[go: up one dir, main page]

CN106206782A - Semiconductor substrate - Google Patents

Semiconductor substrate Download PDF

Info

Publication number
CN106206782A
CN106206782A CN201510228814.5A CN201510228814A CN106206782A CN 106206782 A CN106206782 A CN 106206782A CN 201510228814 A CN201510228814 A CN 201510228814A CN 106206782 A CN106206782 A CN 106206782A
Authority
CN
China
Prior art keywords
layer
amorphous silicon
silicon layer
semiconductor substrate
type dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510228814.5A
Other languages
Chinese (zh)
Inventor
赵建昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neo Solar Power Corp
Original Assignee
Neo Solar Power Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neo Solar Power Corp filed Critical Neo Solar Power Corp
Publication of CN106206782A publication Critical patent/CN106206782A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明公开一种半导体基板,包含半导体本体、第一缓冲层、第一非晶硅层、第二缓冲层、第二非晶硅层与第一保护层。半导体本体具有第一表面与相对于第一表面的第二表面。第一缓冲层设置于半导体本体的第一表面上。第一非晶硅层掺杂有第一型掺质且设置于第一缓冲层上。第二缓冲层设置于半导体本体的第二表面上。第二非晶硅层掺杂有第二型掺质且设置于第二缓冲层上。第一保护层设置于第一非晶硅层上。

The invention discloses a semiconductor substrate, which includes a semiconductor body, a first buffer layer, a first amorphous silicon layer, a second buffer layer, a second amorphous silicon layer and a first protective layer. The semiconductor body has a first surface and a second surface opposite to the first surface. The first buffer layer is disposed on the first surface of the semiconductor body. The first amorphous silicon layer is doped with a first type dopant and is disposed on the first buffer layer. The second buffer layer is disposed on the second surface of the semiconductor body. The second amorphous silicon layer is doped with a second type dopant and is disposed on the second buffer layer. The first protective layer is disposed on the first amorphous silicon layer.

Description

半导体基板semiconductor substrate

技术领域technical field

本发明涉及一种半导体基板,尤其涉及一种应用于太阳能电池的半导体基板。The invention relates to a semiconductor substrate, in particular to a semiconductor substrate applied to solar cells.

背景技术Background technique

随着科技发展,能源需求与日俱增。然而地球蕴含的能源有限,因此各国皆竞相致力于替代能源的开发。于其中,以符合环保诉求的太阳能发电最为活跃。With the development of technology, the demand for energy is increasing day by day. However, the energy contained in the earth is limited, so all countries are competing to devote themselves to the development of alternative energy sources. Among them, solar power generation that meets environmental demands is the most active.

太阳能电池是一种可将太阳光能量转换为电能的光电元件。目前,最简易的太阳能电池的构造可仅由彼此形成一PN接面的P型半导体层与N型半导体层所构成。当太阳能电池照射到太阳光时,半导体层中的价带电子可因太阳光的能量被激发,形成受激电子电洞对,受激电子便会受到内建电场的影响而朝向N型半导体层移动,而受激电洞则朝P型半导体层移动。因此当此受光的P型半导体层和N型半导体层分别接上外部电路而形成回路时,就会产生电流及电压。而此将光能转换为电能的反应即可称的为光伏效应(PhotovoltaicEffect)。A solar cell is a photovoltaic element that converts sunlight energy into electricity. At present, the simplest solar cell structure can only be composed of a P-type semiconductor layer and an N-type semiconductor layer forming a PN junction with each other. When the solar cell is irradiated with sunlight, the valence band electrons in the semiconductor layer can be excited by the energy of sunlight to form excited electron-hole pairs, and the excited electrons will be affected by the built-in electric field and move towards the N-type semiconductor layer. Move, while the excited holes move towards the P-type semiconductor layer. Therefore, when the light-receiving P-type semiconductor layer and N-type semiconductor layer are respectively connected to external circuits to form a loop, current and voltage will be generated. And this reaction of converting light energy into electrical energy can be called the photovoltaic effect (PhotovoltaicEffect).

在太阳能电池中,硅(Silicon)乃为最主要的原料。其中,硅通常可区分为单晶硅(Single Crystalline Silicon)、多晶硅(Polycrystalline Silicon)与非晶硅(Amorphous Silicon)等三种类型。就转换效率方面而言,单晶硅最高,多晶硅次之,非晶硅最低。然而,就生产成本而言,非晶硅的生产成本最低。因此,目前太阳能电池是以单晶硅和非晶硅为主要材料。In solar cells, silicon is the most important raw material. Among them, silicon can generally be divided into three types: single crystal silicon (Single Crystalline Silicon), polycrystalline silicon (Polycrystalline Silicon) and amorphous silicon (Amorphous Silicon). In terms of conversion efficiency, monocrystalline silicon is the highest, followed by polycrystalline silicon, and amorphous silicon is the lowest. However, in terms of production cost, amorphous silicon has the lowest production cost. Therefore, at present, solar cells are mainly made of monocrystalline silicon and amorphous silicon.

近年来,发展出一种以低温工艺制备的异质接面薄本质层(HeterojunctionWith Intrinsic Thin-Layer,简称HIT)太阳能电池。HIT太阳能电池是通过在单晶硅基板与非晶硅层之间夹设置本质非晶硅层,来降低异质接合界面上的缺陷并改善其特性。In recent years, a Heterojunction With Intrinsic Thin-Layer (HIT for short) solar cell prepared by a low-temperature process has been developed. HIT solar cells reduce the defects on the heterojunction interface and improve its characteristics by interposing an essentially amorphous silicon layer between the single crystal silicon substrate and the amorphous silicon layer.

一般而言,在HIT太阳能电池中会有两种不同的掺杂层,以分别形成射极与背电场。例如,结晶硅晶圆为N型时,通常会在其一侧形成P型掺杂层来形成射极,在其另一侧形成N型掺杂层来形成背电场,并接续在此些掺杂层上覆盖上透明导电氧化物(Transparent Conductive Oxides,简称TCO)层。然而,现有掺杂层多是使用化学气相沉积(Chemical Vapor Deposition,简称CVD)法成长的非晶硅或微晶硅,而TCO层则多是使用物理气相沉积(PhysicalVapor Deposition,简称PVD)法成长的氧化铟锡(Indium Tin Oxide,简称ITO)。因此,在此工艺衔接的过程中,必然会使得掺杂层因暴露于大气之中而致使其表面被氧化或受水气影响,进而影响后续的转换效率。Generally speaking, there are two different doped layers in a HIT solar cell to form the emitter and the back electric field respectively. For example, when the crystalline silicon wafer is N-type, a P-type doped layer is usually formed on one side to form an emitter, and an N-type doped layer is formed on the other side to form a back electric field, and then these doped layers are formed. The impurity layer is covered with a transparent conductive oxide (Transparent Conductive Oxide, TCO for short) layer. However, most of the existing doped layers are amorphous silicon or microcrystalline silicon grown by chemical vapor deposition (Chemical Vapor Deposition, referred to as CVD), while the TCO layer is mostly grown by physical vapor deposition (Physical Vapor Deposition, referred to as PVD). Grown Indium Tin Oxide (ITO for short). Therefore, in the process of connecting the processes, the surface of the doped layer will inevitably be oxidized or affected by moisture due to exposure to the atmosphere, thereby affecting the subsequent conversion efficiency.

发明内容Contents of the invention

有鉴于此,本发明的目的在于提供一种半导体基板,包含半导体本体、第一缓冲层、第一非晶硅层、第二缓冲层、第二非晶硅层与第一保护层。其中,半导体本体具有第一表面与相对于第一表面的第二表面。第一缓冲层设置于半导体本体的第一表面上。第一非晶硅层掺杂有第一型掺质且设置于第一缓冲层上。第二缓冲层设置于半导体本体的第二表面上。第二非晶硅层掺杂有第二型掺质且设置于第二缓冲层上。第一保护层设置于第一非晶硅层上。In view of this, the object of the present invention is to provide a semiconductor substrate, comprising a semiconductor body, a first buffer layer, a first amorphous silicon layer, a second buffer layer, a second amorphous silicon layer and a first protection layer. Wherein, the semiconductor body has a first surface and a second surface opposite to the first surface. The first buffer layer is disposed on the first surface of the semiconductor body. The first amorphous silicon layer is doped with first type dopant and is arranged on the first buffer layer. The second buffer layer is disposed on the second surface of the semiconductor body. The second amorphous silicon layer is doped with second-type dopant and disposed on the second buffer layer. The first protective layer is disposed on the first amorphous silicon layer.

在本发明的半导体基板的其中一实施例中,第一保护层的厚度不大于10纳米(nm)。In one embodiment of the semiconductor substrate of the present invention, the thickness of the first protective layer is not greater than 10 nanometers (nm).

在本发明的半导体基板的其中一实施例中,第一保护层的厚度不大于5纳米(nm)。In one embodiment of the semiconductor substrate of the present invention, the thickness of the first protection layer is not greater than 5 nanometers (nm).

在本发明的半导体基板的其中一实施例中,第一保护层的厚度介于2至3纳米(nm)之间。In one embodiment of the semiconductor substrate of the present invention, the thickness of the first protection layer is between 2 to 3 nanometers (nm).

在本发明的半导体基板的其中一实施例中,第一保护层为本质非晶硅层或本质微晶硅层。In one embodiment of the semiconductor substrate of the present invention, the first protective layer is an intrinsic amorphous silicon layer or an intrinsic microcrystalline silicon layer.

在本发明的半导体基板的其中一实施例中,第一保护层为疏水性保护层。In one embodiment of the semiconductor substrate of the present invention, the first protection layer is a hydrophobic protection layer.

在本发明的半导体基板的其中一实施例中,更包含第二保护层设置于第二非晶硅层上。In one embodiment of the semiconductor substrate of the present invention, it further includes a second protection layer disposed on the second amorphous silicon layer.

在本发明的半导体基板的其中一实施例中,上述第二保护层的厚度不大于10纳米(nm)。In one embodiment of the semiconductor substrate of the present invention, the thickness of the second protection layer is not greater than 10 nanometers (nm).

在本发明的半导体基板的其中一实施例中,上述第二保护层的厚度不大于5纳米(nm)。In one embodiment of the semiconductor substrate of the present invention, the thickness of the second protective layer is not greater than 5 nanometers (nm).

在本发明的半导体基板的其中一实施例中,上述第二保护层的厚度介于2至3纳米(nm)之间。In one embodiment of the semiconductor substrate of the present invention, the thickness of the second protective layer is between 2 to 3 nanometers (nm).

在本发明的半导体基板的其中一实施例中,上述第二保护层为本质非晶硅层或本质微晶硅层。In one embodiment of the semiconductor substrate of the present invention, the above-mentioned second protective layer is an intrinsically amorphous silicon layer or an intrinsically microcrystalline silicon layer.

在本发明的半导体基板的其中一实施例中,当第一型掺质为P型时,第二型掺质是为N型,而当第一型掺质为N型时,第二型掺质是为P型。In one embodiment of the semiconductor substrate of the present invention, when the first-type dopant is P-type, the second-type dopant is N-type, and when the first-type dopant is N-type, the second-type dopant The quality is P type.

在本发明的半导体基板的其中一概念中,前述第二保护层为疏水性保护层。In one concept of the semiconductor substrate of the present invention, the aforementioned second protection layer is a hydrophobic protection layer.

综上所述,根据本发明实施的半导体基板,通过形成适当厚度的保护层于掺杂有掺质的非晶硅层上,来保护非晶硅层的表面于工艺衔接过程中不被氧化或受水气影响,即可改善后续制成太阳能电池时其太阳能电池的转换效率。In summary, according to the semiconductor substrate implemented in the present invention, by forming a protective layer with an appropriate thickness on the amorphous silicon layer doped with dopants, the surface of the amorphous silicon layer is protected from being oxidized or damaged during the process connection process. Affected by water vapor, the conversion efficiency of the solar cell can be improved when the solar cell is subsequently fabricated.

以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments, but not as a limitation of the present invention.

附图说明Description of drawings

图1为本发明的半导体基板的第一实施例的侧面剖视图;1 is a side sectional view of a first embodiment of a semiconductor substrate of the present invention;

图2为本发明的半导体基板的第一实施例的工艺流程图;2 is a process flow diagram of the first embodiment of the semiconductor substrate of the present invention;

图3为本发明的半导体基板的第二实施例的侧面剖视图;3 is a side sectional view of a second embodiment of the semiconductor substrate of the present invention;

图4为本发明的半导体基板的第二实施例的工艺流程图。FIG. 4 is a process flow diagram of the second embodiment of the semiconductor substrate of the present invention.

