CN106186060B - A kind of diameter is less than the preparation method of the ultra-fine hollow titanium dioxide nano-spheres of 100nm - Google Patents
A kind of diameter is less than the preparation method of the ultra-fine hollow titanium dioxide nano-spheres of 100nm Download PDFInfo
- Publication number
- CN106186060B CN106186060B CN201610570744.6A CN201610570744A CN106186060B CN 106186060 B CN106186060 B CN 106186060B CN 201610570744 A CN201610570744 A CN 201610570744A CN 106186060 B CN106186060 B CN 106186060B
- Authority
- CN
- China
- Prior art keywords
- titanium dioxide
- nano
- less
- preparation
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 title claims description 25
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910021392 nanocarbon Inorganic materials 0.000 claims abstract description 33
- 239000007787 solid Substances 0.000 claims abstract description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- 239000004408 titanium dioxide Substances 0.000 claims abstract description 8
- 238000001354 calcination Methods 0.000 claims abstract description 5
- 239000003960 organic solvent Substances 0.000 claims abstract description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 238000001035 drying Methods 0.000 claims description 13
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- 239000004005 microsphere Substances 0.000 claims description 9
- 238000003837 high-temperature calcination Methods 0.000 claims description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000008103 glucose Substances 0.000 claims description 3
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 238000004321 preservation Methods 0.000 claims description 3
- 235000013339 cereals Nutrition 0.000 claims 2
- 238000012545 processing Methods 0.000 claims 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims 2
- 240000007594 Oryza sativa Species 0.000 claims 1
- 235000007164 Oryza sativa Nutrition 0.000 claims 1
- 235000019441 ethanol Nutrition 0.000 claims 1
- 230000002045 lasting effect Effects 0.000 claims 1
- 235000009566 rice Nutrition 0.000 claims 1
- 238000001291 vacuum drying Methods 0.000 claims 1
- 238000010792 warming Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 35
- 238000000034 method Methods 0.000 abstract description 31
- 229910010413 TiO 2 Inorganic materials 0.000 abstract description 18
- 239000002077 nanosphere Substances 0.000 abstract description 13
- 239000000463 material Substances 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000003860 storage Methods 0.000 abstract description 4
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 6
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000003917 TEM image Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000009775 high-speed stirring Methods 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 231100000481 chemical toxicant Toxicity 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000011257 shell material Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/08—Drying; Calcining ; After treatment of titanium oxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
- C01P2004/34—Spheres hollow
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明提供一种直径小于100nm超细中空二氧化钛纳米球的制备方法,提供纳米碳球颗粒作为模板;分别将不同粒径的纳米碳球颗粒(CSs)模板均匀地分散在有机溶剂中,形成碳球溶胶体系,随后分别逐滴加入经有机溶剂稀释的钛酸四正丁酯溶液,反应获得壁厚及粒径可控的纳米CSs@TiO2溶胶;离心处理上述CSs@TiO2溶胶,将所得固形物烘干并煅烧,最终煅烧所得的残留物即为目标产物;本发明方法实现了球体完整、单分散性好、可稳定储存、粒径在100nm以下、壁厚在10nm以内均一可控的二氧化钛中空纳米球的制备;整个制备过程操作简单,可控性强,重复性好,且模板材料来源广泛且价格低廉,生产成本较低且安全环保,适合大规模生产。The invention provides a method for preparing ultrafine hollow titania nanospheres with a diameter of less than 100nm, providing nanocarbon sphere particles as templates; respectively dispersing nanocarbon sphere particles (CSs) templates with different particle sizes in organic solvents to form carbon Spherical sol system, and then add tetra-n-butyl titanate solution diluted with organic solvent drop by drop, react to obtain nano-CSs@TiO 2 sol with controllable wall thickness and particle size; centrifuge the above CSs@TiO 2 sol, and the obtained The solid is dried and calcined, and the residue obtained by final calcination is the target product; the method of the present invention realizes a uniform and controllable sphere with complete sphere, good monodispersity, stable storage, particle size below 100nm, and wall thickness within 10nm. Preparation of titanium dioxide hollow nanospheres; the whole preparation process is simple to operate, strong in controllability, good in repeatability, and template materials are widely sourced and cheap in price, low in production cost, safe and environmentally friendly, and suitable for large-scale production.
Description
技术领域technical field
本申请属于一种纳米微球制备领域,特别是涉及一种直径小于100nm超细中空二氧化钛纳米球的制备方法。The application belongs to the field of preparation of nanometer microspheres, in particular to a method for preparing ultrafine hollow titanium dioxide nanospheres with a diameter of less than 100 nm.
