CN106229571A - Batch reclaims the semi-enclosed electric discharge device of waste and old lithium ion battery - Google Patents
Batch reclaims the semi-enclosed electric discharge device of waste and old lithium ion battery Download PDFInfo
- Publication number
- CN106229571A CN106229571A CN201610663057.9A CN201610663057A CN106229571A CN 106229571 A CN106229571 A CN 106229571A CN 201610663057 A CN201610663057 A CN 201610663057A CN 106229571 A CN106229571 A CN 106229571A
- Authority
- CN
- China
- Prior art keywords
- battery
- discharge
- electric discharge
- semi
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 42
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 40
- 239000002699 waste material Substances 0.000 title claims abstract description 26
- 230000005540 biological transmission Effects 0.000 claims abstract description 19
- 238000003860 storage Methods 0.000 claims abstract description 10
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims abstract description 8
- 229940099596 manganese sulfate Drugs 0.000 claims abstract description 8
- 239000011702 manganese sulphate Substances 0.000 claims abstract description 8
- 235000007079 manganese sulphate Nutrition 0.000 claims abstract description 8
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims abstract description 8
- 239000011790 ferrous sulphate Substances 0.000 claims abstract description 7
- 235000003891 ferrous sulphate Nutrition 0.000 claims abstract description 7
- 238000012545 processing Methods 0.000 claims abstract description 6
- 239000000243 solution Substances 0.000 claims description 42
- 238000004064 recycling Methods 0.000 claims description 7
- 239000011259 mixed solution Substances 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 claims 2
- 239000011324 bead Substances 0.000 claims 1
- 239000012530 fluid Substances 0.000 claims 1
- 238000001802 infusion Methods 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 238000005498 polishing Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 36
- 238000001179 sorption measurement Methods 0.000 abstract description 10
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 abstract description 6
- 238000011084 recovery Methods 0.000 abstract description 6
- 238000001035 drying Methods 0.000 abstract description 4
- 238000007599 discharging Methods 0.000 abstract description 3
- 230000007613 environmental effect Effects 0.000 abstract description 3
- 208000028659 discharge Diseases 0.000 description 72
- 238000000034 method Methods 0.000 description 23
- 230000008569 process Effects 0.000 description 17
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 16
- 239000011780 sodium chloride Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000007788 liquid Substances 0.000 description 4
- 239000003463 adsorbent Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000010793 electronic waste Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229910018626 Al(OH) Inorganic materials 0.000 description 1
- 241001274216 Naso Species 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
一种批量处理废旧锂离子电池的高效连续半封闭式放电装置,包括含放电溶液的半封闭式放电容器,电池投料装置,放电传送装置,尾气处理装置,电池回收槽。锂离子电池被投入到电池储料仓,经由星型加料器,进入放电容器中。下落到硫酸亚铁与硫酸锰物质的量比为2:1的放电溶液中开始放电,经过14小时的放电,电池随传送带浮出溶液表面,进入到淋干区。在淋干区,电池表面的溶液由皮带上的孔洞流下,由集气罩产生的气流加快电池淋干进程。淋干的电池运动到传送带尽头,落入电池收集槽。容器内的气流由进风口流入并汇集到集气罩,通过吸附仓吸附潜在的挥发性气体后经离心风机排放。本发明具有操作简单,安全高效,成本低廉,绿色环保等突出特点。
A high-efficiency continuous semi-closed discharge device for batch processing waste lithium-ion batteries, including a semi-closed discharge vessel containing a discharge solution, a battery feeding device, a discharge transmission device, an exhaust gas treatment device, and a battery recovery tank. Lithium-ion batteries are put into the battery storage bin, through the star feeder, into the discharge tank. Drop into the discharge solution whose molar ratio of ferrous sulfate and manganese sulfate is 2:1 to start discharging. After 14 hours of discharge, the battery floats out of the solution surface along with the conveyor belt and enters the drenching area. In the drying area, the solution on the surface of the battery flows down through the holes on the belt, and the airflow generated by the gas collecting hood accelerates the drying process of the battery. Dried batteries move to the end of the conveyor belt and fall into the battery collection tank. The airflow in the container flows in from the air inlet and gathers into the gas collection hood, absorbs potential volatile gases through the adsorption chamber, and then discharges them through the centrifugal fan. The invention has outstanding features such as simple operation, safety and high efficiency, low cost, and environmental protection.
Description
技术领域technical field
本发明涉及对废旧的锂离子电池大规模放电的装置设计,是针对大量有残余电量的废旧锂离子电池设计的高效且环保的放电装置,属于环境保护领域中的电子废弃物处理,资源化领域。The invention relates to the device design for large-scale discharge of waste lithium ion batteries, which is an efficient and environmentally friendly discharge device designed for a large number of waste lithium ion batteries with residual power, and belongs to the field of electronic waste treatment and resource utilization in the field of environmental protection .
背景技术Background technique
科技的不断进步与发展使得锂离子电池的身影随处可见,小到手机、电脑、照相机等便携式电子设备,大到新能源汽车、军事航天等储能领域,锂离子电池作为储能电源的应用空间愈加广泛。研究表明,锂离子的循环周期为500次左右,而在反复充放电过程中,锂离子电池的电极膨胀易堵塞活性物质,导致失活。锂离子电池使用量的激增也会造成其其庞大的报废量。然而废旧的锂离子电池不同于其他电子废弃物。报废后的锂离子电池仍残余不定量的电量,若直接进行下一步的回收处理,如机械破碎等,残余的能量在剧烈碰撞之下可能会产生火花并存在引起爆炸、威胁安全等风险。With the continuous progress and development of science and technology, lithium-ion batteries can be seen everywhere, ranging from portable electronic devices such as mobile phones, computers, cameras, etc., to new energy vehicles, military aerospace and other energy storage fields. The application space of lithium-ion batteries as energy storage power supplies more widespread. Studies have shown that the cycle of lithium ions is about 500 times, and in the process of repeated charge and discharge, the electrode expansion of lithium ion batteries is easy to block the active material, resulting in deactivation. The surge in the use of lithium-ion batteries will also result in a huge amount of scrap. However, used lithium-ion batteries are different from other electronic waste. The scrapped lithium-ion battery still has an indeterminate amount of power remaining. If it is directly recycled in the next step, such as mechanical crushing, the residual energy may generate sparks under severe collisions, causing explosions and threatening safety.
当前国内外尚未有大批量回收处理废旧锂离子电池的案例,对废旧的锂离子电池的少量回收处理的过程中,大多数采用NaCl溶液放电方法。如中国发明专利《一种废旧锂离子电池高效粉碎新工艺》(吴彩斌等,专利号CN201010510406.6),提出了一种用于废旧锂离子电池湿式高效粉碎新工艺的流程,其中释放余电的过程是将待处理的废旧锂离子电池用5%NaCl溶液进行浸泡2h处理,通过盐水浸泡使余电自然释放。该放电体系将NaCl溶液进行电解,发生一系列反应,反应式如下:At present, there are no cases of large-scale recycling of waste lithium-ion batteries at home and abroad. In the process of recycling a small amount of waste lithium-ion batteries, most of them use NaCl solution discharge method. For example, the Chinese invention patent "A New Process for High Efficiency Grinding of Waste Lithium-ion Batteries" (Wu Caibin et al., Patent No. CN201010510406.6) proposes a new process for wet-type high-efficiency grinding of waste lithium-ion batteries. The process is to soak the waste lithium-ion battery to be treated with 5% NaCl solution for 2 hours, and soak in salt water to release the remaining electricity naturally. The discharge system electrolyzes the NaCl solution, and a series of reactions occur. The reaction formula is as follows:
2H2O+2Na→2NaOH+H2 2H 2 O+2Na→2NaOH+H 2
H2O+Cl2→HCl+HClOH 2 O+Cl 2 →HCl+HClO
NaOH+HCl→NaCl+H2ONaOH+HCl→NaCl+ H2O
2Al+2NaOH+2H2O→2NaAlO2+3H2 2Al+2NaOH+2H 2 O→2NaAlO 2 +3H 2
NaAlO2+HCl+H2O→Al(OH)3+NaClNaAlO 2 +HCl+H 2 O→Al(OH) 3 +NaCl
通过上述反应式可以看出,该NaCl放电体系将会产生大量气体,放电过程也导致放电溶液呈较强的碱性。对废旧锂离子电池造成严重的腐蚀,使电解液泄漏,会产生大量烷烃、烯烃及碳酸二甲酯等有机气体及絮凝沉淀。该方法为开放式体系,在工业生产实践中会对工作环境的安全与操作人员的健康造成巨大威胁。It can be seen from the above reaction formula that the NaCl discharge system will generate a large amount of gas, and the discharge process will also lead to a strong alkaline discharge solution. It will cause serious corrosion to waste lithium-ion batteries, cause electrolyte leakage, and produce a large amount of organic gases such as alkanes, olefins, and dimethyl carbonate, as well as flocculation and precipitation. This method is an open system, which will pose a huge threat to the safety of the working environment and the health of operators in industrial production practice.
经检索,中国发明专利《一种废旧锂离子电池的高效安全放电方法》(宋继顺等,专利号CN201510293356.3),提供了一种将废旧锂离子电池的置于混合溶液的电解放电方法。此混合溶液为NaSO4,K2SO4,NaNO3和KNO3等一种或两种以上饱和盐溶液任意比例与Na2CO3,K2CO3,NaOH和KOH中的一种或两种以上任意比例的混合物,调制pH值至10-12。该方法的放电溶液呈强碱性,易对锂离子电池的外壳进行腐蚀,电池内部的电解液泄露出来,造成污染性有机气体的产生,在工业生产实践中也会危害到工作人员的身体健康。同时该放电过程总持续时间为70h左右,放电过程漫长,放电效率很低,不利于工业应用。After searching, the Chinese invention patent "A high-efficiency and safe discharge method for waste lithium-ion batteries" (Song Jishun et al., patent number CN201510293356.3) provides an electrolytic discharge method for placing waste lithium-ion batteries in a mixed solution. This mixed solution is NaSO 4 , K 2 SO 4 , NaNO 3 and KNO 3 and one or more saturated salt solutions in any proportion and one or two of Na 2 CO 3 , K 2 CO 3 , NaOH and KOH The above mixture in any proportion, adjust the pH value to 10-12. The discharge solution of this method is strongly alkaline, which is easy to corrode the shell of the lithium-ion battery, and the electrolyte inside the battery leaks out, causing the generation of polluting organic gases, which will also endanger the health of workers in industrial production practice. . At the same time, the total duration of the discharge process is about 70 hours, the discharge process is long, and the discharge efficiency is very low, which is not conducive to industrial applications.
发明内容Contents of the invention
针对现有技术中的缺陷,本发明的目的克服上述现有技术,提供一种批量回收废旧锂离子电池的高效连续半封闭式放电装置。该装置实现对废旧锂离子电池的连续流水式放电处理,并针对在该半封闭体系内可能产生的污染物设置有效的收集与吸收装置,操作简单,高效清洁,实现对废旧锂离子电池的回收、再生和资源化处理。Aiming at the defects in the prior art, the object of the present invention is to overcome the above prior art and provide a high-efficiency continuous semi-closed discharge device for batch recycling of waste lithium-ion batteries. The device realizes the continuous discharge treatment of waste lithium-ion batteries, and sets up an effective collection and absorption device for the pollutants that may be generated in the semi-closed system. The operation is simple, efficient and clean, and the recovery of waste lithium-ion batteries is realized. , regeneration and recycling.
本发明的技术解决方案如下:Technical solution of the present invention is as follows:
一种批量回收废旧锂离子电池的半封闭式放电装置,特点在于其构成包括,含放电溶液的半封闭式放电容器、电池投料装置、放电传送装置、尾气处理装置和电池回收槽;A semi-closed discharge device for recovering waste lithium-ion batteries in batches, characterized in that its composition includes a semi-closed discharge vessel containing a discharge solution, a battery feeding device, a discharge transmission device, an exhaust gas treatment device, and a battery recovery tank;
所述放电容器的顶部一侧与所述电池投料装置相连,底部为斜边,底部最低处设置有排料口,内部放置所述放电传送装置,电池投料侧设置有补液口和进风口,电池出口侧上方设置尾气处理装置,电池出口侧下方设置电池回收槽。The top side of the discharge vessel is connected to the battery feeding device, the bottom is a hypotenuse, and the lowest part of the bottom is provided with a discharge port, and the discharge conveying device is placed inside, and the battery feeding side is provided with a liquid replenishment port and an air inlet. An exhaust gas treatment device is installed above the outlet side, and a battery recovery tank is installed below the battery outlet side.
所述放电溶液是指硫酸亚铁与硫酸锰物质的量比为2:1的混合溶液,其中,硫酸亚铁溶液浓度为0.8mol/L,硫酸锰溶液浓度浓度为0.4mol/L。The discharge solution refers to a mixed solution in which the molar ratio of ferrous sulfate and manganese sulfate is 2:1, wherein the concentration of ferrous sulfate solution is 0.8mol/L, and the concentration of manganese sulfate solution is 0.4mol/L.
所述电池投料装置包括电池储料仓与星型卸料器,所述储料仓中存储待放电的电池,通过控制星型卸料器的速度控制电池的投放速度,同时星型卸料器在加料过程中产生密封作用,防止放电容器中的气体外泄。The battery feeding device includes a battery storage bin and a star unloader. The storage bin stores batteries to be discharged, and controls the feeding speed of the battery by controlling the speed of the star unloader. At the same time, the star unloader During the feeding process, a sealing effect is produced to prevent the gas in the discharge vessel from leaking out.
所述半封闭式放电容器为不锈钢材质,内壁做抛光处理。The semi-closed discharge vessel is made of stainless steel, and the inner wall is polished.
所述放电传动装置包括传动带和设置在该传动带上的隔条,传送带上设有孔洞,该孔洞的大小小于电池尺寸。The discharge transmission device includes a transmission belt and spacers arranged on the transmission belt, and a hole is arranged on the transmission belt, and the size of the hole is smaller than the size of the battery.
所述的尾气处理装置包括集气罩、吸附仓和离心风机,所述集气罩置于放电容器内部,且位于放电传动装置上方,集气罩的顶部通过管道经吸附仓与离心风机相连,所述吸附仓中放置活性炭吸附剂。The tail gas treatment device includes a gas collection hood, an adsorption bin and a centrifugal fan. The gas collection hood is placed inside the discharge vessel and above the discharge transmission device. The top of the gas collection hood is connected to the centrifugal fan through a pipeline through the adsorption bin. Activated carbon adsorbent is placed in the adsorption chamber.
所述的放电传送装置速度可调,确保电池在溶液中放电时间不少于14小时。The speed of the discharge transmission device is adjustable to ensure that the discharge time of the battery in the solution is not less than 14 hours.
锂离子电池被投入到电池储料仓,经由星型加料器,进入放电容器中,下落到放电溶液中开始放电,经溶液缓冲后电池被橡胶传送带截住并随传送带缓慢运动。经过14小时的放电,所有的锂离子电池的电压降至0.5V以下。电池随传送带浮出溶液表面,进入到淋干区域。在淋干区域,电池表面的溶液可由皮带上的孔洞流下,由集气罩产生的气流加快电池淋干进程。淋干的电池运动到传送带尽头,落入电池收集槽。容器内的气流由进风口流入并汇集到集气罩,通过吸附仓吸附潜在的挥发性气体后经离心风机排放。在放电过程中由传送带上滑落的电池由于重力作用集中于容器底部排料口收集。The lithium-ion battery is put into the battery storage bin, enters the discharge container through the star feeder, and falls into the discharge solution to start discharging. After being buffered by the solution, the battery is intercepted by the rubber conveyor belt and moves slowly with the conveyor belt. After 14 hours of discharge, the voltage of all Li-ion cells dropped below 0.5V. The battery floats out of the solution surface with the conveyor belt and enters the dehydration area. In the drying area, the solution on the surface of the battery can flow down through the holes on the belt, and the airflow generated by the gas collection hood accelerates the drying process of the battery. Dried batteries move to the end of the conveyor belt and fall into the battery collection tank. The airflow in the container flows in from the air inlet and gathers into the gas collection hood, absorbs potential volatile gases through the adsorption chamber, and then discharges them through the centrifugal fan. During the discharge process, the batteries that slide off the conveyor belt are collected at the discharge port at the bottom of the container due to gravity.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1)具有成本低廉、高效、无污染的特点;1) It has the characteristics of low cost, high efficiency and no pollution;
2)可以实现锂离子电池高效连续的放电;处理量高,易于工业应用。2) High-efficiency and continuous discharge of lithium-ion batteries can be realized; high processing capacity and easy industrial application.
3)采用中性化学放电体系快速安全的消除废旧锂离子电池中的余电,适用范围广,放电效率高,处理量高,易于工业应用。3) The neutral chemical discharge system is used to quickly and safely eliminate the residual electricity in the used lithium-ion battery. It has a wide range of applications, high discharge efficiency, high processing capacity, and is easy for industrial application.
4)无污染等特点,减少环境污染。4) No pollution and other characteristics, reducing environmental pollution.
附图说明Description of drawings
图1为本发明批量回收废旧锂离子电池的高效连续半封闭式放电装置的结构示意图;Fig. 1 is the structural representation of the high-efficiency continuous semi-enclosed discharge device of the present invention batch recovery waste lithium ion battery;
图中,1为放电容器,2为补液口,3为进风口,4为放电溶液,5为底部排料口,6为电池储料仓,7为卸料器,8为传送带,9为隔条,10为集气罩,11为吸附仓,12为活性炭吸附剂,13为离心风机,14为电池收集槽,15为未放电电池,16为放电中电池,17为放电后电池。In the figure, 1 is the discharge container, 2 is the liquid replenishment port, 3 is the air inlet, 4 is the discharge solution, 5 is the bottom discharge port, 6 is the battery storage bin, 7 is the unloader, 8 is the conveyor belt, and 9 is the partition Bar, 10 is a gas collection hood, 11 is an adsorption bin, 12 is an activated carbon adsorbent, 13 is a centrifugal fan, 14 is a battery collection tank, 15 is an undischarged battery, 16 is a battery in the discharge, and 17 is the battery after discharge.
图2为在传统NaCl放电溶液的放电过程中产生气体质谱图;Fig. 2 produces gas mass spectrogram in the discharge process of traditional NaCl discharge solution;
图3为本发明采用的混合放电溶液产生气体的质谱图;Fig. 3 is the mass spectrogram that the mixed discharge solution that the present invention adopts produces gas;
图4为本发明采用的硫酸亚铁与硫酸锰的一定比例混合溶液对废旧锂离子电池放电的电压变化图。Fig. 4 is the graph of the voltage variation of the waste lithium-ion battery discharged by a certain ratio mixed solution of ferrous sulfate and manganese sulfate adopted in the present invention.
具体实施方式detailed description
下面结合具体操作实例对本发明进行详细的说明。以下实施案例将有助于本领域的技术人员进一步理解本发明,但并不以任何形式局限本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干变形和改进。The present invention will be described in detail below in combination with specific operation examples. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several modifications and improvements without departing from the inventive concept.
如图1所示,一种批量回收废旧锂离子电池的半封闭式放电装置,包括,含放电溶液的半封闭式放电容器、电池投料装置、放电传送装置、尾气处理装置和电池回收槽,具体的:As shown in Figure 1, a semi-closed discharge device for recycling waste lithium-ion batteries in batches, including a semi-closed discharge vessel containing a discharge solution, a battery feeding device, a discharge transmission device, an exhaust gas treatment device and a battery recovery tank, specifically of:
所述含放电溶液的半封闭式放电容器为不锈钢材质,内部做抛光处理,电池投料侧设置进风口3、补液口2,上方连接电池投料装置,下方倾斜式设计,底部设置排料口5,内部设置放电传送装置,电池出口侧设置尾气处理装置。放电容器中装有硫酸亚铁与硫酸锰物质的量比为2:1的混合溶液4,硫酸亚铁溶液浓度为0.8mol/L,硫酸锰溶液浓度浓度为0.4mol/L。该配比溶液与传统NaCl溶液相比,放电过程无污染性气体产出,如图2、图3所示。排料口5定期打开排放集于容器底部的电池,补液口2再做定量的溶液补充。The semi-closed discharge vessel containing the discharge solution is made of stainless steel, and the interior is polished. The air inlet 3 and the liquid replenishment port 2 are arranged on the battery feeding side, the battery feeding device is connected on the top, the bottom is inclined, and the discharge port 5 is set on the bottom. A discharge transmission device is installed inside, and an exhaust gas treatment device is installed on the battery outlet side. The discharge vessel is filled with a mixed solution 4 with a molar ratio of ferrous sulfate and manganese sulfate of 2:1, the concentration of the ferrous sulfate solution is 0.8mol/L, and the concentration of the manganese sulfate solution is 0.4mol/L. Compared with the traditional NaCl solution, this proportioning solution has no polluting gas output during the discharge process, as shown in Figure 2 and Figure 3. The discharge port 5 is regularly opened to discharge the batteries collected at the bottom of the container, and the liquid replenishment port 2 is then supplemented with quantitative solution.
所述电池投料装置位于半封闭式放电容器上方,投料装置由电池储料仓6与星型卸料器7组成。储料仓6中存储待放电的电池15,通过控制星型卸料器7的速度控制电池的投放速度,同时星型卸料器7在加料过程中产生密封作用,防止放电容器中的气体外泄。The battery feeding device is located above the semi-closed discharge vessel, and the feeding device is composed of a battery storage bin 6 and a star unloader 7 . The battery 15 to be discharged is stored in the storage bin 6, and the feeding speed of the battery is controlled by controlling the speed of the star unloader 7. At the same time, the star unloader 7 produces a sealing effect during the charging process to prevent the gas in the discharge container from leaking out. vent.
所述放电传动装置将连续在半封闭式容器内低速运转,使废旧的锂离子电池在放电溶液4内有足够时间进行完全放电。浸入在放电溶液4中的放电传动装置的部分传动部件作密封处理,传动带8为橡胶材质,传送带8上设置隔条9,防止电池在传送过程中滑落。如有电池从传送带8滑落,由于重力作用,会汇集到容器底部的排料口5。传送带采用镂空设计,孔洞大小远小于电池尺寸。当电池脱离溶液4时,溶液可由孔洞流下,起到淋干作用。The discharge transmission device will continuously operate at a low speed in the semi-closed container, so that the spent lithium-ion battery has enough time to fully discharge in the discharge solution 4 . Part of the transmission parts of the discharge transmission device immersed in the discharge solution 4 is sealed. The transmission belt 8 is made of rubber, and the conveyor belt 8 is provided with spacers 9 to prevent the batteries from slipping during transmission. If any battery slides off from the conveyor belt 8, due to gravity, it will be collected at the discharge port 5 at the bottom of the container. The conveyor belt adopts a hollow design, and the size of the hole is much smaller than the size of the battery. When the battery is separated from the solution 4, the solution can flow down through the holes to play the role of drenching.
所述的尾气处理装置由集气罩10、吸附仓11、离心风机13组成。集气罩10置于放电容器1内部,位于放电传动装置上方。离心风机13产生负压,使容器内溶液4上方气体向集气罩10汇集,电池17上方的气流可加快电池淋干过程。吸附仓11中放置活性炭吸附剂12,并定期更换。放电溶液4上方气体经集气罩10汇集后通过吸附仓11吸附潜在的挥发性气体后经离心风机13排放。The tail gas treatment device is composed of a gas collecting hood 10 , an adsorption bin 11 and a centrifugal fan 13 . The gas collecting hood 10 is placed inside the discharge vessel 1 and above the discharge transmission device. Centrifugal blower 13 produces negative pressure, makes the gas above solution 4 in the container collect to gas collecting hood 10, and the airflow above battery 17 can speed up the battery drenching process. Activated carbon adsorbent 12 is placed in the adsorption chamber 11 and is replaced regularly. The gas above the discharge solution 4 is collected by the gas collecting hood 10 and then the potential volatile gas is absorbed by the adsorption chamber 11 and then discharged by the centrifugal fan 13 .
所述的放电传送装置速度可调,确保电池在溶液中放电时间不少于14小时。The speed of the discharge transmission device is adjustable to ensure that the discharge time of the battery in the solution is not less than 14 hours.
锂离子电池15被投入到电池储料仓6,经由星型加料器7,进入放电容器1中。下落到放电溶液4中开始放电,经溶液缓冲后电池16被橡胶传送带8截住并随传送带缓慢运动。经过14小时的放电,所有的锂离子电池的电压降至0.5V以下,如图4所示。电池随传送带浮出放电溶液4表面,进入到淋干区域。在淋干区域,电池17表面的溶液可由皮带上的孔洞流下,由集气罩10产生的气流加快电池淋干进程。淋干的电池17运动到传送带8尽头,落入电池收集槽14。容器内的气流由进风口3流入并汇集到集气罩10,通过吸附仓11吸附潜在的挥发性气体后经离心风机13排放。在放电过程中由传送带上滑落的电池由于重力作用集中于容器底部排料口5收集。The lithium-ion battery 15 is put into the battery storage bin 6 and enters the discharge container 1 via the star feeder 7 . Drop into the discharge solution 4 to start discharging, and after being buffered by the solution, the battery 16 is intercepted by the rubber conveyor belt 8 and moves slowly with the conveyor belt. After 14 hours of discharge, the voltage of all Li-ion cells dropped below 0.5V, as shown in Figure 4. The battery floats out of the surface of the discharge solution 4 along with the conveyor belt, and enters the drenched area. In the drenching area, the solution on the surface of the battery 17 can flow down through the holes on the belt, and the airflow generated by the gas collecting hood 10 accelerates the drenching process of the battery. The dried battery 17 moves to the end of the conveyor belt 8 and falls into the battery collection tank 14 . The air flow in the container flows in from the air inlet 3 and collects into the gas collecting hood 10 , absorbs potential volatile gases through the adsorption chamber 11 and then discharges them through the centrifugal fan 13 . During the discharge process, the batteries that slide off the conveyor belt are collected at the discharge port 5 at the bottom of the container due to gravity.
本实施案例为半封闭式操作系统,在混合放电溶液中放电效率高,放电过程清洁。并且在该系统中,对可能产生的污染性气体也进行了集中收集处理,保护了操作人员的健康与安全。本发明所述装置具有操作简单,安全高效,成本低廉,绿色环保等突出特点。This implementation case is a semi-closed operating system, with high discharge efficiency and clean discharge process in the mixed discharge solution. And in this system, the polluting gas that may be produced is also collected and processed in a centralized manner, which protects the health and safety of operators. The device of the invention has outstanding features such as simple operation, safety and high efficiency, low cost, and environmental protection.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the specific embodiments described above, and those skilled in the art may make various changes or modifications within the scope of the claims, which do not affect the essence of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610663057.9A CN106229571A (en) | 2016-08-12 | 2016-08-12 | Batch reclaims the semi-enclosed electric discharge device of waste and old lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610663057.9A CN106229571A (en) | 2016-08-12 | 2016-08-12 | Batch reclaims the semi-enclosed electric discharge device of waste and old lithium ion battery |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106229571A true CN106229571A (en) | 2016-12-14 |
Family
ID=57547487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610663057.9A Pending CN106229571A (en) | 2016-08-12 | 2016-08-12 | Batch reclaims the semi-enclosed electric discharge device of waste and old lithium ion battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106229571A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106876821A (en) * | 2017-03-10 | 2017-06-20 | 广东纳玛逊科技有限公司 | A kind of new energy resource power battery Dismantlement equipment |
CN107017445A (en) * | 2017-05-03 | 2017-08-04 | 广州中国科学院沈阳自动化研究所分所 | Based on chemical discharge type electrokinetic cell automatic discharging, disassemble recovery system and control method |
CN108110361A (en) * | 2017-12-20 | 2018-06-01 | 上海迅选智能科技有限公司 | Waste and old power lithium-ion battery bag electric discharge device and method |
CN108270029A (en) * | 2017-12-28 | 2018-07-10 | 合肥国轩高科动力能源有限公司 | Waste ternary lithium battery discharge treatment method and system |
CN108649292A (en) * | 2018-07-11 | 2018-10-12 | 河南巨峰环保科技有限公司 | A kind of lithium battery automatic discharge device |
CN109088118A (en) * | 2018-08-17 | 2018-12-25 | 清华四川能源互联网研究院 | A kind of lithium ion battery electric discharge device and method |
CN109103527A (en) * | 2018-08-23 | 2018-12-28 | 清华四川能源互联网研究院 | Waste and old power battery electric discharge device and method |
CN109494424A (en) * | 2018-11-19 | 2019-03-19 | 浙江新时代中能循环科技有限公司 | A kind of discharge of waste power lithium batteries device |
CN109713391A (en) * | 2018-12-07 | 2019-05-03 | 株洲鼎端装备股份有限公司 | Used Li ion cell discharge system suitable for industrial applications |
CN110391474A (en) * | 2018-04-23 | 2019-10-29 | 中南大学 | A kind of discharge method of waste lithium ion battery |
CN112713327A (en) * | 2020-12-22 | 2021-04-27 | 宁波格劳博智能工业有限公司 | Full-automatic recovery workstation of waste earthen bowl body residual material of lithium battery anode material |
CN113488712A (en) * | 2021-07-05 | 2021-10-08 | 北矿机电科技有限责任公司 | Discharging device and method for intermittent closed power lithium battery |
CN113948784A (en) * | 2021-12-21 | 2022-01-18 | 河南工学院 | A discharge device for recycling lithium batteries |
CN114583305A (en) * | 2022-02-28 | 2022-06-03 | 环创(厦门)科技股份有限公司 | Lithium battery discharging device, lithium battery recycling device and lithium battery recycling method |
CN114703371A (en) * | 2022-03-14 | 2022-07-05 | 昆明理工大学 | Device and method for recovering copper from waste battery discharge co-processing copper-containing waste liquid |
CN114824538A (en) * | 2022-03-31 | 2022-07-29 | 赣州寒锐新能源科技有限公司 | Waste battery wet-type discharging, filtering and drying integrated device |
JP7493212B2 (en) | 2021-03-19 | 2024-05-31 | 深セン清研リチウム業科技有限公司 | Method and device for safe continuous discharge of used lithium batteries |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11260426A (en) * | 1998-03-11 | 1999-09-24 | Asaka Riken Kogyo Kk | Inactivation device of nonaqueous electrolyte battery |
CN101414698A (en) * | 2008-12-10 | 2009-04-22 | 河南豫光金铅股份有限公司 | Apparatus and technique for melting and alloy-configuring waste accumulator lead grid |
JP2013191465A (en) * | 2012-03-14 | 2013-09-26 | Toyota Motor Corp | Recycling apparatus of secondary batteries |
US20140017621A1 (en) * | 2011-03-23 | 2014-01-16 | Shuji Iida | Recycling method and treatment device for battery pack |
CN104882646A (en) * | 2015-06-02 | 2015-09-02 | 天津理工大学 | Method for efficiently and safely discharging electricity of waste lithium ion batteries |
-
2016
- 2016-08-12 CN CN201610663057.9A patent/CN106229571A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11260426A (en) * | 1998-03-11 | 1999-09-24 | Asaka Riken Kogyo Kk | Inactivation device of nonaqueous electrolyte battery |
CN101414698A (en) * | 2008-12-10 | 2009-04-22 | 河南豫光金铅股份有限公司 | Apparatus and technique for melting and alloy-configuring waste accumulator lead grid |
US20140017621A1 (en) * | 2011-03-23 | 2014-01-16 | Shuji Iida | Recycling method and treatment device for battery pack |
JP2013191465A (en) * | 2012-03-14 | 2013-09-26 | Toyota Motor Corp | Recycling apparatus of secondary batteries |
CN104882646A (en) * | 2015-06-02 | 2015-09-02 | 天津理工大学 | Method for efficiently and safely discharging electricity of waste lithium ion batteries |
Non-Patent Citations (1)
Title |
---|
宋秀玲等: ""废旧锂离子电池放电的实验研究"", 《应用化工》 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106876821A (en) * | 2017-03-10 | 2017-06-20 | 广东纳玛逊科技有限公司 | A kind of new energy resource power battery Dismantlement equipment |
CN107017445B (en) * | 2017-05-03 | 2019-07-30 | 广州中国科学院沈阳自动化研究所分所 | Based on chemical discharge type power battery automatic discharging, dismantling recovery system and control method |
CN107017445A (en) * | 2017-05-03 | 2017-08-04 | 广州中国科学院沈阳自动化研究所分所 | Based on chemical discharge type electrokinetic cell automatic discharging, disassemble recovery system and control method |
CN108110361A (en) * | 2017-12-20 | 2018-06-01 | 上海迅选智能科技有限公司 | Waste and old power lithium-ion battery bag electric discharge device and method |
CN108110361B (en) * | 2017-12-20 | 2019-12-03 | 上海迅选智能科技有限公司 | Waste and old power lithium-ion battery packet electric discharge device and method |
CN108270029A (en) * | 2017-12-28 | 2018-07-10 | 合肥国轩高科动力能源有限公司 | Waste ternary lithium battery discharge treatment method and system |
CN110391474B (en) * | 2018-04-23 | 2020-09-29 | 中南大学 | Discharging method of waste lithium ion battery |
CN110391474A (en) * | 2018-04-23 | 2019-10-29 | 中南大学 | A kind of discharge method of waste lithium ion battery |
CN108649292A (en) * | 2018-07-11 | 2018-10-12 | 河南巨峰环保科技有限公司 | A kind of lithium battery automatic discharge device |
CN109088118A (en) * | 2018-08-17 | 2018-12-25 | 清华四川能源互联网研究院 | A kind of lithium ion battery electric discharge device and method |
CN109103527A (en) * | 2018-08-23 | 2018-12-28 | 清华四川能源互联网研究院 | Waste and old power battery electric discharge device and method |
CN109494424A (en) * | 2018-11-19 | 2019-03-19 | 浙江新时代中能循环科技有限公司 | A kind of discharge of waste power lithium batteries device |
CN109713391A (en) * | 2018-12-07 | 2019-05-03 | 株洲鼎端装备股份有限公司 | Used Li ion cell discharge system suitable for industrial applications |
CN112713327A (en) * | 2020-12-22 | 2021-04-27 | 宁波格劳博智能工业有限公司 | Full-automatic recovery workstation of waste earthen bowl body residual material of lithium battery anode material |
JP7493212B2 (en) | 2021-03-19 | 2024-05-31 | 深セン清研リチウム業科技有限公司 | Method and device for safe continuous discharge of used lithium batteries |
CN113488712A (en) * | 2021-07-05 | 2021-10-08 | 北矿机电科技有限责任公司 | Discharging device and method for intermittent closed power lithium battery |
CN113948784A (en) * | 2021-12-21 | 2022-01-18 | 河南工学院 | A discharge device for recycling lithium batteries |
CN113948784B (en) * | 2021-12-21 | 2022-03-15 | 河南工学院 | Discharge device for recycling lithium battery |
CN114583305A (en) * | 2022-02-28 | 2022-06-03 | 环创(厦门)科技股份有限公司 | Lithium battery discharging device, lithium battery recycling device and lithium battery recycling method |
CN114583305B (en) * | 2022-02-28 | 2024-05-03 | 环创(厦门)科技股份有限公司 | Lithium battery discharging device, lithium battery recycling device and recycling method |
CN114703371A (en) * | 2022-03-14 | 2022-07-05 | 昆明理工大学 | Device and method for recovering copper from waste battery discharge co-processing copper-containing waste liquid |
CN114824538A (en) * | 2022-03-31 | 2022-07-29 | 赣州寒锐新能源科技有限公司 | Waste battery wet-type discharging, filtering and drying integrated device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106229571A (en) | Batch reclaims the semi-enclosed electric discharge device of waste and old lithium ion battery | |
CN106252771B (en) | Batch pre-processes the cleaner discharge method of waste and old lithium ion battery | |
CN106848475B (en) | A kind of waste and old lithium ion battery pre-treatment green reclaim processing method and its equipment | |
CN110124815B (en) | Lithium ion battery charged pretreatment equipment and method | |
WO2018040263A1 (en) | Lead-acid battery storage container | |
CN112934373A (en) | Machine is retrieved to smokeless environment-friendly lithium cell | |
CN108854478A (en) | A kind of secondary lead smelting exhaust closing desulfurization and dedusting circulatory system and technique of zero discharge | |
CN203605242U (en) | System for treating waste gas generated by waste lithium-ion battery | |
CN112827337A (en) | Fluorine removal device, waste lithium battery treatment system, treatment method and application thereof | |
CN108759494A (en) | A kind of desulfurization dust-removing technique of the metal smelt tail gas without outer row | |
CN104134830A (en) | Method and apparatus for safe recovery of negative electrode of lithium ion battery | |
CN202224050U (en) | Complete equipment for treating tail gas of graphitizing furnace | |
CN111816947B (en) | Harmless removal process and device for waste lithium battery electrolyte and use method | |
CN203437021U (en) | Waste gas recycling system | |
CN205586752U (en) | High -efficient desulfurization machine of ultrasonic wave | |
CN107126818A (en) | A kind of nanometer dust absorption treating device and method | |
CN116706299A (en) | Dry recovery processing method and processing system for waste lithium battery electrolyte | |
CN207856568U (en) | A kind of purifying processing device for generator discharge dust and gas | |
CN206556032U (en) | A kind of chemical plant installations emptying end gas handles waste-heat recovery device | |
CN209968044U (en) | VOCs treatment system for waste lithium battery recovery | |
CN203253264U (en) | Waste treatment device of combustion furnace | |
CN211971992U (en) | A kind of acid lead battery pollution recovery and treatment device | |
CN210450132U (en) | Clean purifier of pole piece | |
CN209981420U (en) | Processing system of flue gas dust in waste lithium battery resource recovery | |
CN209918023U (en) | A kind of lithium ion battery charged pretreatment equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20161214 |
|
RJ01 | Rejection of invention patent application after publication |