具体实施方式detailed description

在本发明的附图中,为了方便显示及说明,各结构的比例关系、纹理可能与实际结构的比例、纹理不符,于此仅作为参考而非用以限制本发明。In the drawings of the present invention, for the convenience of display and description, the proportions and textures of the various structures may not match the proportions and textures of the actual structures, which are only used for reference and not intended to limit the present invention.

图1为本发明的第一实施例的侧面剖视图。请参阅图1,揭露一半导体基板100。在第一实施例中,半导体基板100包含半导体本体110、第一缓冲层120、第一非晶硅层140、第二缓冲层130、第二非晶硅层150以及第一保护层160。Fig. 1 is a side sectional view of a first embodiment of the present invention. Referring to FIG. 1 , a semiconductor substrate 100 is disclosed. In the first embodiment, the semiconductor substrate 100 includes a semiconductor body 110 , a first buffer layer 120 , a first amorphous silicon layer 140 , a second buffer layer 130 , a second amorphous silicon layer 150 and a first protection layer 160 .

半导体本体110具有第一表面111与相对于第一表面111的第二表面112。于此,半导体本体110的第一表面111与第二表面112可为粗糙化表面,以提升半导体本体110的入光量。本实施例中的半导体本体110是掺杂有N型掺质的单晶硅晶圆,然本发明并非以此为限,半导体本体110亦可为掺杂有P型掺质的单晶硅晶圆。The semiconductor body 110 has a first surface 111 and a second surface 112 opposite to the first surface 111 . Here, the first surface 111 and the second surface 112 of the semiconductor body 110 can be roughened to increase the amount of light incident on the semiconductor body 110 . The semiconductor body 110 in this embodiment is a single-crystal silicon wafer doped with N-type dopants, but the present invention is not limited thereto, and the semiconductor body 110 can also be a single-crystal silicon wafer doped with P-type dopants round.

第一缓冲层120与第一非晶硅层140依序叠设于半导体本体110的第一表面111上,且第二缓冲层130与第二非晶硅层150亦依序叠设于半导体本体110的第二表面112上。换言之,第一缓冲层120形成于半导体本体110的第一表面111上后,第一非晶硅层140才接续形成于第一缓冲层120之上,且第二缓冲层130形成于半导体本体110的第二表面112上后,第二非晶硅层150才接续形成于第二缓冲层130之上。其中,第一非晶硅层140掺杂有第一型掺质,而第二非晶硅层150则掺杂有第二型掺质。The first buffer layer 120 and the first amorphous silicon layer 140 are sequentially stacked on the first surface 111 of the semiconductor body 110, and the second buffer layer 130 and the second amorphous silicon layer 150 are also sequentially stacked on the semiconductor body. 110 on the second surface 112 . In other words, after the first buffer layer 120 is formed on the first surface 111 of the semiconductor body 110, the first amorphous silicon layer 140 is formed on the first buffer layer 120, and the second buffer layer 130 is formed on the semiconductor body 110. The second amorphous silicon layer 150 is formed on the second buffer layer 130 after being on the second surface 112 . Wherein, the first amorphous silicon layer 140 is doped with a first type dopant, and the second amorphous silicon layer 150 is doped with a second type dopant.

在本实施例中,第一型掺质可为P型掺质,而第二型掺质则为N型掺质,但本发明并不以此为限,亦即第一型掺质可为N型掺质,而第二型掺质则为P型掺质。In this embodiment, the first-type dopant can be a P-type dopant, and the second-type dopant can be an N-type dopant, but the present invention is not limited thereto, that is, the first-type dopant can be N-type dopant, and the second-type dopant is P-type dopant.

此外,在本实施例中,第一缓冲层120是本质半导体层,通过将第一缓冲层120设置于半导体本体110与第一非晶硅层140之间的技术手段来改善异质接合介面的特性,进而获得较佳的转换效率。同理,第二缓冲层130亦可为本质半导体层,将第二缓冲层130设置于半导体本体110与第二非晶硅层150之间来改善异质接合介面的特性,进而获得较佳的转换效率。In addition, in this embodiment, the first buffer layer 120 is an intrinsic semiconductor layer, and the technical means of disposing the first buffer layer 120 between the semiconductor body 110 and the first amorphous silicon layer 140 can improve the performance of the heterojunction interface. characteristics, thereby obtaining better conversion efficiency. Similarly, the second buffer layer 130 can also be an intrinsic semiconductor layer, and the second buffer layer 130 is disposed between the semiconductor body 110 and the second amorphous silicon layer 150 to improve the characteristics of the heterojunction interface, thereby obtaining better conversion efficiency.

第一保护层160可为本质非晶硅层或本质微晶硅层。于此,第一保护层160可设置于第一非晶硅层140上,然本发明不以此为限,亦即第一保护层160亦可设置于第二非晶硅层150上,此皆端视设计的需求。The first protective layer 160 may be an intrinsically amorphous silicon layer or an intrinsically microcrystalline silicon layer. Here, the first protective layer 160 can be disposed on the first amorphous silicon layer 140, but the present invention is not limited thereto, that is, the first protective layer 160 can also be disposed on the second amorphous silicon layer 150, here It all depends on the needs of the design.

图2为本发明的半导体基板的第一实施例的工艺流程图。请搭配参阅图2,本发明的半导体基板的第一实施例的工艺可包含下列的步骤。FIG. 2 is a process flow chart of the first embodiment of the semiconductor substrate of the present invention. Please refer to FIG. 2 , the process of the first embodiment of the semiconductor substrate of the present invention may include the following steps.

步骤S01:形成第一缓冲层120于半导体本体110的第一表面111上。Step S01 : forming a first buffer layer 120 on the first surface 111 of the semiconductor body 110 .

一般而言,于形成第一缓冲层120于半导体本体110的上前,可先进行一些前置程序,以增加后续的转换效率。在本实施例中,前置程序可包含下列的步骤。Generally speaking, before forming the first buffer layer 120 on the semiconductor body 110, some pre-processes can be performed first to increase the subsequent conversion efficiency. In this embodiment, the pre-program may include the following steps.

首先,为了避免半导体本体110于晶圆的处理过程中,例如:搬运、保管等,因受到污染而影响到元件特性,而可先对半导体本体110进行清洁。于此,可采用广受业界使用的RCA清洗法来进行清洁。Firstly, in order to prevent the semiconductor body 110 from being polluted during wafer processing, such as handling and storage, which would affect device characteristics, the semiconductor body 110 can be cleaned first. Here, the RCA cleaning method widely used in the industry can be used for cleaning.

于清洁完毕后,更可对半导体本体110进行一些加工程序。例如:表面粗糙化,通过方向性蚀刻半导体本体110,以使半导体本体110的表面出现金字塔状的抗反射结构,以降低入射光的反射率。接续,可再次利用RCA清洗法对已具有金字塔状的抗反射结构的半导体本体110进行清洁程序。After cleaning, some processing procedures can be performed on the semiconductor body 110 . For example, the surface is roughened, and the semiconductor body 110 is directional etched, so that a pyramid-shaped anti-reflection structure appears on the surface of the semiconductor body 110 , so as to reduce the reflectance of incident light. Next, the semiconductor body 110 having the pyramid-shaped anti-reflection structure can be cleaned again by using the RCA cleaning method.

此外,由于在工艺中,半导体本体110的表面易受到氧化而出现氧化层,因此,可将具有金字塔状的抗反射结构的半导体本体110浸入稀释氢氟酸溶液中,以去除掉半导体本体110的表面氧化层。In addition, because in the process, the surface of the semiconductor body 110 is easily oxidized to form an oxide layer, therefore, the semiconductor body 110 with a pyramid-shaped anti-reflection structure can be immersed in a dilute hydrofluoric acid solution to remove the surface of the semiconductor body 110. surface oxide layer.

因此,在步骤S01中,第一缓冲层120可形成于已去除表面氧化层的半导体本体110的第一表面111上。在本实施例中,第一缓冲层120为本质非晶硅(Intrinsic amorphous silicon)层,第一缓冲层120可以通过化学气相沉积(Chemical Vapor Deposition,简称CVD)法沉积在半导体本体110的第一表面111上。而在另一实施例中,第一缓冲层120可为具有1×1014至1×1016原子/公分3(atom/cm3)微掺杂的非晶硅(Lightly doped amorphous silicon)层。Therefore, in step S01 , the first buffer layer 120 may be formed on the first surface 111 of the semiconductor body 110 from which the surface oxide layer has been removed. In this embodiment, the first buffer layer 120 is an intrinsic amorphous silicon (Intrinsic amorphous silicon) layer, and the first buffer layer 120 may be deposited on the first layer of the semiconductor body 110 by chemical vapor deposition (Chemical Vapor Deposition, CVD for short). on the surface 111. In another embodiment, the first buffer layer 120 may be a lightly doped amorphous silicon layer with 1×10 14 to 1×10 16 atoms/cm 3 (atom/cm 3 ) microdoping.

步骤S02:形成第一非晶硅层140于第一缓冲层120上。Step S02 : forming a first amorphous silicon layer 140 on the first buffer layer 120 .

在步骤S02中,第一非晶硅层140可以是通过化学气相沉积法沉积在第一缓冲层120上。此外,第一非晶硅层140可掺杂有第一型掺质。于此,第一型掺质可为N型掺质,例如:磷、砷等,然本发明不以此为限,亦即第一型掺质亦可为P型掺质,例如:硼、镓等。In step S02 , the first amorphous silicon layer 140 may be deposited on the first buffer layer 120 by chemical vapor deposition. In addition, the first amorphous silicon layer 140 may be doped with first type dopants. Here, the first-type dopant can be an N-type dopant, such as phosphorus, arsenic, etc., but the present invention is not limited thereto, that is, the first-type dopant can also be a P-type dopant, such as: boron, arsenic, etc. gallium etc.

步骤S03:形成第一保护层160于第一非晶硅层140上。Step S03 : forming a first protective layer 160 on the first amorphous silicon layer 140 .

在步骤S03中,第一保护层160可以是通过化学气相沉积法沉积在第一非晶硅层140上,以保护第一非晶硅层140。于此,第一保护层160可为本质非晶硅层或本质微晶硅层。此外,第一保护层160具有疏水性。于此,第一保护层160相对于第一非晶硅层140具有较高的疏水性,因而更可保护第一非晶硅层140不易因暴露于大气之中而致使其表面受水气影响或被氧化而改变特性。In step S03 , the first protective layer 160 may be deposited on the first amorphous silicon layer 140 by chemical vapor deposition to protect the first amorphous silicon layer 140 . Here, the first passivation layer 160 may be an essentially amorphous silicon layer or an essentially microcrystalline silicon layer. In addition, the first protection layer 160 has hydrophobicity. Here, the first protective layer 160 has a higher hydrophobicity than the first amorphous silicon layer 140, so it can protect the first amorphous silicon layer 140 from being affected by water vapor due to exposure to the atmosphere. Or be oxidized to change the characteristics.

在本实施例中,第一保护层160的厚度D1是小于等于10纳米(nm)。换言之,第一保护层160的厚度D1不大于10纳米(nm)。In this embodiment, the thickness D1 of the first protective layer 160 is less than or equal to 10 nanometers (nm). In other words, the thickness D1 of the first protection layer 160 is not greater than 10 nanometers (nm).

在另一实施例中,第一保护层160的厚度D1是小于等于5纳米(nm)。换言之,第一保护层160的厚度D1不大于5纳米(nm)。In another embodiment, the thickness D1 of the first protective layer 160 is less than or equal to 5 nanometers (nm). In other words, the thickness D1 of the first protection layer 160 is not greater than 5 nanometers (nm).

在又一实施例中,第一保护层160的厚度D1则是介于2至3纳米(nm)之间。In yet another embodiment, the thickness D1 of the first protective layer 160 is between 2 and 3 nanometers (nm).

步骤S04:形成第二缓冲层130于半导体本体110的第二表面112上。Step S04 : forming a second buffer layer 130 on the second surface 112 of the semiconductor body 110 .

在步骤S04中,第二缓冲层130可通过化学气相沉积法沉积在半导体本体110的第二表面112上。于此,第二缓冲层130可为本质非晶硅层。而在另一实施例中,第二缓冲层130可为具有1×1014至1×1016原子/公分3(atom/cm3)微掺杂的非晶硅(Lightly doped amorphous silicon)层。In step S04 , the second buffer layer 130 may be deposited on the second surface 112 of the semiconductor body 110 by chemical vapor deposition. Here, the second buffer layer 130 may be an essentially amorphous silicon layer. In another embodiment, the second buffer layer 130 may be a lightly doped amorphous silicon layer with 1×10 14 to 1×10 16 atoms/cm 3 (atom/cm 3 ) microdoping.

步骤S05:形成第二非晶硅层150于第二缓冲层130上。Step S05 : forming a second amorphous silicon layer 150 on the second buffer layer 130 .

在步骤S05中,第二非晶硅层150可通过化学气相沉积法沉积在第二缓冲层130上。此外,第二非晶硅层150可掺杂有第二型掺质,而与第一非晶硅层140的类型相反。于此,第二型掺质可为P型掺质,例如:硼、镓等,然本发明不以此为限,亦即第二型掺质亦可为N型掺质,例如:磷、砷等。换言之,当第一非晶硅层140所掺杂的第一型掺质为N型时,第二非晶硅层150所掺杂的第二型掺质即为P型;而当第一非晶硅层140所掺杂的第一型掺质为P型时,第二非晶硅层150所掺杂的第二型掺质即为N型。In step S05, the second amorphous silicon layer 150 may be deposited on the second buffer layer 130 by chemical vapor deposition. In addition, the second amorphous silicon layer 150 may be doped with a second type of dopant, which is opposite to the type of the first amorphous silicon layer 140 . Here, the second-type dopant can be a P-type dopant, such as: boron, gallium, etc., but the present invention is not limited thereto, that is, the second-type dopant can also be an N-type dopant, such as: phosphorus, gallium, etc. Arsenic etc. In other words, when the first type dopant doped in the first amorphous silicon layer 140 is N type, the second type dopant doped in the second amorphous silicon layer 150 is P type; When the first-type dopant doped in the crystalline silicon layer 140 is P-type, the second-type dopant doped in the second amorphous silicon layer 150 is N-type.

因此,根据第一实施例的工艺步骤,通过于半导体基板100掺杂有掺质的其中一非晶硅层上沉积适当厚度的保护层,来使得半导体基板100于后续溅镀透明导电氧化物(Transparent Conductive Oxides,简称TCO)层以及网印金属电极等以制备为太阳能电池的制造过程中,半导体基板100的非晶硅层便可受到保护层的保护而不因暴露于大气的中而氧化。Therefore, according to the process steps of the first embodiment, a protective layer with an appropriate thickness is deposited on one of the amorphous silicon layers doped with dopants on the semiconductor substrate 100, so that the semiconductor substrate 100 is subsequently sputtered with a transparent conductive oxide ( Transparent Conductive Oxides (TCO for short) layer and screen-printed metal electrodes are used to prepare solar cells during the manufacturing process. The amorphous silicon layer of the semiconductor substrate 100 can be protected by the protective layer from being oxidized due to exposure to the atmosphere.

图3为本发明的第二实施例的侧面剖视图。请参阅图3,揭露一半导体基板100。在第二实施例中,半导体基板100包含半导体本体110、第一缓冲层120、第一非晶硅层140、第二缓冲层130、第二非晶硅层150、第一保护层160以及第二保护层170。Fig. 3 is a side sectional view of a second embodiment of the present invention. Referring to FIG. 3 , a semiconductor substrate 100 is disclosed. In the second embodiment, the semiconductor substrate 100 includes a semiconductor body 110, a first buffer layer 120, a first amorphous silicon layer 140, a second buffer layer 130, a second amorphous silicon layer 150, a first protection layer 160 and a second Second protective layer 170 .

在本实施例中,第一缓冲层120设置于半导体本体110的第一表面111上,且第一非晶硅层140设置于第一缓冲层120上。第二缓冲层130设置于半导体本体110的第二表面112上,且第二非晶硅层150设置于第二缓冲层130上。此外,第一保护层160与第二保护层170则分别设置于第一非晶硅层140上与第二非晶硅层150上。因此,在本实施例中,半导体基板100的双面(即,第一表面111与第二表面112)皆设有保护层(即,第一保护层160与第二保护层170)来保护其掺杂有掺质的非晶硅层(即,第一非晶硅层140与第二非晶硅层150)。In this embodiment, the first buffer layer 120 is disposed on the first surface 111 of the semiconductor body 110 , and the first amorphous silicon layer 140 is disposed on the first buffer layer 120 . The second buffer layer 130 is disposed on the second surface 112 of the semiconductor body 110 , and the second amorphous silicon layer 150 is disposed on the second buffer layer 130 . In addition, the first protection layer 160 and the second protection layer 170 are disposed on the first amorphous silicon layer 140 and the second amorphous silicon layer 150 respectively. Therefore, in this embodiment, both sides of the semiconductor substrate 100 (ie, the first surface 111 and the second surface 112) are provided with protective layers (ie, the first protective layer 160 and the second protective layer 170) to protect it. A doped amorphous silicon layer (ie, the first amorphous silicon layer 140 and the second amorphous silicon layer 150 ).

于此,第二保护层170可为本质非晶硅层或本质微晶硅层。因此,第二保护层170大致上可与第一保护层160的性质相同。此外,在本实施例中,因半导体本体110、第一缓冲层120、第一非晶硅层140、第二缓冲层130、第二非晶硅层150以及第一保护层160大致上皆与第一实施例相同,故不再赘述。Here, the second protection layer 170 may be an intrinsically amorphous silicon layer or an intrinsically microcrystalline silicon layer. Therefore, the properties of the second protection layer 170 may be substantially the same as those of the first protection layer 160 . In addition, in this embodiment, since the semiconductor body 110, the first buffer layer 120, the first amorphous silicon layer 140, the second buffer layer 130, the second amorphous silicon layer 150, and the first protective layer 160 are all substantially compatible with The first embodiment is the same, so it will not be described again.

图4为本发明的半导体基板的第二实施例的工艺流程图。请搭配参阅图4,本发明的半导体基板的第二实施例的工艺可包含下列的步骤。FIG. 4 is a process flow diagram of the second embodiment of the semiconductor substrate of the present invention. Please refer to FIG. 4 , the process of the second embodiment of the semiconductor substrate of the present invention may include the following steps.

步骤S11:形成第一缓冲层120于半导体本体110的第一表面111上。Step S11 : forming a first buffer layer 120 on the first surface 111 of the semiconductor body 110 .

一般而言,于进行步骤S11前,亦可先进行一些前置程序,以增进后续的换效率。而此些前置程序已概述于第一实施例中,故于此不再赘述。Generally speaking, before performing step S11, some pre-procedures may also be performed first, so as to improve the subsequent conversion efficiency. These pre-procedures have been outlined in the first embodiment, so they will not be repeated here.

在步骤S11中,第一缓冲层120可通过化学气相沉积(Chemical VaporDeposition,简称CVD)法沉积在经由前置程序而去除表面氧化层的半导体本体110的第一表面111上。于此,第一缓冲层120可为本质非晶硅(AmorphousSilicon)层。而在另一实施例中,第一缓冲层120可为具有1×1014至1×1016原子/公分3(atom/cm3)微掺杂的非晶硅(Lightly doped amorphous silicon)层。In step S11 , the first buffer layer 120 may be deposited on the first surface 111 of the semiconductor body 110 from which the surface oxide layer has been removed through a pre-process by chemical vapor deposition (Chemical Vapor Deposition, CVD for short). Here, the first buffer layer 120 may be an intrinsic amorphous silicon (AmorphousSilicon) layer. In another embodiment, the first buffer layer 120 may be a lightly doped amorphous silicon layer with 1×10 14 to 1×10 16 atoms/cm 3 (atom/cm 3 ) microdoping.

步骤S12:形成第一非晶硅层140于第一缓冲层120上。Step S12 : forming a first amorphous silicon layer 140 on the first buffer layer 120 .

在步骤S12中,第一非晶硅层140可通过化学气相沉积法沉积在第一缓冲层120上。此外,第一非晶硅层140可掺杂有第一型掺质。于此,第一型掺质可为N型掺质,例如:磷、砷等,然本发明不以此为限,亦即第一型掺质亦可为P型掺质,例如:硼、镓等。In step S12, the first amorphous silicon layer 140 may be deposited on the first buffer layer 120 by chemical vapor deposition. In addition, the first amorphous silicon layer 140 may be doped with first type dopants. Here, the first-type dopant can be an N-type dopant, such as phosphorus, arsenic, etc., but the present invention is not limited thereto, that is, the first-type dopant can also be a P-type dopant, such as: boron, arsenic, etc. gallium etc.

步骤S13:形成第一保护层160于第一非晶硅层140上。Step S13 : forming a first protective layer 160 on the first amorphous silicon layer 140 .

在步骤S13中,第一保护层160可通过化学气相沉积法沉积在第一非晶硅层140上,以保护第一非晶硅层140。于此,第一保护层160可为本质非晶硅层或本质微晶硅层。此外,第一保护层160可具有疏水性。于此,第一保护层160相对于第一非晶硅层140具有较高的疏水性,因而更可保护第一非晶硅层140不易因暴露于大气之中而致使其表面受水气影响或被氧化。In step S13 , the first protection layer 160 may be deposited on the first amorphous silicon layer 140 by chemical vapor deposition to protect the first amorphous silicon layer 140 . Here, the first passivation layer 160 may be an essentially amorphous silicon layer or an essentially microcrystalline silicon layer. In addition, the first protection layer 160 may have hydrophobicity. Here, the first protective layer 160 has a higher hydrophobicity than the first amorphous silicon layer 140, so it can protect the first amorphous silicon layer 140 from being affected by water vapor due to exposure to the atmosphere. or be oxidized.

在一实施态样中,第一保护层160的厚度D1是小于等于10纳米(nm)。换言之,第一保护层160的厚度D1不大于10纳米(nm)。In an embodiment, the thickness D1 of the first protective layer 160 is less than or equal to 10 nanometers (nm). In other words, the thickness D1 of the first protection layer 160 is not greater than 10 nanometers (nm).

在另一实施态样中,第一保护层160的厚度D1是小于等于5纳米(nm)。换言之,第一保护层160的厚度D1不大于5纳米(nm)。In another embodiment, the thickness D1 of the first protection layer 160 is less than or equal to 5 nanometers (nm). In other words, the thickness D1 of the first protection layer 160 is not greater than 5 nanometers (nm).

在又一实施态样中,第一保护层160的厚度D1则是介于2至3纳米(nm)之间。In yet another embodiment, the thickness D1 of the first protection layer 160 is between 2 to 3 nanometers (nm).

步骤S14:形成第二缓冲层130于半导体本体110的第二表面112上。Step S14 : forming a second buffer layer 130 on the second surface 112 of the semiconductor body 110 .

在步骤S14中,第二缓冲层130可通过化学气相沉积法沉积在半导体本体110的第二表面112上。于此,第二缓冲层130可为本质非晶硅层。而在另一实施例中,第二缓冲层130可为具有1×1014至1×1016原子/公分3(atom/cm3)微掺杂的非晶硅(Lightly doped amorphous silicon)层。In step S14 , the second buffer layer 130 may be deposited on the second surface 112 of the semiconductor body 110 by chemical vapor deposition. Here, the second buffer layer 130 may be an essentially amorphous silicon layer. In another embodiment, the second buffer layer 130 may be a lightly doped amorphous silicon layer with 1×10 14 to 1×10 16 atoms/cm 3 (atom/cm 3 ) microdoping.

步骤S15:形成第二非晶硅层150于第二缓冲层130上。Step S15 : forming a second amorphous silicon layer 150 on the second buffer layer 130 .

在步骤S15中,第二非晶硅层150可通过化学气相沉积法沉积在第二缓冲层130上。此外,第二非晶硅层150可掺杂有第二型掺质,而与第一非晶硅层140的类型相反。于此,第二型掺质可为P型掺质,例如:硼、镓等,然本发明不以此为限,亦即第二型掺质亦可为N型掺质,例如:磷、砷等。换言之,当第一非晶硅层140所掺杂的第一型掺质为N型时,第二非晶硅层150所掺杂的第二型掺质即为P型;而当第一非晶硅层140所掺杂的第一型掺质为P型时,第二非晶硅层150所掺杂的第二型掺质即为N型。In step S15, the second amorphous silicon layer 150 may be deposited on the second buffer layer 130 by chemical vapor deposition. In addition, the second amorphous silicon layer 150 may be doped with a second type of dopant, which is opposite to the type of the first amorphous silicon layer 140 . Here, the second-type dopant can be a P-type dopant, such as: boron, gallium, etc., but the present invention is not limited thereto, that is, the second-type dopant can also be an N-type dopant, such as: phosphorus, gallium, etc. Arsenic etc. In other words, when the first type dopant doped in the first amorphous silicon layer 140 is N type, the second type dopant doped in the second amorphous silicon layer 150 is P type; When the first-type dopant doped in the crystalline silicon layer 140 is P-type, the second-type dopant doped in the second amorphous silicon layer 150 is N-type.

步骤S16:形成第二保护层170于第二非晶硅层150上。Step S16 : forming a second protective layer 170 on the second amorphous silicon layer 150 .

在步骤S16中,第二保护层170可通过化学气相沉积法沉积在第二非晶硅层150上,以保护第二非晶硅层150。于此,第二保护层170可为本质非晶硅层或本质微晶硅层。此外,第二保护层170具有疏水性。于此,第二保护层170相对于第二非晶硅层150具有较高的疏水性,因而更可保护第二非晶硅层150不易因暴露于大气之中而致使其表面受水气影响或被氧化。In step S16 , the second protective layer 170 may be deposited on the second amorphous silicon layer 150 by chemical vapor deposition to protect the second amorphous silicon layer 150 . Here, the second protection layer 170 may be an intrinsically amorphous silicon layer or an intrinsically microcrystalline silicon layer. In addition, the second protective layer 170 has hydrophobicity. Here, the second protective layer 170 has a higher hydrophobicity than the second amorphous silicon layer 150, so it can protect the second amorphous silicon layer 150 from being affected by water vapor due to exposure to the atmosphere. or be oxidized.

在一实施态样中,第二保护层170的厚度D2是小于等于10纳米(nm)。换言之,第二保护层170的厚度D2不大于10纳米(nm)。In an embodiment, the thickness D2 of the second protective layer 170 is less than or equal to 10 nanometers (nm). In other words, the thickness D2 of the second protective layer 170 is not greater than 10 nanometers (nm).

在另一实施态样中,第二保护层170的厚度D2是小于等于5纳米(nm)。换言之,第二保护层170的厚度D2不大于5纳米(nm)。In another embodiment, the thickness D2 of the second protective layer 170 is less than or equal to 5 nanometers (nm). In other words, the thickness D2 of the second protection layer 170 is not greater than 5 nanometers (nm).

在又一实施态样中,第二保护层170的厚度D2则是介于2至3纳米(nm)之间。In yet another embodiment, the thickness D2 of the second protective layer 170 is between 2 and 3 nanometers (nm).

因此,通过依序执行步骤S11到步骤S16,而于半导体基板100的二面分别形成具有适当厚度的保护层于非晶硅层上,相较于第一实施例仅于半导体基板100的其中一面形成具有适当厚度的保护层而言,第二实施例是可获得更完善的保护效果。Therefore, by performing step S11 to step S16 in sequence, protective layers with appropriate thicknesses are respectively formed on the amorphous silicon layer on both sides of the semiconductor substrate 100, compared with only one side of the semiconductor substrate 100 in the first embodiment. In terms of forming a protective layer with an appropriate thickness, the second embodiment can obtain a more perfect protective effect.

然而,在本实施例中,步骤S11至步骤S16的顺序性并非绝对,亦即,在执行完步骤S12(即,第一非晶硅层140形成于第一缓冲层120上)后,可先依序执行步骤S14与S15后,再同步执行步骤S13与步骤S16。换言之,第一保护层160与第二保护层170可于第一缓冲层120、第一非晶硅层140依序形成于半导体本体110的第一表面111上,且第二缓冲层130、第二非晶硅层150依序形成于半导体本体110的第二表面112后,再分别同时形成于第一非晶硅层140以及第二非晶硅层150上。However, in this embodiment, the order of steps S11 to S16 is not absolute, that is, after step S12 is performed (that is, the first amorphous silicon layer 140 is formed on the first buffer layer 120), the After steps S14 and S15 are executed in sequence, step S13 and step S16 are executed synchronously. In other words, the first protection layer 160 and the second protection layer 170 can be sequentially formed on the first surface 111 of the semiconductor body 110 on the first buffer layer 120 and the first amorphous silicon layer 140, and the second buffer layer 130, the second After the two amorphous silicon layers 150 are sequentially formed on the second surface 112 of the semiconductor body 110 , they are respectively formed on the first amorphous silicon layer 140 and the second amorphous silicon layer 150 simultaneously.

综上所述,根据本发明实施的半导体基板,通过形成适当厚度的保护层于掺杂有掺质的非晶硅层上,来保护非晶硅层的表面于后续制备为太阳能电池的工艺衔接过程中不因暴露于大气的中而被氧化或受水气影响,因此可延长留置时间(Q-Time),解决了现有太阳能电池在制造时因留置时间过长而导致太阳能电池的转换效率下降的问题,进而允许太阳能电池在制作流程与时间上有更大的弹性。In summary, according to the semiconductor substrate implemented in the present invention, by forming a protective layer with an appropriate thickness on the amorphous silicon layer doped with dopants, the surface of the amorphous silicon layer is protected in the subsequent process of preparing a solar cell. The process is not oxidized or affected by moisture due to exposure to the atmosphere, so the retention time (Q-Time) can be extended, and the conversion efficiency of the solar cell caused by the excessive retention time of the existing solar cell is solved. The problem of falling, which in turn allows solar cells to have greater flexibility in the production process and time.

当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。Of course, the present invention can also have other various embodiments, and those skilled in the art can make various corresponding changes and deformations according to the present invention without departing from the spirit and essence of the present invention, but these corresponding Changes and deformations should belong to the scope of protection of the appended claims of the present invention.

Claims (13)

1.一种半导体基板,其特征在于,包含:1. A semiconductor substrate, characterized in that, comprising: 一半导体本体,具有一第一表面与相对于该第一表面的一第二表面;a semiconductor body having a first surface and a second surface opposite to the first surface; 一第一缓冲层,设置于该第一表面上;a first buffer layer disposed on the first surface; 一第一非晶硅层,设置于该第一缓冲层上,掺杂有一第一型掺质;a first amorphous silicon layer, disposed on the first buffer layer, doped with a first type dopant; 一第二缓冲层,设置于该第二表面上;a second buffer layer disposed on the second surface; 一第二非晶硅层,设置于该第二缓冲层上,掺杂有一第二型掺质;及a second amorphous silicon layer, disposed on the second buffer layer, doped with a second type dopant; and 一第一保护层,设置于该第一非晶硅层上。A first protection layer is arranged on the first amorphous silicon layer. 2.根据权利要求1所述的半导体基板,其特征在于,该第一保护层的厚度不大于10纳米。2. The semiconductor substrate according to claim 1, wherein the thickness of the first protection layer is not greater than 10 nanometers. 3.根据权利要求1所述的半导体基板,其特征在于,该第一保护层的厚度不大于5纳米。3. The semiconductor substrate according to claim 1, wherein the thickness of the first protection layer is not greater than 5 nanometers. 4.根据权利要求1所述的半导体基板,其特征在于,该第一保护层的厚度介于2至3纳米之间。4. The semiconductor substrate according to claim 1, wherein the thickness of the first protection layer is between 2 and 3 nanometers. 5.根据权利要求1所述的半导体基板,其特征在于,该第一保护层为本质非晶硅层或本质微晶硅层。5. The semiconductor substrate according to claim 1, wherein the first protection layer is an intrinsically amorphous silicon layer or an intrinsically microcrystalline silicon layer. 6.根据权利要求1或5所述的半导体基板,其特征在于,该第一保护层为疏水性保护层。6. The semiconductor substrate according to claim 1 or 5, wherein the first protection layer is a hydrophobic protection layer. 7.根据权利要求1所述的半导体基板,其特征在于,更包含:7. The semiconductor substrate according to claim 1, further comprising: 一第二保护层,设置于该第二非晶硅层上。A second protective layer is disposed on the second amorphous silicon layer. 8.根据权利要求7所述的半导体基板,其特征在于,该第二保护层的厚度不大于10纳米。8. The semiconductor substrate according to claim 7, wherein the thickness of the second protection layer is not greater than 10 nanometers. 9.根据权利要求7所述的半导体基板,其特征在于,该第二保护层的厚度不大于5纳米。9. The semiconductor substrate according to claim 7, wherein the thickness of the second protection layer is not greater than 5 nanometers. 10.根据权利要求7所述的半导体基板,其特征在于,该第二保护层的厚度介于2至3纳米之间。10 . The semiconductor substrate according to claim 7 , wherein the thickness of the second protective layer is between 2 and 3 nanometers. 11 . 11.根据权利要求7所述的半导体基板,其特征在于,该第二保护层为本质非晶硅层或本质微晶硅层。11. The semiconductor substrate according to claim 7, wherein the second protection layer is an intrinsically amorphous silicon layer or an intrinsically microcrystalline silicon layer. 12.根据权利要求1至11任意一项所述的半导体基板,其特征在于,当该第一型掺质为P型时,该第二型掺质是为N型,而当该第一型掺质为N型时,该第二型掺质是为P型。12. The semiconductor substrate according to any one of claims 1 to 11, wherein when the first-type dopant is P-type, the second-type dopant is N-type, and when the first-type dopant is When the dopant is N type, the second type dopant is P type. 13.根据权利要求7或11所述的半导体基板,其特征在于,该第二保护层为疏水性保护层。13. The semiconductor substrate according to claim 7 or 11, wherein the second protection layer is a hydrophobic protection layer.
CN201510228814.5A 2015-03-04 2015-05-07 Semiconductor substrate Pending CN106206782A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW104106933A TWI605603B (en) 2015-03-04 2015-03-04 Semiconductor substrate
TW104106933 2015-03-04

Publications (1)

Publication Number Publication Date
CN106206782A true CN106206782A (en) 2016-12-07

Family

ID=57443295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510228814.5A Pending CN106206782A (en) 2015-03-04 2015-05-07 Semiconductor substrate

Country Status (2)

Country Link
CN (1) CN106206782A (en)
TW (1) TWI605603B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742614A (en) * 2017-10-30 2018-02-27 镇江佳鑫精工设备有限公司 A kind of semiconductor equipment circuit board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201478322U (en) * 2009-07-01 2010-05-19 宁波尤利卡太阳能科技发展有限公司 HIT solar battery
CN103035772A (en) * 2012-12-21 2013-04-10 常州天合光能有限公司 Heterojunction with intrinsic Thinlayer (HIT) solar battery structure
US20130180578A1 (en) * 2012-01-13 2013-07-18 Crystal Solar, Incorporated Silicon Heterojunction Solar Cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201478322U (en) * 2009-07-01 2010-05-19 宁波尤利卡太阳能科技发展有限公司 HIT solar battery
US20130180578A1 (en) * 2012-01-13 2013-07-18 Crystal Solar, Incorporated Silicon Heterojunction Solar Cells
CN103035772A (en) * 2012-12-21 2013-04-10 常州天合光能有限公司 Heterojunction with intrinsic Thinlayer (HIT) solar battery structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742614A (en) * 2017-10-30 2018-02-27 镇江佳鑫精工设备有限公司 A kind of semiconductor equipment circuit board

Also Published As

Publication number Publication date
TWI605603B (en) 2017-11-11
TW201633549A (en) 2016-09-16

Similar Documents

Publication Publication Date Title
CN101447516B (en) Solar cell and a manufacturing method of the solar cell
KR101000064B1 (en) Heterojunction solar cell and its manufacturing method
US10680122B2 (en) Solar cell and method for manufacturing the same
EP2996163A2 (en) Photoelectric conversion device and manufacturing method thereof
US20130157404A1 (en) Double-sided heterojunction solar cell based on thin epitaxial silicon
JP6529437B2 (en) Photoelectric conversion device, photoelectric conversion module, and solar power generation system
US20150221801A1 (en) Photoelectric conversion element and method of manufacturing photoelectric conversion element
KR101886818B1 (en) Method for manufacturing of heterojunction silicon solar cell
CN115732576A (en) Solar cell, forming method thereof and photovoltaic module
JP6631820B2 (en) Solar cell and method for manufacturing solar cell
CN111834475A (en) Solar cells and solar modules
CN105659390B (en) Solar battery structure and its manufacture method
WO2013100085A1 (en) Solar cell element, method for manufacturing solar cell element, and solar cell module
TWI639241B (en) Photovoltaic element and method of producing the same
JP6207414B2 (en) Photovoltaic element and manufacturing method thereof
CN220934090U (en) Solar cells and photovoltaic modules
JP5931942B2 (en) Photovoltaic element and manufacturing method thereof
CN118053922A (en) Solar cell, preparation method thereof and photovoltaic module
TWI605603B (en) Semiconductor substrate
TWI452700B (en) Photovoltaic element and method of manufacturing same
US20130127005A1 (en) Photovoltaic device and method of manufacturing the same
JP5975841B2 (en) Manufacturing method of photovoltaic device and photovoltaic device
JP7202456B2 (en) SOLAR CELL AND SOLAR CELL MANUFACTURING METHOD
JP5843734B2 (en) Photoelectric conversion element and manufacturing method thereof
US20130137209A1 (en) Method of manufacturing solar cell

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161207