背景技术Background technique
作为一种比表面积高、密度低的纳米半导体材料,中空二氧化钛纳米球不仅具有良好的渗透性、吸附特性、高稳定性、无毒性、透明性、光催化性等特点,尤其在小于100nm的纳米限域内,超细中空二氧化钛纳米球具有明显的量子效应和表面效应。它不仅涉及物理、化学、材料、生物等多种学科,且在光电器件、分子探测、生物医学和催化方面都拥有广泛的应用价值及前景,如生物可控药物运输、疾病诊断、微纳容器、生物胶囊、燃料电池等。目前,关于中空二氧化钛纳米球的制备方法有诸多文献报道,这些方法主要包括硬模板法、软模板法以及非模板法。其中,模板法应用较为广泛、成熟,其粒径的单分散性较好,且模板容易去除。As a nano-semiconductor material with high specific surface area and low density, hollow titanium dioxide nanospheres not only have good permeability, adsorption characteristics, high stability, non-toxicity, transparency, photocatalytic properties, etc., especially in nanometers smaller than 100nm Within the confinement, the ultrafine hollow titanium dioxide nanospheres have obvious quantum effects and surface effects. It not only involves physics, chemistry, materials, biology and other disciplines, but also has a wide range of application value and prospects in optoelectronic devices, molecular detection, biomedicine and catalysis, such as bio-controllable drug delivery, disease diagnosis, micro-nano container , biocapsules, fuel cells, etc. At present, there are many literature reports on the preparation methods of hollow titania nanospheres, and these methods mainly include hard template method, soft template method and non-template method. Among them, the template method is widely used and mature, and its monodispersity of particle size is better, and the template is easy to remove.
在模板法中,软模板法主要采用微乳液颗粒、表面活性剂、超分子胶束、高分子聚合物囊泡甚至是气泡作为模板制备二氧化钛中空微球。由于模板形态难于控制且不稳定,该方法制备的二氧化钛中空微球不仅形貌不一,且单分散性和规整度都较差,同时,此制备过程中涉及大量的反胶束及反向微乳液,溶液对环境造成污染,因此该方法目前主要限于实验室研究,并不适合大规模的生产应用(Chem.Rev.,2012,2373;Chem.Soc.Rev.,2011,5472;J.Phys.Chem.B,2004,3492.)。In the template method, the soft template method mainly uses microemulsion particles, surfactants, supramolecular micelles, polymer vesicles and even bubbles as templates to prepare titanium dioxide hollow microspheres. Because the shape of the template is difficult to control and unstable, the titanium dioxide hollow microspheres prepared by this method not only have different shapes, but also have poor monodispersity and regularity. At the same time, this preparation process involves a large number of reverse micelles and reverse microspheres Emulsions and solutions pollute the environment, so this method is currently mainly limited to laboratory research and is not suitable for large-scale production applications (Chem.Rev., 2012, 2373; Chem.Soc.Rev., 2011, 5472; J.Phys .Chem.B, 2004, 3492.).
硬模板法是制备中空二氧化钛微球最直接有效的方法,因其制备的空心纳米颗粒具有良好的规整度,且整个实验可控性好。但传统的硬模板法主要使用聚合物等材料作为模板材料,不仅在模板的制备过程中使用大量的有机溶剂及催化剂,而且所得的模板往往存在团聚现象,需要加入大量表面活性剂进行缓解,同时,为了使得壳层材料进行良好包覆,这些模板往往还需额外进行表面活化,并且该方法难以得到100nm以下,且单分散性良好、粒径及壁厚可控的二氧化钛中空纳米球(J.Am.Chem.Soc.,2005,3928;Chem.,2006,749;J.Colloid.Interface Sci.,2006,370;Langmuir.,2001,3579.)。The hard template method is the most direct and effective method for preparing hollow titanium dioxide microspheres, because the prepared hollow nanoparticles have good regularity and the controllability of the whole experiment is good. However, the traditional hard template method mainly uses materials such as polymers as template materials. Not only does a large amount of organic solvents and catalysts be used in the template preparation process, but also the resulting templates often have agglomeration, which needs to be alleviated by adding a large amount of surfactants. In order to make the shell material well coated, these templates often need additional surface activation, and this method is difficult to obtain titanium dioxide hollow nanospheres below 100nm, with good monodispersity and controllable particle size and wall thickness (J. Am. Chem. Soc., 2005, 3928; Chem., 2006, 749; J. Colloid. Interface Sci., 2006, 370; Langmuir., 2001, 3579.).
发明内容Contents of the invention
针对现有技术从在的不足,本发明的目的在于提供一种单分散性好、可稳定储存、粒径及壁厚可控的直径小于100nm超细中空二氧化钛纳米球的制备方法。In view of the shortcomings of the prior art, the purpose of the present invention is to provide a method for preparing ultrafine hollow titanium dioxide nanospheres with a diameter of less than 100 nm, which are good in monodispersity, stable in storage, and controllable in particle size and wall thickness.
为达到上述目的本发明采用如下方案:For achieving the above object, the present invention adopts following scheme:
一种直径小于100nm超细中空二氧化钛纳米球的制备方法,包括以下步骤:A method for preparing ultrafine hollow titanium dioxide nanospheres with a diameter less than 100nm, comprising the following steps:
s1、提供粒径在20-90nm的纳米碳球模板;s1. Provide nano-carbon sphere templates with a particle size of 20-90nm;
s2、将步骤s1的纳米碳球模板均匀分散于无水乙醇中,并加入去离子水形成纳米碳球溶胶体系,同时置于60℃的水浴锅中伴以持续高速搅拌,随后在该条件下逐滴加入经无水乙醇稀释的钛酸四正丁酯稀溶液,反应反应2-10h获得壁厚及粒径可控的CSs@TiO2溶胶;s2. Evenly disperse the nano-carbon sphere template in step s1 in absolute ethanol, and add deionized water to form a nano-carbon sphere sol system. At the same time, place it in a water bath at 60°C with continuous high-speed stirring, and then Add dilute tetra-n-butyl titanate solution diluted with absolute ethanol dropwise, and react for 2-10 hours to obtain CSs@TiO 2 sol with controllable wall thickness and particle size;
s3、离心处理步骤s2所获得的CSs@TiO2溶胶,并将分理出的固形物进行烘干处理,随后将烘干后所得块状物进行高温煅烧,以20℃/min以下升温至400-800℃,保温时间1-6h,煅烧后所得粉末即为目标产物,目标产物的粒径为20-90nm。s3. Centrifuge the CSs@TiO 2 sol obtained in step s2, and dry the separated solid matter, and then perform high-temperature calcination on the block obtained after drying, and heat up to 400 °C at a temperature below 20 °C/min. -800°C, heat preservation time 1-6h, the powder obtained after calcining is the target product, and the particle size of the target product is 20-90nm.
进一步,所述纳米碳球模板为葡萄糖作为碳源进行水热反应获得。Further, the nano-carbon sphere template is obtained by hydrothermal reaction of glucose as a carbon source.
进一步,所述步骤s2中,钛酸四正丁酯稀溶液中,无水乙醇与钛酸四正丁酯原溶液的体积比为100倍以上。Further, in the step s2, in the dilute tetra-n-butyl titanate solution, the volume ratio of absolute ethanol to the original solution of tetra-n-butyl titanate is more than 100 times.
进一步,所述步骤s3中离心处理时,速度在20000r/min以上,时间在10min以上。Further, during the centrifugation in step s3, the speed is above 20000r/min, and the time is above 10min.
进一步,所述步骤s3中在真空烘箱中烘干处理,烘干温度为60℃以下,烘干时长为6h以上。Further, in the step s3, the drying process is carried out in a vacuum oven, the drying temperature is below 60° C., and the drying time is above 6 hours.
进一步,所述步骤s3中高温煅烧气氛为空气。Further, the high-temperature calcination atmosphere in step s3 is air.
进一步,目标产物二氧化钛纳米球的壁厚为2-5nm。Further, the wall thickness of the target product titanium dioxide nanospheres is 2-5nm.
本发明直径小于100nm超细中空二氧化钛纳米球的制备方法,以实现球体圆完整、单分散性好、可稳定储存、粒径及壁厚可控的中空二氧化钛纳米球的制备方法。同时对已有方法的条件进行优化,在保证成品质量的同时,尽量择优选取反应时间短、原材料价格低廉、反应步骤少的实验条件,提高生产效率、降低生产成本,并克服了以往制备小尺寸碳球中易团聚等问题,利于规模化制备以及实际应用。The invention discloses a method for preparing ultrafine hollow titanium dioxide nanospheres with a diameter of less than 100 nm, so as to realize hollow titanium dioxide nanospheres with complete spheres, good monodispersity, stable storage, and controllable particle size and wall thickness. At the same time, the conditions of the existing method are optimized. While ensuring the quality of the finished product, try to select the experimental conditions with short reaction time, low raw material prices, and few reaction steps to improve production efficiency and reduce production costs. Problems such as easy agglomeration in carbon spheres are beneficial to large-scale preparation and practical application.
与现有技术相比,本发明的优点在于:本发明在较低温度和较短时间内实现了球体完整、单分散性好、可稳定储存、粒径在100nm以下,壁厚在2-5nm的超细中空二氧化钛纳米球。且纳米球的直径可在20-90nm内进行调控。且原材料价格低廉、制备时间短,提高了生产效率,降低了生产成本。Compared with the prior art, the present invention has the advantages of: the present invention realizes sphere integrity, good monodispersity, stable storage, particle size below 100nm, and wall thickness of 2-5nm at lower temperature and shorter time ultrafine hollow titanium dioxide nanospheres. And the diameter of the nanosphere can be adjusted within 20-90nm. Moreover, the raw material price is low, the preparation time is short, the production efficiency is improved, and the production cost is reduced.
本发明方法虽然采用硬模板法,但是采用的是粒径小于100nm的碳球为模板,通过严格控制实验参数,在不加入任何表面活性剂及催化剂的情况下,成功实现了粒径小于100nm的超细中空二氧化钛纳米颗粒的制备。直径小于100nm的纳米粒子的一个重要特征是其尺寸己接近或小于电子的平均自由程和超导相干波长,他们较大的比表面使得处于表面态的原子和电子数目己与处于颗粒内部的原子、电子数目相当。由此所导致的表面效应和量子限域效应使得纳米粒子在光学性能、电学性能、力学性能、催化性能、生物性等方面呈现出常规材料不具备的特性。因此,直径小于100nm的超细中空二氧化钛纳米球在光电技术、生物技术、能源技术等各个领域都有广泛的应用前景。Although the method of the present invention adopts the hard template method, carbon spheres with a particle size of less than 100nm are used as a template. By strictly controlling the experimental parameters and without adding any surfactant and catalyst, the carbon sphere with a particle size of less than 100nm is successfully realized. Preparation of ultrafine hollow titania nanoparticles. An important feature of nanoparticles with a diameter of less than 100nm is that their size is close to or smaller than the mean free path and superconducting coherence wavelength of electrons. Their large specific surface makes the number of atoms and electrons in the surface state comparable to that of atoms and electrons in the interior of the particle. The numbers are comparable. The resulting surface effect and quantum confinement effect make nanoparticles present characteristics that conventional materials do not have in terms of optical properties, electrical properties, mechanical properties, catalytic properties, and biological properties. Therefore, ultrafine hollow titania nanospheres with a diameter of less than 100 nm have broad application prospects in various fields such as optoelectronic technology, biotechnology, and energy technology.
附图说明Description of drawings
图1为本发明实施例1中所获超细中空二氧化钛纳米球的透射电镜照片;Fig. 1 is the transmission electron micrograph of ultrafine hollow titania nanosphere obtained in the embodiment 1 of the present invention;
图2为本发明实施例2中所获超细中空二氧化钛纳米球的透射电镜照片;Fig. 2 is the transmission electron micrograph of ultrafine hollow titania nanosphere obtained in the embodiment 2 of the present invention;
图3为本发明实施例3中所获超细中空二氧化钛纳米球的透射电镜照片;Fig. 3 is the transmission electron micrograph of ultrafine hollow titania nanosphere obtained in the embodiment 3 of the present invention;
具体实施方式Detailed ways
本发明通过下列实施例作进一步说明:根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的具体的物料比、工艺条件及其结果仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。The present invention is further illustrated by the following examples: According to the following examples, the present invention can be better understood. However, those skilled in the art can easily understand that the specific material ratios, process conditions and results described in the examples are only used to illustrate the present invention, and should not and will not limit the present invention described in the claims.
本发明的超细中空二氧化钛纳米球的制备方法,包括以下步骤:The preparation method of ultrafine hollow titania nanosphere of the present invention, comprises the following steps:
s1、提供粒径在20-90nm的纳米碳球模板;s1. Provide nano-carbon sphere templates with a particle size of 20-90nm;
s2、将步骤s1所述纳米碳球模板均匀分散于无水乙醇中,并加入一定量的去离子水形成纳米碳球溶胶体系,同时置于60℃的水浴锅中伴以持续高速搅拌,随后在该条件下逐滴加入经无水乙醇稀释的钛酸四正丁酯稀溶液,反应2h以上获得壁厚及粒径可控的CSs@TiO2溶胶;s2. Uniformly disperse the nano-carbon sphere template described in step s1 in absolute ethanol, and add a certain amount of deionized water to form a nano-carbon sphere sol system. At the same time, place it in a water bath at 60°C with continuous high-speed stirring, and then Under this condition, dilute tetra-n-butyl titanate solution diluted with absolute ethanol was added dropwise, and reacted for more than 2 hours to obtain a CSs@TiO 2 sol with controllable wall thickness and particle size;
s3、离心处理步骤s2所获得的CSs@TiO2溶胶,并将分理出的固形物进行烘干处理,随后将烘干后所得块状物进行高温煅烧,升温速率为20℃/min以下煅烧温度为400-800℃,在马弗炉中保温1-6h,煅烧气氛为空气;煅烧后所得粉末即为目标产物,所属目标产物的粒径为20-90nm。s3. Centrifuge the CSs@TiO 2 sol obtained in step s2, and dry the separated solid matter, and then perform high-temperature calcination on the dried mass at a heating rate of 20°C/min or less The temperature is 400-800°C, heat preservation in a muffle furnace for 1-6 hours, and the calcination atmosphere is air; the powder obtained after calcination is the target product, and the particle size of the target product is 20-90nm.
优选的,所述步骤s1中,所述纳米碳球模板的制备工艺包括:利用葡萄糖作为碳源进行水热反应,获得纳米碳球。Preferably, in the step s1, the preparation process of the nano-carbon sphere template includes: using glucose as a carbon source to perform hydrothermal reaction to obtain nano-carbon spheres.
优选的,所述步骤s2中,钛酸四正丁酯稀溶液中,无水乙醇与钛酸四正丁酯原溶液的体积比为100倍以上。Preferably, in the step s2, in the dilute tetra-n-butyl titanate solution, the volume ratio of absolute ethanol to the original solution of tetra-n-butyl titanate is more than 100 times.
优选的,所述步骤s3中,所述离心处理的条件包括:速度在20000r/min以上,时间在10min以上。Preferably, in the step s3, the conditions of the centrifugation treatment include: the speed is above 20000r/min, and the time is above 10min.
优选的,所述步骤s3中,所述烘干处理条件包括:烘干装置为真空烘箱,烘干温度为60℃以下,烘干时长为6h以上。Preferably, in the step s3, the drying treatment conditions include: the drying device is a vacuum oven, the drying temperature is below 60° C., and the drying time is above 6 hours.
作为较佳的具体应用方案之一,所述直径小于100nm超细中空二氧化钛纳米球的制备方法具体包括如下步骤:As one of the preferred specific application schemes, the preparation method of the ultrafine hollow titanium dioxide nanospheres with a diameter less than 100nm specifically includes the following steps:
s1、取粒径为20-80nm的纳米碳球模板分散在无水乙醇中形成纳米碳球溶胶;s1. Taking nano-carbon sphere templates with a particle size of 20-80nm and dispersing them in absolute ethanol to form a nano-carbon sphere sol;
s2、将上述纳米碳球溶胶加入去离子水,并在水浴60℃的条件下持续大力搅拌,再逐滴加入经无水乙醇稀释后的钛酸四正丁酯稀溶液,待钛酸四正丁酯稀溶液全部加入后,反应2-10h,获得粒径及壁厚可控的纳米CSs@TiO2溶胶;s2. Add the above-mentioned nano-carbon sphere sol into deionized water, and continue vigorously stirring in a water bath at 60°C, then add dropwise a dilute solution of tetra-n-butyl titanate diluted with absolute ethanol, and wait until tetra-n-titanate After all the dilute butyl solution is added, react for 2-10 hours to obtain a nano-CSs@TiO 2 sol with controllable particle size and wall thickness;
s3、将上述纳米CSs@TiO2溶胶以不低于20000r/min的离心速度离心10min以上,获得固形物;s3. Centrifuge the above-mentioned nano-CSs@TiO 2 sol at a centrifugal speed not lower than 20000r/min for more than 10min to obtain a solid;
s4、将上述固形物置于真空烘箱中,以不高于60℃的温度处理6h以上,获得干燥固体;s4, placing the above solid in a vacuum oven, and treating it at a temperature not higher than 60°C for more than 6 hours to obtain a dry solid;
s5、将上述干燥固体置于马弗炉中,在空气氛下,以20℃/min以下的升温速率升温至400-800℃并保温1-6h,获得中空二氧化钛纳米球。s5. Put the above dried solid in a muffle furnace, raise the temperature to 400-800° C. at a heating rate below 20° C./min in an air atmosphere and keep it warm for 1-6 hours to obtain hollow titanium dioxide nanospheres.
所述中空二氧化钛纳米球的壁厚在2-5nm。The wall thickness of the hollow titanium dioxide nanosphere is 2-5nm.
实施例1Example 1
s1、取粒径为20-40nm的纳米碳球模板20mg分散在60mL无水乙醇中形成纳米碳球溶胶;s1. Take 20 mg of nano-carbon sphere template with a particle size of 20-40 nm and disperse it in 60 mL of absolute ethanol to form a nano-carbon sphere sol;
s2、将上述纳米碳球溶胶加入120μL去离子水,并在水浴60℃的条件下持续大力搅拌,再逐滴加入经无水乙醇稀释后的钛酸四正丁酯稀溶液(钛酸四正丁酯原溶液150μL溶于20mL无水乙醇中),待钛酸四正丁酯稀溶液全部加入后,反应2-10h,获得粒径及壁厚可控的纳米CSs@TiO2溶胶;s2. Add 120 μL of deionized water to the above-mentioned nano-carbon sphere sol, and continue vigorously stirring in a water bath at 60° C., and then add dropwise a dilute solution of tetra-n-butyl titanate diluted with absolute ethanol (tetra-n-titanate Dissolve 150 μL of the original solution of butyl titanate in 20 mL of absolute ethanol), after all the dilute tetra-n-butyl titanate solution is added, react for 2-10 hours to obtain a nano-CSs@TiO 2 sol with controllable particle size and wall thickness;
s3、将上述纳米CSs@TiO2溶胶以30000r/min的离心速度离心15min,获得固形物;s3. Centrifuge the above-mentioned nano-CSs@TiO 2 sol at a centrifugal speed of 30000r/min for 15min to obtain a solid;
s4、将上述固形物置于真空烘箱中,40℃的温度处理12h,获得干燥固体;s4. Put the above solid in a vacuum oven, and treat at 40° C. for 12 hours to obtain a dry solid;
s5、将上述干燥固体置于马弗炉中,在空气氛下,以2℃/min的升温速率升温至550℃并保温3h,获得中空二氧化钛纳米球。s5. The above dried solid was placed in a muffle furnace, and the temperature was raised to 550° C. at a heating rate of 2° C./min in an air atmosphere and kept for 3 hours to obtain hollow titanium dioxide nanospheres.
图1所示为实施例1所获得的碳球的透射电镜照片,由图中可以看出,中空二氧化钛纳米球的直径为30-40nm,壁厚约为2nm。Fig. 1 shows the transmission electron microscope photo of the carbon spheres obtained in Example 1, as can be seen from the figure, the diameter of the hollow titanium dioxide nanospheres is 30-40nm, and the wall thickness is about 2nm.
实施例2Example 2
s1、取粒径为30-60nm的纳米碳球模板20mg分散在60mL无水乙醇中形成纳米碳球溶胶;s1. Take 20 mg of nano-carbon sphere template with a particle size of 30-60 nm and disperse it in 60 mL of absolute ethanol to form a nano-carbon sphere sol;
s2、将上述纳米碳球溶胶加入120μL去离子水,并在水浴60℃的条件下持续大力搅拌,再逐滴加入经无水乙醇稀释后的钛酸四正丁酯稀溶液(钛酸四正丁酯原溶液150μL溶于20mL无水乙醇中),待钛酸四正丁酯稀溶液全部加入后,反应2-10h,获得粒径及壁厚可控的纳米CSs@TiO2溶胶;s2. Add 120 μL of deionized water to the above-mentioned nano-carbon sphere sol, and continue vigorously stirring in a water bath at 60° C., and then add dropwise a dilute solution of tetra-n-butyl titanate diluted with absolute ethanol (tetra-n-titanate Dissolve 150 μL of the original solution of butyl titanate in 20 mL of absolute ethanol), after all the dilute tetra-n-butyl titanate solution is added, react for 2-10 hours to obtain a nano-CSs@TiO 2 sol with controllable particle size and wall thickness;
s3、将上述纳米CSs@TiO2溶胶以30000r/min的离心速度离心15min,获得固形物;s3. Centrifuge the above-mentioned nano-CSs@TiO 2 sol at a centrifugal speed of 30000r/min for 15min to obtain a solid;
s4、将上述固形物置于真空烘箱中,40℃的温度处理12h,获得干燥固体;s4. Put the above solid in a vacuum oven, and treat at 40° C. for 12 hours to obtain a dry solid;
s5、将上述干燥固体置于马弗炉中,在空气氛下,以2℃/min的升温速率升温至550℃并保温3h,获得中空二氧化钛纳米球。s5. The above dried solid was placed in a muffle furnace, and the temperature was raised to 550° C. at a heating rate of 2° C./min in an air atmosphere and kept for 3 hours to obtain hollow titanium dioxide nanospheres.
图2所示为实施例2所获得的的透射电镜照片,由图中可以看出,中空二氧化钛纳米球的直径为60nm,壁厚为4nm。Figure 2 shows the transmission electron microscope photograph obtained in Example 2, as can be seen from the figure, the diameter of the hollow titanium dioxide nanosphere is 60nm, and the wall thickness is 4nm.
实施例3Example 3
s1、取粒径为60-90nm的纳米碳球模板20mg分散在60mL无水乙醇中形成纳米碳球溶胶;s1. Take 20 mg of nano-carbon sphere template with a particle size of 60-90 nm and disperse it in 60 mL of absolute ethanol to form a nano-carbon sphere sol;
s2、将上述纳米碳球溶胶加入120μL去离子水,并在水浴60℃的条件下持续大力搅拌,再逐滴加入经无水乙醇稀释后的钛酸四正丁酯稀溶液(钛酸四正丁酯原溶液150μL溶于20mL无水乙醇中),待钛酸四正丁酯稀溶液全部加入后,反应2-10h,获得粒径及壁厚可控的纳米CSs@TiO2溶胶;s2. Add 120 μL of deionized water to the above-mentioned nano-carbon sphere sol, and continue vigorously stirring in a water bath at 60° C., and then add dropwise a dilute solution of tetra-n-butyl titanate diluted with absolute ethanol (tetra-n-titanate Dissolve 150 μL of the original solution of butyl titanate in 20 mL of absolute ethanol), after all the dilute tetra-n-butyl titanate solution is added, react for 2-10 hours to obtain a nano-CSs@TiO 2 sol with controllable particle size and wall thickness;
s3、将上述纳米CSs@TiO2溶胶以30000r/min的离心速度离心15min,获得固形物;s3. Centrifuge the above-mentioned nano-CSs@TiO 2 sol at a centrifugal speed of 30000r/min for 15min to obtain a solid;
s4、将上述固形物置于真空烘箱中,40℃的温度处理12h,获得干燥固体;s4. Put the above solid in a vacuum oven, and treat at 40° C. for 12 hours to obtain a dry solid;
s5、将上述干燥固体置于马弗炉中,在空气氛下,以2℃/min的升温速率升温至550℃并保温3h,获得中空二氧化钛纳米球。s5. The above dried solid was placed in a muffle furnace, and the temperature was raised to 550° C. at a heating rate of 2° C./min in an air atmosphere and kept for 3 hours to obtain hollow titanium dioxide nanospheres.
图3所示为实施例3所获得的碳球的透射电镜照片,由图中可以看出,中空二氧化钛纳米球的粒径为88nm,壁厚为3-5nm左右。Fig. 3 shows the transmission electron microscope photo of the carbon spheres obtained in Example 3, as can be seen from the figure, the particle diameter of the hollow titanium dioxide nanospheres is 88nm, and the wall thickness is about 3-5nm.
实施例4Example 4
s1、取粒径为60-90nm的纳米碳球模板20mg分散在60mL无水乙醇中形成纳米碳球溶胶;s1. Take 20 mg of nano-carbon sphere template with a particle size of 60-90 nm and disperse it in 60 mL of absolute ethanol to form a nano-carbon sphere sol;
s2、将上述纳米碳球溶胶加入120μL去离子水,并在水浴60℃的条件下持续大力搅拌,再逐滴加入经无水乙醇稀释后的钛酸四正丁酯稀溶液(钛酸四正丁酯原溶液150μL溶于20mL无水乙醇中),待钛酸四正丁酯稀溶液全部加入后,反应2-10h,获得粒径及壁厚可控的纳米CSs@TiO2溶胶;s2. Add 120 μL of deionized water to the above-mentioned nano-carbon sphere sol, and continue vigorously stirring in a water bath at 60° C., and then add dropwise a dilute solution of tetra-n-butyl titanate diluted with absolute ethanol (tetra-n-titanate Dissolve 150 μL of the original solution of butyl titanate in 20 mL of absolute ethanol), after all the dilute tetra-n-butyl titanate solution is added, react for 2-10 hours to obtain a nano-CSs@TiO 2 sol with controllable particle size and wall thickness;
s3、将上述纳米CSs@TiO2溶胶以40000r/min的离心速度离心10min,获得固形物;s3. Centrifuge the above-mentioned nano-CSs@TiO 2 sol at a centrifugal speed of 40000r/min for 10min to obtain a solid;
s4、将上述固形物置于真空烘箱中,60℃的温度处理6h,获得干燥固体;s4. Put the above solid in a vacuum oven, and treat at 60° C. for 6 hours to obtain a dry solid;
s5、将上述干燥固体置于马弗炉中,在空气氛下,以2℃/min的升温速率升温至400℃并保温6h,获得中空二氧化钛纳米球。s5. The above dried solid was placed in a muffle furnace, and the temperature was raised to 400° C. at a heating rate of 2° C./min in an air atmosphere and kept at a temperature of 6 hours to obtain hollow titanium dioxide nanospheres.
实施例5Example 5
s1、取粒径为60-90nm的纳米碳球模板20mg分散在60mL无水乙醇中形成纳米碳球溶胶;s1. Take 20 mg of nano-carbon sphere template with a particle size of 60-90 nm and disperse it in 60 mL of absolute ethanol to form a nano-carbon sphere sol;
s2、将上述纳米碳球溶胶加入120μL去离子水,并在水浴60℃的条件下持续大力搅拌,再逐滴加入经无水乙醇稀释后的钛酸四正丁酯稀溶液(钛酸四正丁酯原溶液150μL溶于20mL无水乙醇中),待钛酸四正丁酯稀溶液全部加入后,反应2-10h,获得粒径及壁厚可控的纳米CSs@TiO2溶胶;s2. Add 120 μL of deionized water to the above-mentioned nano-carbon sphere sol, and continue vigorously stirring in a water bath at 60° C., and then add dropwise a dilute solution of tetra-n-butyl titanate diluted with absolute ethanol (tetra-n-titanate Dissolve 150 μL of the original solution of butyl titanate in 20 mL of absolute ethanol), after all the dilute tetra-n-butyl titanate solution is added, react for 2-10 hours to obtain a nano-CSs@TiO 2 sol with controllable particle size and wall thickness;
s3、将上述纳米CSs@TiO2溶胶以30000r/min的离心速度离心20min,获得固形物;s3. Centrifuge the above-mentioned nano-CSs@TiO 2 sol at a centrifugal speed of 30000r/min for 20min to obtain a solid;
s4、将上述固形物置于真空烘箱中,45℃的温度处理10h,获得干燥固体;s4. Put the above solid in a vacuum oven and treat at 45°C for 10 hours to obtain a dry solid;
s5、将上述干燥固体置于马弗炉中,在空气氛下,以1℃/min的升温速率升温至800℃并保温1h,获得中空二氧化钛纳米球。s5. Put the above-mentioned dry solid in a muffle furnace, and raise the temperature to 800° C. at a heating rate of 1° C./min in an air atmosphere and hold it for 1 hour to obtain hollow titanium dioxide nanospheres.
本发明的方法实现了粒径小于100nm的中空二氧化钛纳米球的制备与粒径调控,反应过程无有毒化学试剂的参与,不仅能有效避免由杂质引入造成的结构缺陷和环境污染问题,同时由于该中空二氧化钛纳米球无毒的特性,可广泛用于生物化学及生物诊断。整个制备过程操,作简单,可控性强,重复性好,适合工业生产。The method of the present invention realizes the preparation and particle size control of hollow titania nanospheres with a particle size less than 100nm, and the reaction process does not involve the participation of toxic chemical reagents, which can not only effectively avoid structural defects and environmental pollution caused by the introduction of impurities, but also because of the Hollow titanium dioxide nanospheres are non-toxic and can be widely used in biochemistry and biological diagnosis. The whole preparation process is easy to operate, strong in controllability, good in repeatability, and suitable for industrial production.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that in this article, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that there is a relationship between these entities or operations. any such actual relationship or order exists between them. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or apparatus. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。The above description is only the specific implementation of the present application. It should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present application, some improvements and modifications can also be made. It should be regarded as the protection scope of this application.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610570744.6A CN106186060B (en) | 2016-07-19 | 2016-07-19 | A kind of diameter is less than the preparation method of the ultra-fine hollow titanium dioxide nano-spheres of 100nm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610570744.6A CN106186060B (en) | 2016-07-19 | 2016-07-19 | A kind of diameter is less than the preparation method of the ultra-fine hollow titanium dioxide nano-spheres of 100nm |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106186060A CN106186060A (en) | 2016-12-07 |
CN106186060B true CN106186060B (en) | 2018-08-10 |
Family
ID=57494411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610570744.6A Active CN106186060B (en) | 2016-07-19 | 2016-07-19 | A kind of diameter is less than the preparation method of the ultra-fine hollow titanium dioxide nano-spheres of 100nm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106186060B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108816212A (en) * | 2018-07-10 | 2018-11-16 | 中国计量大学 | A kind of preparation method of optically catalytic TiO 2 composite material |
CN110028052B (en) * | 2019-05-07 | 2021-02-02 | 中南大学 | Method for preparing hollow structure material based on carbon quantum dot template method |
CN111962095B (en) * | 2020-08-13 | 2021-11-05 | 沧州信联化工有限公司 | Green preparation method of tetramethylammonium hydroxide |
CN114887655B (en) * | 2022-05-25 | 2023-09-15 | 南通大学 | Nanometer NiO-VO X /TiO 2 Molecular sieve composite catalyst and preparation method and application thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102389787B (en) * | 2011-09-21 | 2013-06-12 | 中国科学院城市环境研究所 | Carbon-doped titanium dioxide hollow spherical photocatalyst and preparation method thereof |
CN102824884B (en) * | 2012-05-14 | 2015-09-16 | 无锡润鹏复合新材料有限公司 | A kind of TiO 2/ Fe 2o 3compound hollow microballoon and preparation method thereof |
CN103752299A (en) * | 2014-01-14 | 2014-04-30 | 沈阳理工大学 | Method for preparing macroporous hollow-sphere titanium oxide photocatalytic material |
CN104907580A (en) * | 2015-06-16 | 2015-09-16 | 华北电力大学 | Preparation method for hollow titanium dioxide nanofiber containing metal nanoparticles |
-
2016
- 2016-07-19 CN CN201610570744.6A patent/CN106186060B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN106186060A (en) | 2016-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cao et al. | Hierarchically nanostructured α-Fe2O3 hollow spheres: preparation, growth mechanism, photocatalytic property, and application in water treatment | |
CN104445215B (en) | Preparation method of hollow silica nanomaterial | |
CN101537349B (en) | Preparation of Polystyrene/TiO2 Composite Photocatalyst with Core/Shell Structure | |
CN106186060B (en) | A kind of diameter is less than the preparation method of the ultra-fine hollow titanium dioxide nano-spheres of 100nm | |
CN101134586B (en) | A kind of preparation method of nano-alumina hollow sphere | |
CN104118908B (en) | A kind of regulation and control preparation method of orderly titanium dioxide nano material | |
CN105502342A (en) | Method for preparing nanometer hollow carbon spheres with dopamine serving as carbon source | |
US12195349B2 (en) | Preparation method and application of amorphous metal oxide hollow multi-shell material | |
CN103771470B (en) | Synthesis method for aluminium oxide nano hollow ball-in-ball | |
CN105800684B (en) | Monodisperse of the size less than 100 nm, porous crystalline TiOx nano ball and preparation method thereof | |
CN101585708B (en) | Method for preparing corundum hollow microsphere | |
CN102527381A (en) | Preparation method of nano-sized gold/ titanium dioxide compound mesoporous microspheric photocatalyst | |
CN104944405A (en) | Preparation method of carbon spheres | |
CN103274672B (en) | A kind of preparation method of aluminum oxide hollow sphere | |
CN103949192A (en) | Method for preparing hollow spheres through microwave-assisted aerosol | |
CN103447549A (en) | Preparation method of cobalt nanosphere | |
CN105271405A (en) | Material based on bismuth oxycarbonate or bismuth oxide nano tube and preparation method thereof | |
CN105253877A (en) | Preparation method of three-dimensional interpenetrating ordered mesoporous graphene spheres | |
CN104787800B (en) | A kind of flowered-spherical titanium dioxide and preparation method thereof | |
CN107376975A (en) | Visible light catalysis activity N doping nucleocapsid shape titanium dioxide and preparation method thereof | |
CN102992390A (en) | Method for preparing nano-zinc oxide sol and zinc oxide submicron spheres | |
CN101811725B (en) | Cage-shaped nano zinc oxide and preparation method thereof | |
CN106698503A (en) | Synthetic method of titanium dioxide nano-powder | |
CN106115779B (en) | A kind of hollow nano-TiO2The preparation method of bag carbon Yolk shell structures | |
CN105129765A (en) | Highly-ordered mesoporous carbon spheres and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20170711 Address after: Beilin District Xianning West Road 710049, Shaanxi city of Xi'an province No. 28 Applicant after: Xi'an Jiaotong University Applicant after: Suzhou Academy of Xi'an Jiaotong University Address before: Beilin District Xianning West Road 710049, Shaanxi city of Xi'an province No. 28 Applicant before: Xi'an Jiaotong University |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |