分散到均苯三甲酸乙醇溶液中,分散均匀后放入70℃水浴锅中反应30min后抽滤分离得到样品。(2) Weigh 0.027g of ferric trichloride hexahydrate and dissolve it in 10m of ethanol, ultrasonically dissolve it fully, and then disperse 0.10g of prepared titanium dioxide nanosheets into the above solution, after ultrasonic dispersion is uniform, magnetic force at room temperature After stirring for 15 min, the titanium dioxide nanosheets with Fe 3+ adsorption were separated by suction filtration; 0.021 g of trimesic acid was dissolved in 10 m of ethanol, and ultrasonically dissolved to fully dissolve the Fe 3+ adsorbed titanium dioxide nanosheets. Trimellitic acid ethanol solution, dispersed evenly, placed in a 70°C water bath for 30min reaction, and then separated by suction to obtain a sample.

(3)重复实施例1步骤(2)20次即将二氧化钛纳米片包覆MIL-100(Fe)20次,得到二氧化钛纳米片负载MIL-100(Fe)复合光催化材料。(3) Step (2) of Example 1 was repeated 20 times, that is, titanium dioxide nanosheets were coated with MIL-100(Fe) 20 times to obtain a composite photocatalytic material loaded with titanium dioxide nanosheets MIL-100(Fe).

所得产品经透射电镜(TEM)分析表明,本方法制备的二氧化钛的尺寸约为70~80nm,均匀薄片状结构,表面较为光滑。负载MIL-100(Fe)后在扫描电镜(SEM)和透射电镜(TEM)中明显可以看到二氧化钛表面有不规则状MIL-100(Fe)晶体包裹。The obtained product is analyzed by a transmission electron microscope (TEM) and shows that the titanium dioxide prepared by the method has a size of about 70-80 nm, a uniform thin sheet structure and a relatively smooth surface. After loading MIL-100(Fe), irregular MIL-100(Fe) crystals can be clearly seen on the surface of titanium dioxide in scanning electron microscope (SEM) and transmission electron microscope (TEM).

称取20mg上述制备的MIL-100(Fe)负载的二氧化钛纳米片催化剂进行可见光催化降解高浓度亚甲基蓝的实验,亚甲基蓝浓度为50mg·L-1,可见光照射80min后亚甲基蓝的降解率为99.0%。Weighed 20 mg of the above-prepared MIL-100(Fe)-loaded titanium dioxide nanosheet catalyst to carry out the experiment of catalytic degradation of high concentration methylene blue under visible light. The methylene blue concentration was 50 mg·L -1 , and the degradation rate of methylene blue was 99.0% after 80 min of visible light irradiation.

实施例2Example 2

MIL-100(Fe)负载二氧化钛纳米片复合催化剂的制备方法,步骤同实施例1,不同之处是:将二氧化钛纳米片包覆MIL-100(Fe)5次The preparation method of the MIL-100 (Fe) loaded titanium dioxide nanosheet composite catalyst, the steps are the same as in Example 1, the difference is: the titanium dioxide nanosheets are coated with MIL-100 (Fe) 5 times

称取20mg上述制备的MIL-100(Fe)负载的二氧化钛纳米片催化剂进行可见光催化降解高浓度亚甲基蓝的实验,亚甲基蓝浓度为50mg·L-1,可见光照射80min后亚甲基蓝的降解率为71.5%。Weighed 20 mg of the above-prepared MIL-100(Fe)-loaded titanium dioxide nanosheet catalyst to carry out the experiment of catalytic degradation of high - concentration methylene blue under visible light.

实施例3Example 3

MIL-100(Fe)负载二氧化钛纳米片复合催化剂的制备方法,步骤同实施例1,不同之处是:将二氧化钛纳米片包覆MIL-100(Fe)10次The preparation method of MIL-100 (Fe) loaded titanium dioxide nanosheet composite catalyst, the steps are the same as in Example 1, the difference is: titanium dioxide nanosheets are coated MIL-100 (Fe) 10 times

称取20mg上述制备的MIL-100(Fe)负载的二氧化钛纳米片催化剂进行可见光催化降解高浓度亚甲基蓝的实验,亚甲基蓝浓度为50mg·L-1,可见光照射80min后亚甲基蓝的降解率为84.2%。Weighed 20 mg of the above-prepared MIL-100(Fe)-loaded titanium dioxide nanosheet catalyst to carry out the experiment of catalytic degradation of high concentration methylene blue under visible light. The methylene blue concentration was 50 mg·L -1 , and the degradation rate of methylene blue was 84.2% after 80 min of visible light irradiation.

实施例4Example 4

MIL-100(Fe)负载二氧化钛纳米片复合催化剂的制备方法,步骤同实施例1,不同之处是:将二氧化钛纳米片包覆MIL-100(Fe)25次The preparation method of MIL-100 (Fe) loaded titanium dioxide nanosheet composite catalyst, the steps are the same as in Example 1, the difference is: titanium dioxide nanosheets are coated MIL-100 (Fe) 25 times

称取20mg上述制备的MIL-100(Fe)负载的二氧化钛纳米片催化剂进行可见光催化降解高浓度亚甲基蓝的实验,亚甲基蓝浓度为50mg·L-1,可见光照射80min后亚甲基蓝的降解率为76.5%。Weighed 20 mg of the above-prepared MIL-100(Fe)-supported titanium dioxide nanosheet catalyst to carry out the experiment of catalytic degradation of high concentration methylene blue under visible light. The methylene blue concentration was 50 mg·L -1 , and the degradation rate of methylene blue was 76.5% after 80 min of visible light irradiation.

Claims (9)

1.一种二氧化钛纳米片负载MIL‐100(Fe)复合光催化材料的制备方法,其特征在于包括以下步骤:1. A preparation method of titanium dioxide nanosheet loaded MIL‐100 (Fe) composite photocatalytic material, characterized in that it comprises the following steps: 1)将钛酸四丁酯和氢氟酸一起在常温下搅拌均匀,放入水热反应釜中反应,经分离、洗涤、烘干后得到二氧化钛纳米片;1) Stir tetrabutyl titanate and hydrofluoric acid together at room temperature evenly, put them into a hydrothermal reaction kettle for reaction, and obtain titanium dioxide nanosheets after separation, washing and drying; 2)将步骤1)中的二氧化钛纳米片均匀分散在三氯化铁无水乙醇溶液中,在常温下磁力搅拌15min,经抽滤分离后将得到产物分散在均苯三甲酸无水乙醇溶液中,在50~80℃水浴反应20~50min,经抽滤分离后得到的产物,然后重复步骤2)2~50次,得到二氧化钛纳米片负载MIL‐100(Fe)复合光催化材料;2) Uniformly disperse the titanium dioxide nanosheets in step 1) in ferric chloride absolute ethanol solution, stir magnetically at room temperature for 15 min, and disperse the obtained product in trimesic acid absolute ethanol solution after separation by suction filtration , reacted in a water bath at 50-80°C for 20-50 minutes, and separated the product obtained by suction filtration, and then repeated step 2) 2-50 times to obtain a composite photocatalytic material loaded with titanium dioxide nanosheets MIL‐100 (Fe); 步骤1)中,所述的钛酸四丁酯、氢氟酸质量比为1:0.1~0.3;In step 1), the mass ratio of tetrabutyl titanate to hydrofluoric acid is 1:0.1-0.3; 步骤2)中所述的二氧化钛纳米片、三氯化铁无水乙醇溶液、均苯三甲酸无水乙醇溶液的质量比为1:0.2~0.5:0.1~0.4。The mass ratio of titanium dioxide nanosheets, ferric chloride absolute ethanol solution and trimesic acid absolute ethanol solution in step 2) is 1:0.2-0.5:0.1-0.4. 2.根据权利要求1所述的二氧化钛纳米片负载MIL‐100(Fe)复合光催化材料的制备方法,其特征在于,步骤1)中,所述的钛酸四丁酯、氢氟酸的质量比为1:0.2~0.25。2. the preparation method of titanium dioxide nanosheet load MIL-100 (Fe) composite photocatalytic material according to claim 1, is characterized in that, in step 1), the quality of described tetrabutyl titanate, hydrofluoric acid The ratio is 1:0.2~0.25. 3.根据权利要求1所述的二氧化钛纳米片负载MIL‐100(Fe)复合光催化材料的制备方法,其特征在于,步骤1)中,在水热反应釜中150~220℃反应15~24h。3. The preparation method of titanium dioxide nanosheets loaded MIL-100 (Fe) composite photocatalytic material according to claim 1, characterized in that, in step 1), react in a hydrothermal reactor at 150-220°C for 15-24h . 4.根据权利要求3所述的二氧化钛纳米片负载MIL‐100(Fe)复合光催化材料的制备方法,其特征在于,在水热反应釜中200~220℃反应20~22h。4. The method for preparing the titanium dioxide nanosheet-loaded MIL-100 (Fe) composite photocatalytic material according to claim 3, characterized in that the reaction is carried out in a hydrothermal reactor at 200-220° C. for 20-22 hours. 5.根据权利要求1所述的二氧化钛纳米片负载MIL‐100(Fe)复合光催化材料的制备方法,其特征在于,步骤2)中所述的二氧化钛纳米片、三氯化铁无水乙醇溶液、均苯三甲酸无水乙醇溶液的质量比为1:0.2~0.5:0.1~0.4。5. the preparation method of titanium dioxide nanosheet load MIL‐100 (Fe) composite photocatalytic material according to claim 1, is characterized in that, step 2) described in titanium dioxide nanosheet, iron trichloride dehydrated alcohol solution , The mass ratio of trimesic acid absolute ethanol solution is 1:0.2-0.5:0.1-0.4. 6.根据权利要求5所述的二氧化钛纳米片负载MIL‐100(Fe)复合光催化材料的制备方法,其特征在于,所述的二氧化钛纳米片、三氯化铁无水乙醇溶液、均苯三甲酸无水乙醇溶液的质量比为1:0.30~0.35:0.25~0.30。6. the preparation method of titanium dioxide nanosheet load MIL‐100 (Fe) composite photocatalytic material according to claim 5, is characterized in that, described titanium dioxide nanosheet, ferric chloride dehydrated alcoholic solution, trimesis The mass ratio of the formic acid absolute ethanol solution is 1:0.30-0.35:0.25-0.30. 7.根据权利要求1所述的二氧化钛纳米片负载MIL‐100(Fe)复合光催化材料的制备方法,其特征在于,步骤2)中经抽滤分离后得到的产物,重复步骤2)次数为10~30次。7. the preparation method of titanium dioxide nanosheet load MIL-100 (Fe) composite photocatalytic material according to claim 1, it is characterized in that, the product obtained after suction filtration and separation in step 2), repeat step 2) times is 10 to 30 times. 8.根据权利要求1所述的二氧化钛纳米片负载MIL‐100(Fe)复合光催化材料的制备方法,其特征在于,步骤2)中所述的水浴反应温度为60~70℃,时间为30~40min,经抽滤分离后得到的产物,重复步骤2)次数为15~20次。8. The preparation method of titanium dioxide nanosheet-loaded MIL-100 (Fe) composite photocatalytic material according to claim 1, characterized in that, the water bath reaction temperature described in step 2) is 60-70°C, and the time is 30 ~40min, the product obtained after suction filtration and separation, repeat step 2) for 15-20 times. 9.根据权利要求1~8任一项所述方法制备的二氧化钛纳米片负载MIL‐100(Fe)复合光催化材料的应用方法,其特征在于是将20mg二氧化钛纳米片负载MIL‐100(Fe)复合材料加入浓度为50mg/L的亚甲基蓝水溶液中,再加入0.2ml H2O2,超声分散均匀后暗反应60min,待达到吸附平衡时,放置于300w波长大于420nm的氙汞灯下进行光催化降解反应。9. The application method of the titanium dioxide nanosheet loaded MIL-100 (Fe) composite photocatalytic material prepared according to any one of claims 1 to 8, characterized in that 20 mg of titanium dioxide nanosheet loaded MIL-100 (Fe) The composite material is added to the methylene blue aqueous solution with a concentration of 50mg/L, and then 0.2ml H 2 O 2 is added, and the ultrasonic dispersion is uniform, and the dark reaction is performed for 60 minutes. degradation reaction.
CN201610607408.4A 2016-07-28 2016-07-28 Titanium dioxide nanoplate loads the preparation and application process of MIL-100 (Fe) composite photocatalyst material Expired - Fee Related CN106238100B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610607408.4A CN106238100B (en) 2016-07-28 2016-07-28 Titanium dioxide nanoplate loads the preparation and application process of MIL-100 (Fe) composite photocatalyst material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610607408.4A CN106238100B (en) 2016-07-28 2016-07-28 Titanium dioxide nanoplate loads the preparation and application process of MIL-100 (Fe) composite photocatalyst material

Publications (2)

Publication Number Publication Date
CN106238100A CN106238100A (en) 2016-12-21
CN106238100B true CN106238100B (en) 2018-10-19

Family

ID=57604199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610607408.4A Expired - Fee Related CN106238100B (en) 2016-07-28 2016-07-28 Titanium dioxide nanoplate loads the preparation and application process of MIL-100 (Fe) composite photocatalyst material

Country Status (1)

Country Link
CN (1) CN106238100B (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109569739B (en) * 2016-12-28 2020-12-08 苏州大学 Titanium dioxide-based bilayer hollow material and its application in hydrogen sulfide photocatalytic treatment
CN107159313B (en) * 2017-06-14 2019-08-30 上海应用技术大学 Preparation method of a core-shell structured TiO2 nanotube @Ti-MOF catalyst
CN107244706B (en) * 2017-06-16 2020-08-28 云南大学 Treatment process of high-ammonia-nitrogen high-heavy-metal wastewater
CN107381499B (en) * 2017-07-11 2020-11-13 北京科技大学 Hollow porous nano alpha-Fe2O3Preparation and application of hexagonal prism material
CN107617421B (en) * 2017-09-19 2020-02-07 中北大学 Iron-based two-dimensional bimetallic organic complex and application thereof in sewage treatment
CN107804907B (en) * 2017-11-20 2020-10-30 安徽金兄弟环保科技股份有限公司 Preparation method of cation composite type flocculant for sewage treatment
CN108395542B (en) * 2018-04-10 2020-12-18 武汉纺织大学 A kind of MOFs nanocrystalline material controlled by porous film substrate and preparation method thereof
CN109192530B (en) * 2018-09-25 2020-06-05 中车青岛四方车辆研究所有限公司 Carbon-doped iron oxide hollow sphere for super capacitor and preparation method thereof
CN109289927A (en) * 2018-11-21 2019-02-01 南京大学 Preparation method and application of nano-titania@iron-based MOF visible light composite catalyst
CN109402661B (en) * 2018-11-29 2020-06-26 江苏大学 MIL-100(Fe)/TiO2Preparation method and application of composite photoelectrode
CN109499619B (en) * 2018-12-07 2021-10-01 怀化学院 TiO2/MIL-101 photocatalyst and preparation method thereof
CN110721747A (en) * 2019-10-18 2020-01-24 张贵勇 Metal organic framework photocatalytic hydrogen production composite material and preparation method thereof
CN110882725B (en) * 2019-12-06 2021-07-09 北京科技大学 Metal organic framework supported titanium dioxide photocatalytic material and preparation method thereof
CN111229223A (en) * 2020-01-19 2020-06-05 中国石油大学(北京) Iron oxide doped mixed crystal titanium dioxide nano-net photocatalytic composite material
CN111318260A (en) * 2020-02-25 2020-06-23 江苏大学 TiO22(B) Preparation method and application of/MIL-100 (Fe) composite material
CN111359664B (en) * 2020-03-11 2022-12-30 浙江工商大学 Ti-based MOF composite material and preparation method and application thereof
CN111675304A (en) * 2020-04-28 2020-09-18 西北矿冶研究院 A kind of method for photocatalyst synergistic catalytic oxidation degradation of phenol in water
CN111607808B (en) * 2020-05-19 2021-11-16 首都师范大学 Core-shell structure of ultrathin metal organic framework material UiO-67 coated titanium dioxide nanorod and preparation method thereof
CN112076792B (en) * 2020-08-28 2022-06-24 盐城工学院 Method for constructing TiO by utilizing hydrogen bond2Method for preparing nanotube-MOF composite photocatalyst and application thereof
CN112458747A (en) * 2020-09-17 2021-03-09 南通大学 Loaded TiO (titanium dioxide)2Preparation method of functional fabric of iron-based MOF
CN112076797A (en) * 2020-09-18 2020-12-15 苏州讯罡智能设备有限公司 Preparation method of visible light driven composite photocatalyst
CN112439416A (en) * 2020-10-16 2021-03-05 大连理工大学 Preparation method and application of high-dispersion copper-loaded titanium dioxide nanosheet
CN112371190B (en) * 2020-11-23 2023-04-18 西安建筑科技大学 In 2 S 3 MIL-53 (Fe) high-efficiency photocatalytic composite material, preparation method and application
CN112536070A (en) * 2020-12-02 2021-03-23 浙江大学 Preparation method of visible light response type MIL-100(Fe) photocatalytic composite material
CN113019454B (en) * 2021-03-03 2022-04-26 兰州大学 NH (hydrogen sulfide)2Preparation method and application of-MIL-101 (Fe) @ NiCoP composite nano photocatalyst
CN113751078A (en) * 2021-07-15 2021-12-07 杭州师范大学 A kind of preparation method of TiO2 nanocomposite photocatalyst under MOF confinement
CN114247431B (en) * 2022-01-14 2023-02-03 中南大学 Method for preparing MIL-100 (Fe) material at normal temperature and normal pressure and application thereof
CN114766512B (en) * 2022-04-22 2023-05-30 北京科技大学 Preparation method of inorganic nano material with high efficiency and lasting disinfection and sterilization
CN114917960B (en) * 2022-06-20 2023-05-16 浙江工商大学 Preparation and application of MIL-100 (Fe) -based composite photocatalyst
CN115178110B (en) * 2022-07-13 2024-01-30 浙江理工大学 Sewage treatment membrane with efficient dynamic adsorption and photo-Fenton regeneration characteristics, and preparation method and application thereof
CN116212630B (en) * 2023-05-06 2023-07-07 北京安吉贝玛健康科技有限公司 Concentrated efficient deodorant and preparation method thereof
CN117358303A (en) * 2023-09-19 2024-01-09 浙江启元环境科技有限公司 Preparation method of gaseous pollutant purifying material with photoFenton activity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103240130A (en) * 2013-05-21 2013-08-14 中国石油大学(北京) TiO2/MIL-101 composite catalyst for photocatalytic water splitting and its preparation method and application
CN104324695A (en) * 2014-11-11 2015-02-04 天津工业大学 Novel composite material with MTN zeolite configuration for enrichment and catalytic degradation of organic matters
CN104492381A (en) * 2014-11-28 2015-04-08 上海工程技术大学 Heterogeneous TiO2/Co metal organic framework material and its preparation method and application
CN104844423A (en) * 2015-04-02 2015-08-19 福州大学 Application of MIL-100 (Fe) in preparation of phenol through photocatalytic hydroxylation of benzene
CN105107505A (en) * 2015-07-02 2015-12-02 上海应用技术学院 A kind of magnetic TiO2-porous carbon-Fe3O4 composite visible light catalyst and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103240130A (en) * 2013-05-21 2013-08-14 中国石油大学(北京) TiO2/MIL-101 composite catalyst for photocatalytic water splitting and its preparation method and application
CN104324695A (en) * 2014-11-11 2015-02-04 天津工业大学 Novel composite material with MTN zeolite configuration for enrichment and catalytic degradation of organic matters
CN104492381A (en) * 2014-11-28 2015-04-08 上海工程技术大学 Heterogeneous TiO2/Co metal organic framework material and its preparation method and application
CN104844423A (en) * 2015-04-02 2015-08-19 福州大学 Application of MIL-100 (Fe) in preparation of phenol through photocatalytic hydroxylation of benzene
CN105107505A (en) * 2015-07-02 2015-12-02 上海应用技术学院 A kind of magnetic TiO2-porous carbon-Fe3O4 composite visible light catalyst and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fe3O4@MOF core–shell magnetic microspheres with a designable;Fei Ke et al;《J. Mater. Chem.》;20120402;第22卷;第9497-9500页 *

Also Published As

Publication number Publication date
CN106238100A (en) 2016-12-21

Similar Documents

Publication Publication Date Title
CN106238100B (en) Titanium dioxide nanoplate loads the preparation and application process of MIL-100 (Fe) composite photocatalyst material
CN104069844B (en) Grading three-dimensional porous graphene/titanium dioxide photocatalyst and preparation method thereof
WO2022041852A1 (en) Ni-mof thin-film photocatalyst grown in-situ on foamed nickel surface, preparation method therefor, and use thereof
CN105854863B (en) A kind of C/ZnO/TiO2The preparation method of composite Nano catalysis material
CN103263920B (en) A kind of TiO2 loaded highly dispersed metal catalyst and preparation method thereof
CN101791565A (en) TiO2@ graphite phase carbon nitride heterojunction composite photocatalyst and preparation method thereof
CN103785371B (en) A kind of porous carbon microsphere@TiO2 composite material and its preparation method and application
CN107376964B (en) Preparation and application of a composite photocatalyst based on doped perovskite
CN101244383A (en) A kind of preparation method of activated carbon supported titanium dioxide photocatalyst
CN105289505B (en) A kind of CdSe quantum dots and zirconium base coordination polymer composite and preparation method
Moloto et al. Stabilizing effects of zinc (II)-benzene-1, 3, 5-tricarboxylate metal organic frameworks on the performance of TiO2 photoanodes for use in dye-sensitized solar cells
CN113617331B (en) Preparation method and application of graphite carbon-coated nano iron derived from double-layer metal organic framework material
CN104588004A (en) Catalyst for ultraviolet photocatalytic degradation of organic pollutants and preparation method thereof
CN108579819A (en) A kind of Fe3O4- N adulterates Ni/Zn-MOFs/g-C3N4The preparation method of composite photocatalyst material
CN104475129A (en) Low-temperature preparation method of copper sulfide/titanium oxide hetero-junction photocatalyst
CN111822055A (en) A kind of preparation method and application of BiOBr/COF composite photocatalyst
CN113333023B (en) High-adsorption bismuth oxyiodide visible-light-driven photocatalyst and application thereof
CN101670282A (en) Preparation method of load type nano titanium dioxide catalyst
WO2012109846A1 (en) Methods for preparation and use of catalyst for hydrazine degradation
CN108079993B (en) Preparation method of ferrous oxide/cuprous oxide nano composite material
CN102580727B (en) Preparation method of active carbon loaded titanium dioxide silver-doped photochemical catalyst
CN102658104A (en) Preparation method of TiO2 catalyst with photocatalytic activity under visible light
CN107930670A (en) Heterogeneous catalysis material that a kind of self-cradling type is homogeneously changed and its preparation method and application
CN102266764A (en) Expanded graphite/zinc oxide composite photocatalyst and preparation method thereof
CN103506104B (en) Carbon-doped TiO2 visible light-responsive catalytic film on glass plate carrier and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181019

CF01 Termination of patent right due to non-payment of annual fee