CN106209312A - A kind of cyclic code parameter blind recognition algorithm utilizing soft-decision - Google Patents
A kind of cyclic code parameter blind recognition algorithm utilizing soft-decision Download PDFInfo
- Publication number
- CN106209312A CN106209312A CN201610527274.5A CN201610527274A CN106209312A CN 106209312 A CN106209312 A CN 106209312A CN 201610527274 A CN201610527274 A CN 201610527274A CN 106209312 A CN106209312 A CN 106209312A
- Authority
- CN
- China
- Prior art keywords
- check matrix
- code
- cyclic code
- cyclic
- length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/13—Linear codes
- H03M13/15—Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0057—Block codes
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Algebra (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Error Detection And Correction (AREA)
Abstract
本发明请求保护一种利用软判决的循环码参数盲识别算法,属于信号处理技术领域。首先求出所有码字长度n和生成多项式为xn‑1的因式对应的校验矩阵,放入校验矩阵库中;然后使用M2/M4估计器估计信道中的信号幅值及噪声方差;再利用截获的循环码码流,构造截获矩阵,调用该码字长度对应校验矩阵库中的校验矩阵,得到校验子的后验概率的平均对数似然比;最后根据循环码的性质,识别出码字长度、同步时刻和生成多项式。本算法可以在仅仅已知编码方式为循环码,并且较低信噪比的情况下,同时识别出码字长度、同步时刻和生成多项式,从而对循环码参数盲识别具有重要意义。
The invention claims to protect a cyclic code parameter blind identification algorithm using soft decision, which belongs to the technical field of signal processing. First find out the parity check matrices corresponding to the factors of all codeword length n and generator polynomial x n -1, and put them into the parity check matrix library; then use the M 2 /M 4 estimator to estimate the signal amplitude and Noise variance; then use the intercepted cyclic code stream to construct the interception matrix, call the check matrix in the check matrix library corresponding to the length of the code word, and obtain the average log likelihood ratio of the posterior probability of the syndrome; finally according to Properties of cyclic codes, identifying codeword lengths, synchronization instants, and generator polynomials. This algorithm can identify the codeword length, synchronization time and generator polynomial at the same time when only the encoding method is known as cyclic code and the signal-to-noise ratio is low, so it is of great significance for the blind identification of cyclic code parameters.
Description
技术领域technical field
本发明涉及信道编码参数盲识别,具体为一种循环码编码参数的盲识别问题。The invention relates to blind recognition of channel coding parameters, in particular to a problem of blind recognition of cyclic code coding parameters.
背景技术Background technique
近年来,信道编码盲识别是非合作信号处理领域的重要内容,在智能通信、信息对抗以及信息截获领域具有重要的作用。为了提高数据传输的可靠性,通常会采用信道编码技术,由于循环码检测随机或突发错误非常有效,且循环码的代数结构建立在有限域基础上,容易找到有效的编译码方法。在非合作通信中,研究如何根据截获码流识别出循环码编码参数具有十分重要的现实意义。In recent years, channel coding blind recognition is an important content in the field of non-cooperative signal processing, and plays an important role in the fields of intelligent communication, information countermeasures and information interception. In order to improve the reliability of data transmission, channel coding technology is usually used. Because cyclic codes are very effective in detecting random or burst errors, and the algebraic structure of cyclic codes is based on finite fields, it is easy to find effective encoding and decoding methods. In non-cooperative communication, it is of great practical significance to study how to identify the coding parameters of cyclic codes according to the intercepted code stream.
目前针对循环码参数盲识别的研究文献比较少,现有的分析方法通常使用解调输出的硬判决序列进行分析,文献“Jia-feng Wang.A method blind recognition ofcyclic generator polynomial,Wireless Communication Networking and MobileComputing,2010”假设码字长度已知,或者码字长度未知帧长度已知,对码字进行分组,采用欧几里得算法,实现二进制BCH码的盲识别。但是其必须知道一定的先验知识,在未知先验知识的情况下,计算量很大。事实上解调输出的软判决中不仅含有比特符号信息,而且包含了该符号的可靠度信息。文献“于沛东.一种利用软判决的信道编码识别新方法.电子学报,2013”,该方法利用解调输出的软判决信息,实现在低信噪比情况下,信道编码参数的盲识别。但是该方法应用在线性分组码上,候选校验数量很多,计算量很大,对计算机内存要求很高。因此,本专利提出了一种利用软判决的循环码参数盲识别算法。At present, there are relatively few research documents on the blind recognition of cyclic code parameters. The existing analysis methods usually use the hard decision sequence of the demodulation output for analysis. The document "Jia-feng Wang. A method blind recognition of cyclic generator polynomial, Wireless Communication Networking and MobileComputing , 2010" Assuming that the codeword length is known, or the codeword length is unknown and the frame length is known, the codewords are grouped, and the Euclidean algorithm is used to realize the blind recognition of the binary BCH code. But it must know certain prior knowledge, and in the case of unknown prior knowledge, the amount of calculation is very large. In fact, the soft decision output by demodulation contains not only bit symbol information, but also reliability information of the symbol. Document "Yu Peidong. A new method of channel coding identification using soft decision. Electronic Journal, 2013", this method uses the soft decision information output by demodulation to realize the blind identification of channel coding parameters in the case of low signal-to-noise ratio . However, when this method is applied to linear block codes, there are a large number of candidate checks, a large amount of calculation, and a high requirement for computer memory. Therefore, this patent proposes a blind identification algorithm of cyclic code parameters using soft decision.
发明内容Contents of the invention
本发明所要解决的技术问题,针对现有技术存在的循环码参数估计计算量大,不能实现全盲识别,对计算机内存要求高等缺陷,提出了一种利用软判决 的循环码参数盲识别算法,解决了循环码参数盲识别的问题。该方法能够在较低的信噪比下识别出循环码参数,如码字长度、同步时刻、生成多项式。在估计循环码参数时,建立校验矩阵库,采用了校验矩阵匹配方法,可以达到在不降低识别性能的情况下减少运算量的目的。The technical problem to be solved by the present invention is to solve the problems of the prior art that the cyclic code parameter estimation has a large amount of computation, cannot realize full-blind recognition, and requires high computer memory, and proposes a cyclic code parameter blind recognition algorithm using soft judgment to solve the problem. The problem of blind identification of cyclic code parameters is solved. This method can identify the parameters of cyclic codes, such as codeword length, synchronization time, and generator polynomial, under low SNR. When estimating the parameters of cyclic codes, a check matrix library is established and a check matrix matching method is adopted, which can achieve the purpose of reducing the amount of calculation without reducing the recognition performance.
本发明解决上述技术问题的技术方案是:一种利用软判决的循环码参数盲识别方法,其步骤在于,首先求出所有码字长度n和生成多项式为xn-1的因式对应的校验矩阵,放入校验矩阵库中;然后使用M2/M4估计器(the second-order/fourth-order momentmethod,二阶矩/四阶矩方法)估计信道中的信号幅值以及噪声方差;再利用截获的循环码码流,根据假设码字长度和同步时刻构造截获矩阵,调用该码字长度对应校验矩阵库中的校验矩阵,得到校验子的后验概率的平均对数似然比;最后根据循环码的性质,识别出码字长度、同步时刻和生成多项式。The technical solution of the present invention to solve the above-mentioned technical problems is: a method for blind identification of cyclic code parameters using soft decision, the steps of which are: firstly find out the correction coefficients corresponding to the factors of all codeword length n and generator polynomial x n -1 check matrix, put it into the check matrix library; then use the M 2 /M 4 estimator (the second-order/fourth-order momentmethod, second-order moment/fourth-order moment method) to estimate the signal amplitude and noise variance in the channel ;Use the intercepted cyclic code stream, construct the interception matrix according to the assumed codeword length and synchronization time, call the parity check matrix in the parity check matrix library corresponding to the codeword length, and obtain the average logarithm of the posterior probability of the syndrome Likelihood ratio; finally, according to the nature of the cyclic code, the length of the code word, the synchronization moment and the generator polynomial are identified.
本发明利用一种软判决的方法对循环码参数进行盲估计,利用M2/M4估计器有效的估计信号的幅值以及噪声方差,利用循环码的性质建立校验矩阵库,使得校验矩阵库中的数量大大减少,通过在不同的码字长度和同步时刻,遍历校验矩阵中的校验矩阵,求其对应的校验子的后验概率的平均对数似然比,不仅充分利用了接收符号的有效信息,而且候选校验矩阵数量小,能够实现在较低信噪比情况下,对循环码参数的全盲识别,具有一定的工程应用价值。The present invention uses a soft decision method to blindly estimate the parameters of the cyclic code, uses the M 2 /M 4 estimator to effectively estimate the signal amplitude and noise variance, and uses the properties of the cyclic code to establish a check matrix library, so that the check The number in the matrix library is greatly reduced. By traversing the parity check matrix in the parity check matrix at different codeword lengths and synchronization moments, the average log-likelihood ratio of the posterior probability of the corresponding syndrome is not only sufficient The effective information of received symbols is utilized, and the number of candidate parity check matrices is small, which can realize the blind identification of cyclic code parameters under the condition of low signal-to-noise ratio, and has certain engineering application value.
附图说明Description of drawings
以下结合附图和具体实例,对本发明的实施作进一步的描述。The implementation of the present invention will be further described below in conjunction with the accompanying drawings and specific examples.
图1本发明码字长度和同步时刻盲识别方法的流程图;Fig. 1 is the flow chart of the code word length and the blind identification method of synchronization moment of the present invention;
图2本发明生成多项式识别方法的流程图;Fig. 2 is the flow chart of generating polynomial recognition method of the present invention;
图3本发明原循环码和新的循环码包含关系;The original cyclic code of the present invention and the new cyclic code contain relationship of Fig. 3;
图4本发明基本的信号传输系统框图;Fig. 4 basic signal transmission system block diagram of the present invention;
图5本发明不同的循环码在不同码字长度、同步时刻对应的平均对数似然比;Fig. 5 is the average log likelihood ratio corresponding to different cyclic codes of the present invention at different codeword lengths and synchronization moments;
图6本发明循环码在n=30,t0=5时对应不同既约多项式对应的平均对数似然比;Fig. 6 is the average log likelihood ratio corresponding to different polynomials corresponding to the cyclic code of the present invention when n=30, t 0 =5;
图7本发明不同循环码识别的性能图。Fig. 7 is a performance diagram of different cyclic code recognition in the present invention.
具体实施方式detailed description
以下结合附图和具体实例,对本发明的实施作进一步的描述。The implementation of the present invention will be further described below in conjunction with the accompanying drawings and specific examples.
图1所示为本发明码字长度和同步时刻盲识别方法的流程图,具体步骤:Fig. 1 shows the flow chart of the present invention's code word length and blind identification method of synchronous moment, concrete steps:
(1)建立校验矩阵库,具体方法为:将xn-1完全分解为既约多项式的乘积,假设有w个既约多项式,记作pi(x),1≤i≤w,则假设pi(x),1≤i≤w中有w1个互不相同的既约多项式,若取生成多项式为其中一个不可约多项式,记作gi(x)=pi(x),1≤i≤w1,则校验多项式将其对应的校验矩阵Hi放入校验矩阵库中;(1) Establish a check matrix library, the specific method is: completely decompose x n -1 into the product of reduced polynomials, assuming that there are w reduced polynomials, recorded as p i (x), 1≤i≤w, then Assuming that p i (x), 1≤i≤w, there are w 1 different reducing polynomials, if the generator polynomial is taken as one of the irreducible polynomials, write g i (x)=p i (x), 1≤i≤w 1 , then the check polynomial Put its corresponding check matrix H i into the check matrix library;
(2)使用M2/M4估计器估计参数信号幅值av和噪声方差 (2) Use the M 2 /M 4 estimator to estimate the parameter signal amplitude a v and noise variance
(3)假设码字长度n,(取值为1到2n0-1),同步时刻d(取值为0到n-1),构造截获矩阵X,调用校验矩阵库中n对应的校验矩阵Hi1≤i≤w,计算其对应的校验子的后验概率的平均对数似然比Wi,1≤i≤w;(3) Assuming that the codeword length is n, (the value is 1 to 2n 0 -1), and the synchronization time d (the value is 0 to n-1), the interception matrix X is constructed, and the calibration corresponding to n in the check matrix library is called For the empirical matrix H i 1≤i≤w, calculate the average log-likelihood ratio W i of the posterior probability of the corresponding syndrome, 1≤i≤w;
(4)取Wi,1≤i≤w的最大值L作为(n,d)对应的平均对数似然比,放入Q矩阵中(n,d)对应的位置;(4) Take the maximum value L of W i , 1≤i≤w as the average log likelihood ratio corresponding to (n,d), and put it into the position corresponding to (n,d) in the Q matrix;
(5)改变n、d的值,Q是一个2n×n的矩阵,求Q最大值对应的n、d,记作n′=n,d′=d;(5) change the value of n, d, Q is a matrix of 2n * n, seek n, d corresponding to Q maximum value, denoted as n'=n, d'=d;
(6)令n=2n′,d取值从0到n-1,构造截获矩阵X,调用校验矩阵库中n对应的校验矩阵Hi,1≤i≤w,计算其对应的校验子的后验概率的平均对数似然比;(6) Set n=2n′, d ranges from 0 to n-1, construct the intercept matrix X, call the check matrix H i corresponding to n in the check matrix library, 1≤i≤w, and calculate its corresponding check matrix The average log-likelihood ratio of the posterior probability of the tester;
(7)识别出码字长度同步时刻 (7) Identify the codeword length synchronization time
图2所示为本发明生成多项式识别方法的流程图,具体步骤:Fig. 2 shows the flowchart of generating polynomial identification method of the present invention, concrete steps:
(1)当时,调用校验矩阵库中对应的校验矩阵Hi1≤i≤w,计算其对应的校验子的后验概率的平均对数似然比Wi,1≤i≤w。并且取Wi(1≤i≤w)大于门限T对应的生成多项式gi(x)(1≤i≤w)的乘积,记作g1(x)。如果为奇数,则 识别结束。如果是偶数,则g0(x)(为循环码的真实生成多项式)可能包含重根,转(3);(1) when When calling the check matrix library For the corresponding check matrix H i 1≤i≤w, calculate the average log likelihood ratio W i of the posterior probability of the corresponding syndrome, 1≤i≤w. And take the product of the generator polynomial g i (x) (1≤i≤w) corresponding to W i (1≤i≤w) greater than the threshold T, and record it as g 1 (x). if is an odd number, then Identification is complete. if is an even number, then g 0 (x) (for the real generator polynomial of the cyclic code) may contain repeated roots, turn to (3);
(2)当时,则g0(x)可能包含重根,转(3);(2) when when g 0 (x) may contain repeated roots, go to (3);
(3)识别生成多项式重根的步骤:(a)将完全因式分解为f项,记作pi(x),1≤i≤f,其中有f1个多项式包含于g1(x)的因式,记作pi(x),1≤i≤f1≤f;(b)如果f1=0,那么识别结束。如果f1≠0,初始化i=1,令g(x)=g1(x)pi(x),求出对应的校验矩阵Hi,计算其对应的校验子的后验概率的平均对数似然比Wi,如果Wi>T,更新g1(x)=g1(x)pi(x),否则,g1(x)保持不变;(c)令i=i+1,取g(x)=g1(x)pi(x),其对应的校验子的后验概率的平均对数似然比Wi,如果Wi>T,更新g1(x)=g1(x)pi(x),否则,g1(x)保持不变;(d)重复步骤(c),直到i>f1,则有识别结束。(3) Steps to identify multiple roots of generator polynomials: (a) set The complete factorization is decomposed into f items, denoted as p i (x), 1≤i≤f, among which there are f 1 polynomials contained in the factor of g 1 (x), denoted as p i (x), 1≤i ≤f 1 ≤f; (b) if f 1 =0, then Identification is complete. If f 1 ≠0, initialize i=1, set g(x)=g 1 (x)p i (x), find For the corresponding check matrix H i , calculate the average log-likelihood ratio W i of the posterior probability of the corresponding syndrome, if W i >T, update g 1 (x)=g 1 (x)p i ( x), otherwise, g 1 (x) remains unchanged; (c) Let i=i+1, take g(x)=g 1 (x)p i (x), the posterior of its corresponding syndrome The average log-likelihood ratio of probability W i , if W i > T, update g 1 (x) = g 1 (x) p i (x), otherwise, g 1 (x) remains unchanged; (d) repeat Step (c), until i>f 1 , then there is Identification is complete.
图3所示为本发明原循环码与新循环码,及它们的对偶码空间包含关系。原循环码是指将生成多项式为g(x)=A(x)g′(x)生成的(n,k)循环码,新循环码是指生成多项式为g′(x)生成的(Mn,k),M=1,2,…循环码。新循环码对偶码空间是原循环码对偶码空间的子空间。这是因为循环码具有命题1和命题2的性质。Fig. 3 shows the original cyclic code and the new cyclic code of the present invention, and their dual code space inclusion relationship. The original cyclic code refers to the (n, k) cyclic code generated by the generator polynomial g(x)=A(x)g′(x), and the new cyclic code refers to the (Mn) generated by the generator polynomial g′(x). , k), M=1, 2, ... cyclic code. The dual code space of the new cyclic code is a subspace of the dual code space of the original cyclic code. This is because cyclic codes have the properties of Proposition 1 and Proposition 2.
命题1如果ci(x),i=1,2,…是以g(x)=A(x)g′(x)为生成多项式生成的(n,k)循环码第i个码字,假设循环码(Mn,k),M=1,2,…以g′(x)为生成多项式对应的校验多项式为h′(x),那么[c1(x),…,cM(x)]h′(x)mod(xMn-1)=0,M=1,2,…,其中[c1(x),…,cM(x)]表示由M个码字构成的矩阵。Proposition 1 If c i (x), i=1, 2, ... is the i-th codeword of the (n, k) cyclic code generated by g(x)=A(x)g'(x) as the generator polynomial, Suppose the cyclic code (Mn, k), M=1, 2, ... with g'(x) as the generator polynomial corresponding check polynomial is h'(x), then [c 1 (x), ..., c M ( x)]h′(x)mod(x Mn -1)=0, M=1, 2,…, where [c 1 (x),…,c M (x)] represents the matrix.
命题2如果c(x)是以g(x)生成多项式生成的(n,k),n=2n1循环码码字,如果即生成多项式可以分解为和因式分解的部分因式,设c(1)(x)、c(2)(x)分别表示c(x)中前n1码元构成的码字和后n1码元构成的码字,即 则和其中, Proposition 2 If c(x) is (n,k) generated by g(x) generator polynomial, n=2n 1 cyclic code word, if That is, the generator polynomial can be decomposed into and Partial factorization of factorization, let c (1) (x), c (2) (x) respectively denote the code word composed of the first n 1 code elements and the code word composed of the last n 1 code elements in c(x), that is but and in,
由命题1可知,若循环码满足命题2条件,则对于M=1,2,…循环码,假设其以g′(x)为生成多项式对应的校验多项式为h′(x),均满足It can be seen from Proposition 1 that if the cyclic code satisfies the condition of Proposition 2, then for M = 1, 2, ... cyclic codes, assuming that the check polynomial corresponding to g'(x) as the generator polynomial is h'(x), all satisfy
式中,分别表示第i个码字的前n1码元构成的码字和后n1码元构成的码字。对于循环码(Mn,k),M=1,2,…,生成多项式取xMn-1的任意一个因子,设其对应的校验多项式为h″(x),则均满足In the formula, Respectively represent the codeword composed of the first n 1 symbols and the codeword composed of the last n 1 symbols of the i-th codeword. For cyclic codes (Mn,k), M=1,2,..., the generator polynomial takes any factor of x Mn -1, and the corresponding check polynomial is h″(x), then all satisfy
[c1(x),…,cM(x)]h″(x)mod(xMn-1)=0,M=1,2,…(2)[c 1 (x),...,c M (x)] h″(x) mod (x Mn -1) = 0, M = 1, 2, ... (2)
图4所示为基本的传输模型系统框图。定义集合Ζ2={0,1},Β2={-1,1}。bi表示第i个码字的k个信息位,记作v∈Ζ+,Ζ+表示正整数。bi经过(n,k)循环码编码器变为长度为n的码字,记作ci经BPSK调制器变为然后经过调频,且加性高斯白噪声信道传输,之后又解调为基带信号,变为Xi=[Xi0,Xi1,…,Xij,…,Xi(n-1)]T,则Figure 4 shows the basic transmission model system block diagram. Define the set Z 2 ={0,1}, Β 2 ={-1,1}. b i represents the k information bits of the i-th codeword, denoted as v∈Ζ + , Ζ + represents a positive integer. b i becomes a codeword of length n through the (n,k) cyclic code encoder, denoted as c i is changed to by BPSK modulator Then after frequency modulation, additive Gaussian white noise channel transmission, and then demodulated to baseband signal, becomes Xi = [X i0 , X i1 ,…,X ij ,…,X i(n-1) ] T , but
Xij=avsij+wij,j=0,1,…,n-1 (3)X ij =a v s ij +w ij ,j=0,1,...,n-1 (3)
其中,av是幅度增益,wij服从正态分布在仅仅已知发送端的编码方式为循环码,且截获一串长度为len的比特流L的情况下,根据文中算法估计循环码的码字长度n0、同步时刻t0和生成多项式g0(x)。假设码字长度为n,生成多项式为g(x),同步时刻为d,则将L截断前面d个比特,以长度为n划分为N个码字,其中第i个码字记作Xi=[Xi1,Xi2,…,Xij,…,Xin],与其相对应的属于Ζ2的无误码码字,记作Ci=[Ci1,Ci2,…,Cij,…,Cin],将N个Ci码字堆叠的矩阵,记作C=[C1,C2,…,Ci,…,CN]T。Among them, a v is the amplitude gain, w ij obeys the normal distribution In the case where it is only known that the encoding method of the sending end is a cyclic code, and a string of bit stream L with a length of len is intercepted, the code word length n 0 , the synchronization time t 0 and the generator polynomial g 0 ( x). Assuming that the codeword length is n, the generator polynomial is g(x), and the synchronization time is d, then the first d bits of L are truncated, and the length is n and divided into N codewords, where the i-th codeword is recorded as X i =[X i1 ,X i2 ,...,X ij ,...,X in ], the corresponding error-free codeword belonging to Ζ 2 is recorded as C i =[C i1 ,C i2 ,...,C ij ,... ,C in ], a matrix in which N codewords of C i are stacked, denoted as C=[C 1 ,C 2 ,...,C i ,...,C N ] T .
当且仅当H∈C⊥时,则C、H满足奇偶校验等式为:If and only if H∈C ⊥ , then C and H satisfy the parity check equation:
CHT=0 (4)CH T =0 (4)
式中,C是N×n的矩阵,H是m×n的矩阵,0是N×m的全零矩阵。定义Ci,1≤i≤N表示C的第i行向量,记作Ci=[Ci1,Ci2,…,Cij,…,Cin],1≤j≤n,Ha,1≤a≤m表示H的第a行向量,记作Ha=[Ha1,Ha2,…,Haj,…,Han],1≤j≤n。则有即In the formula, C is an N×n matrix, H is an m×n matrix, and 0 is an N×m all-zero matrix. Define C i , 1≤i≤N to represent the i-th row vector of C, denoted as C i =[C i1 ,C i2 ,…,C ij ,…,C in ], 1≤j≤n, H a ,1 ≤a≤m represents the a-th row vector of H, denoted as H a =[H a1 , H a2 ,...,H aj ,...,H an ], 1≤j≤n. then there is which is
如果Ha包含Na个非零元素,非零元素的下标向量为If H a contains N a non-zero elements, the subscript vector of non-zero elements is
则式(5)可以化为Then formula (5) can be transformed into
因为发送端发送0的概率与发送1的概率相等,则有Since the probability of sending a 0 at the sender is equal to the probability of sending a 1, then
并且根据文献“Tian xia.novel blind identification of LDPC codes usingaverage LLR of syndrome a posteriori probability.IEEE Transactions on SignalProcessing,2014”可知:And according to the document "Tian xia.novel blind identification of LDPC codes using average LLR of syndrome a posteriori probability.IEEE Transactions on Signal Processing, 2014":
则第i个码字的第a个奇偶校验位的后验概率对数似然比为:Then the log-likelihood ratio of the posterior probability of the a-th parity bit of the i-th codeword is:
因为y=tanh-1(x),在-1<x<1是单调增函数,且因此文中将式(10)简化为Because y=tanh -1 (x), it is a monotonically increasing function at -1<x<1, and Therefore, the formula (10) is simplified as
根据似然比的定义,以及式(11),当H∈C⊥时,校验的后验概率的对数似然比是正数。如果H∈C⊥,对应校验子的后验概率的平均对数似然比是正数,并且信噪比越高越接近于1。当时,校验子的后验概率的对数似然比 有的是正数,有的是负数。所有校验子的平均对数似然比是According to the definition of likelihood ratio and formula (11), when H∈C ⊥ , the log-likelihood ratio of the posterior probability of verification is a positive number. If H∈C ⊥ , the average log-likelihood ratio of the posterior probability of the corresponding syndrome is a positive number, and the higher the signal-to-noise ratio is, the closer it is to 1. when When , the log-likelihood ratio of the posterior probability of the syndrome Some are positive and some are negative. The average log-likelihood ratio of all syndromes is
则当H∈C⊥时,W大于0小于等于1;当时,W约等于0。Then when H∈C ⊥ , W is greater than 0 and less than or equal to 1; when When , W is approximately equal to 0.
根据式(3)得到的系统模型,可知:According to the system model obtained by formula (3), it can be known that:
式中,y=L(x)表示y是x的对数似然比。由(11)、(12)、(13)联合可得到校验子的后验概率的对数似然比,但是av和未知,需要使用M2/M4估计器估计出av和的值。In the formula, y=L(x) means that y is the log likelihood ratio of x. From (11), (12) and (13), the log likelihood ratio of the posterior probability of the syndrome can be obtained, but a v and unknown, need to use M 2 /M 4 estimator to estimate a v and value.
根据M2/M4估计器估计av和由于 Estimate a v and because
Xij=avsij+wij,j=0,1,…,n-1 (14)X ij =a v s ij +w ij , j=0,1,...,n-1 (14)
则接收信号Xij的二阶矩:Then the second moment of the received signal X ij :
接收信号Xij的四阶矩:The fourth moment of the received signal X ij :
由式(15)和式(16)联合可得:Combining formula (15) and formula (16), we can get:
实际上,M2和M4可由接收信号的第i个码字估计,即:Actually, M2 and M4 can be estimated by the ith codeword of the received signal, namely:
文中估计av和时,可根据全部接收信号样本估计,增加估计的准确性,消除随机性。Estimated a v and When , it can be estimated based on all received signal samples to increase the accuracy of estimation and eliminate randomness.
图5所示为本发明不同的循环码在不同码字长度、同步时刻对应的对数似然比;其中,(a)表示生成多项式g0(x)=(x2+x+1)(x4+x+1)的(15,9)循环码;(b)表示生成多项式g0(x)=(x15+1)(x2+x+1)(x4+x+1)的循环码(30,9);(c)表示生成多项式g0(x)=(x2+x+1)(x4+x+1)的(30,24)循环码;其均在信噪比SNR=10db的信道中传输,截获时的同步时刻t0=5。x轴表示同步时刻,y轴表示码字长度,z轴为取不同码字长度、同步时刻构造截获矩阵时,调用码字长度对应校验矩阵库中的校验矩阵,得到校验子的后验概率的平均对数似然比的最大值,记作L。Fig. 5 shows that different cyclic codes of the present invention correspond to logarithmic likelihood ratios at different codeword lengths and synchronization moments; wherein, (a) represents the generator polynomial g 0 (x)=(x 2 +x+1)( (15,9) cyclic code of x 4 +x+1); (b) represents generator polynomial g 0 (x)=(x 15 +1)(x 2 +x+1)(x 4 +x+1) (30,9) of the cyclic code; (c) represents the (30,24) cyclic code of the generator polynomial g 0 (x)=(x 2 +x+1)(x 4 +x+1); Transmitting in a channel with a noise ratio of SNR=10db, the synchronization time t 0 at the time of interception is 5. The x-axis represents the synchronization time, the y-axis represents the length of the code word, and the z-axis represents the result of obtaining the syndrome when constructing an interception matrix with different code word lengths and synchronization time. The maximum value of the average log-likelihood ratio of the test probability is denoted as L.
由(a)可知,对于循环码(15,9),当n=15α,α=1,2,3,d=5时,L的值最大;当n=15α,α=1,2,3,d≠5时,L大于(表示一个约等于0的数)小于最大值;当n≠15α,α=1,2,3时,L等于由(c)可知,对于循环码(30,24),当n=30,d=5时,L的值最大;当n=30,d≠5时,L大于小于最大值;当n≠30时,L等 于由(b)可知,对于循环码(30,9),当n=15α,α=1,2,3,d=5或d=20时,L的值最大;当n=15α,α=1,2,3,d≠5或d≠20时,L大于小于最大值。实验现象与理论分析完全一致。It can be seen from (a) that for the cyclic code (15,9), when n=15α, α=1,2,3, d=5, the value of L is the largest; when n=15α, α=1,2,3 , when d≠5, L is greater than ( Indicates a number approximately equal to 0) is less than the maximum value; when n≠15α, α=1,2,3, L is equal to It can be seen from (c) that for the cyclic code (30,24), when n=30, d=5, the value of L is the largest; when n=30, d≠5, L is greater than is less than the maximum value; when n≠30, L is equal to It can be seen from (b) that for the cyclic code (30,9), when n=15α, α=1, 2, 3, d=5 or d=20, the value of L is the largest; when n=15α, α=1 ,2,3, when d≠5 or d≠20, L is greater than less than the maximum value. The experimental phenomenon is completely consistent with the theoretical analysis.
根据命题1可知,当循环码不满足命题2条件,即n0=2n1,时,当n=αn0,α=1,2,…,g(x)遍历xn-1的因式,(n,g(x))对应的校验矩阵为H,存在H满足C(n,d)HT=0;当n≠αn0,α=1,2,…,g(x)遍历xn-1的因式,(n,g(x))对应的校验矩阵为H,不存在H满足C(n,d)HT=0。当循环码满足命题2条件,即n0=2n1,时,当α=1,2,…时,若g(x)是g′(x)的因式,设(n,g(x))对应的校验矩阵为H,满足C(n,d)HT=0。当n=αn0,α=1,2,…,g(x)取xn-1的任意一个因式,设(n,g(x))对应的校验矩阵为H,存在H满足C(n,d)HT=0。因此,如果存在H满足C(n,d)HT=0时,此时得到的L越接近于1;如果不存在H满足C(n,d)HT=0时,此时得到的L等于 According to Proposition 1, when the cyclic code does not satisfy the condition of Proposition 2, that is, n 0 =2n 1 , , when n=αn 0 ,α=1,2,..., g(x) traverses the factors of x n -1, (n,g(x)) corresponds to the parity check matrix H, and there exists H that satisfies C( n,d)H T =0; when n≠αn 0 , α=1,2,..., g(x) traverses the factors of x n -1, and the check matrix corresponding to (n,g(x)) is H, the absence of H satisfies C(n,d)H T =0. When the cyclic code satisfies the condition of Proposition 2, that is, n 0 =2n 1 , when When α=1,2,..., if g(x) is a factor of g′(x), set the parity check matrix corresponding to (n,g(x)) as H, satisfying C(n,d)H T =0. When n=αn 0 , α=1,2,..., g(x) takes any factor of x n -1, let the parity check matrix corresponding to (n,g(x)) be H, there exists H satisfying C (n,d) HT =0. Therefore, if H satisfies C(n,d)H T =0, the L obtained at this time is closer to 1; if there is no H and satisfies C(n,d)H T =0, the L obtained at this time equal
但是根据图5无法正确识别出码字长度和同步时刻,还需要做进一步的实验判断。However, according to Figure 5, the codeword length and synchronization time cannot be correctly identified, and further experimental judgment is required.
图6所示为本发明循环码在n=30,t0=5时对应不同既约多项式对应的平均对数似然比。(a)为生成多项式g0(x)=(x2+x+1)(x4+x+1)的(15,9)循环码;(b)表示生成多项式g0(x)=(x15+1)(x2+x+1)(x4+x+1)的循环码(30,9);x轴代表既约多项式序号1~5分别为p1(x)=x+1,p2(x)=x2+x+1,p3(x)=x4+x+1,p4(x)=x4+x3+1,p5(x)=x4+x3+x2+x+1;y轴代表同步时刻,取值从0到29;z轴为L的值,假设d=0,g(x)=p1(x),代表以n=30,d=0构造的截获矩阵X,调用校验矩阵库中p1(x)对应的校验矩阵,得到的校验子的后验概率的平均对数似然比。Fig. 6 shows the average log-likelihood ratios corresponding to different reducing polynomials of the cyclic code of the present invention when n=30, t 0 =5. (a) is the (15,9) cyclic code of the generator polynomial g 0 (x)=(x 2 +x+1)(x 4 +x+1); (b) represents the generator polynomial g 0 (x)=( The cyclic code (30,9) of x 15 +1)(x 2 +x+1)(x 4 +x+1); the x-axis represents the approximate polynomial numbers 1 to 5 respectively p 1 (x)=x+ 1, p 2 (x)=x 2 +x+1, p 3 (x)=x 4 +x+1, p 4 (x)=x 4 +x 3 +1, p 5 (x)=x 4 +x 3 +x 2 +x+1; the y-axis represents the synchronization time, and the value ranges from 0 to 29; the z-axis is the value of L, assuming d=0, g(x)=p 1 (x), representing n =30, d=0 constructs the interception matrix X, calls the check matrix corresponding to p 1 (x) in the check matrix library, and obtains the average log likelihood ratio of the posterior probability of the syndrome.
由(a)可以看出,当g(x)=p2(x),或g(x)=p3(x),且d=5,或d=20时,L 最大;当g(x)=p2(x),或g(x)=p3(x),但d≠5,或d≠20时,L大于等于小于最大值;当g(x)≠p2(x),或g(x)≠p3(x)时,因此,由(b)可以看出,当d=5,g(x)取x30-1的任意因式时,L最大;当d=20时,g(x)=p2(x),或g(x)=p3(x)时,L最大。因此,识别正确,并且与命题1、命题2理论分析一致。It can be seen from (a) that when g(x)=p 2 (x), or g(x)=p 3 (x), and d=5, or d=20, L is the largest; when g(x )=p 2 (x), or g(x)=p 3 (x), but when d≠5, or d≠20, L is greater than or equal to is less than the maximum value; when g(x)≠p 2 (x), or g(x)≠p 3 (x), therefore, It can be seen from (b) that when d=5, g(x) takes any factor of x 30 -1, L is the largest; when d=20, g(x)=p 2 (x), or g When (x)=p 3 (x), L is the largest. therefore, The identification is correct, and it is consistent with the theoretical analysis of Proposition 1 and Proposition 2.
图7所示为本发明采用文中算法对不同循环码识别的性能图。(a)是生成多项式为g0(x)=(x2+x+1)(x4+x+1)的(15,9)循环码;(b)是生成多项式为g0(x)=(x2+x+1)(x4+x+1)的(30,24)循环码;采用文中算法进行码字长度、同步时刻和生成多项式的识别,按照信噪比从-5db到10db,步长为1,200次蒙特卡洛的仿真结果,其中参数选取为N=200,T=0.25。Fig. 7 shows the performance diagram of different cyclic code recognition using the algorithm in the text in the present invention. (a) is the (15,9) cyclic code whose generator polynomial is g 0 (x)=(x 2 +x+1)(x 4 +x+1); (b) is the generator polynomial is g 0 (x) =(x 2 +x+ 1 )(x 4 +x+ 1 ) (30,24) cyclic code; use the algorithm in the text to identify the code word length, synchronization time and generator polynomial, according to the signal-to-noise ratio from -5db to 10db, The step size is 1, the Monte Carlo simulation results of 200 times, where the parameters are selected as N=200, T=0.25.
从(a)可以看出,循环码(15,9)在信噪比为3db时,码字长度、同步时刻的正确识别率能达到80%;信噪比为5db时,生成多项式的正确识别率能达到90%以上。循环码(30,24)在信噪比为5db时,码字长度、同步时刻的正确识别率能达到75%以上,信噪比为7db时,生成多项式的正确识别率能达到100%。码字长度越长,抗噪声性能越差,且文中算法具有良好的抗噪声性能。It can be seen from (a) that when the signal-to-noise ratio of the cyclic code (15,9) is 3db, the correct recognition rate of codeword length and synchronization time can reach 80%; when the signal-to-noise ratio is 5db, the correct recognition rate of the generating polynomial The rate can reach more than 90%. When the SNR of cyclic code (30,24) is 5db, the correct recognition rate of code word length and synchronization time can reach more than 75%, and when the SNR is 7db, the correct recognition rate of generator polynomial can reach 100%. The longer the codeword length, the worse the anti-noise performance, and the algorithm in this paper has good anti-noise performance.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610527274.5A CN106209312B (en) | 2016-07-06 | 2016-07-06 | A kind of cyclic code parameter blind identification using soft-decision |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610527274.5A CN106209312B (en) | 2016-07-06 | 2016-07-06 | A kind of cyclic code parameter blind identification using soft-decision |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106209312A true CN106209312A (en) | 2016-12-07 |
CN106209312B CN106209312B (en) | 2019-10-01 |
Family
ID=57465361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610527274.5A Active CN106209312B (en) | 2016-07-06 | 2016-07-06 | A kind of cyclic code parameter blind identification using soft-decision |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106209312B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107204778A (en) * | 2017-05-24 | 2017-09-26 | 南京大学 | A kind of Low Complexity Decoding Algorithm for being effectively improved performance at LDPC code error floor |
CN111416628A (en) * | 2020-04-09 | 2020-07-14 | 重庆邮电大学 | BCH soft-decision channel code decoding device based on random characterization |
CN112737733A (en) * | 2020-12-28 | 2021-04-30 | 中国人民解放军国防科技大学 | Channel coding code pattern recognition method based on one-dimensional convolutional neural network |
CN114726477A (en) * | 2021-01-04 | 2022-07-08 | 烽火通信科技股份有限公司 | A kind of calculation method and electronic device of FEC soft decision signal |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102868484A (en) * | 2012-06-21 | 2013-01-09 | 中国人民解放军电子工程学院 | Blind identification method for linear block codes of satellite link |
WO2015132914A1 (en) * | 2014-03-05 | 2015-09-11 | 三菱電機株式会社 | Data compression apparatus and data compression method |
-
2016
- 2016-07-06 CN CN201610527274.5A patent/CN106209312B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102868484A (en) * | 2012-06-21 | 2013-01-09 | 中国人民解放军电子工程学院 | Blind identification method for linear block codes of satellite link |
WO2015132914A1 (en) * | 2014-03-05 | 2015-09-11 | 三菱電機株式会社 | Data compression apparatus and data compression method |
Non-Patent Citations (1)
Title |
---|
解辉: "信道编码盲识别技术研究进展", 《电子学报》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107204778A (en) * | 2017-05-24 | 2017-09-26 | 南京大学 | A kind of Low Complexity Decoding Algorithm for being effectively improved performance at LDPC code error floor |
CN111416628A (en) * | 2020-04-09 | 2020-07-14 | 重庆邮电大学 | BCH soft-decision channel code decoding device based on random characterization |
CN111416628B (en) * | 2020-04-09 | 2023-05-12 | 重庆邮电大学 | BCH soft decision channel code decoding device based on random characterization |
CN112737733A (en) * | 2020-12-28 | 2021-04-30 | 中国人民解放军国防科技大学 | Channel coding code pattern recognition method based on one-dimensional convolutional neural network |
CN112737733B (en) * | 2020-12-28 | 2024-06-07 | 中国人民解放军国防科技大学 | Channel coding pattern recognition method based on one-dimensional convolutional neural network |
CN114726477A (en) * | 2021-01-04 | 2022-07-08 | 烽火通信科技股份有限公司 | A kind of calculation method and electronic device of FEC soft decision signal |
CN114726477B (en) * | 2021-01-04 | 2023-07-14 | 烽火通信科技股份有限公司 | Operation method of FEC soft decision signal and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
CN106209312B (en) | 2019-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Solomon et al. | Soft maximum likelihood decoding using GRAND | |
US7539920B2 (en) | LDPC decoding apparatus and method with low computational complexity algorithm | |
JP5705106B2 (en) | Method for performing soft decision decoding of Euclidean space Reed-Muller code | |
US7949932B2 (en) | Strengthening parity check bit protection for array-like LDPC codes | |
JP5868509B2 (en) | Receiver and communication method | |
CN105897379A (en) | Polarization code cascade space-time code system and cascade polarization code coding method thereof | |
CN106209312B (en) | A kind of cyclic code parameter blind identification using soft-decision | |
Wu et al. | A maximum cosinoidal cost function method for parameter estimation of RSC turbo codes | |
CN101562456B (en) | Code assisting frame synchronizing method based on soft decoding information of low-density parity check codes | |
US10892783B2 (en) | Apparatus and method for decoding polar codes | |
CN105634506A (en) | Soft decision decoding method of quadratic residue (QR) code based on shifting search algorithm | |
CN114157309A (en) | Polar code decoding method, device and system | |
Cyriac et al. | Polar code encoder and decoder implementation | |
CN105812000B (en) | An Improved BCH Soft Decision Decoding Method | |
CN110995279B (en) | A Polar Code Combined with SCF Spherical List Flip Decoding Method | |
Tang et al. | A new Chase-type soft-decision decoding algorithm for Reed-Solomon codes | |
CN106656209B (en) | A Concatenated Code Method for Correcting Synchronization Errors Using Iterative Decoding | |
CN110518920A (en) | A kind of error correction coding/decoding method suitable for quantum key distribution system | |
CN103501182B (en) | A kind of blind estimating method of convolutional code generator polynomial | |
CN101106383A (en) | A Decoding Method of Low Density Parity Check Code | |
CN106788458B (en) | Hard decision-oriented forward and backward estimation method for insertion deletion and substitution errors | |
CN115765759A (en) | Gaussian elimination decoding open set blind identification method suitable for multi-element LDPC code | |
CN115720129A (en) | A method and system for information transmission of polarization-coded continuous phase modulation | |
US20240137151A1 (en) | Hybrid product polar codes-based communication systems and methods | |
CN106921396B (en) | mixed decoding method for LDPC code |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |