CN106185944A - A kind of method preparing superfine tungsten carbide containing arsenic and the ammonium paratungstate of phosphorus or ammonium metatungstate - Google Patents
A kind of method preparing superfine tungsten carbide containing arsenic and the ammonium paratungstate of phosphorus or ammonium metatungstate Download PDFInfo
- Publication number
- CN106185944A CN106185944A CN201610502973.4A CN201610502973A CN106185944A CN 106185944 A CN106185944 A CN 106185944A CN 201610502973 A CN201610502973 A CN 201610502973A CN 106185944 A CN106185944 A CN 106185944A
- Authority
- CN
- China
- Prior art keywords
- powder
- tungsten
- phosphorus
- ammonium
- arsenic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052785 arsenic Inorganic materials 0.000 title claims 8
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 title claims 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims 6
- 229910052698 phosphorus Inorganic materials 0.000 title claims 6
- 239000011574 phosphorus Substances 0.000 title claims 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 title claims 5
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 title claims 5
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 title claims 3
- 238000000034 method Methods 0.000 title claims 2
- 239000000843 powder Substances 0.000 claims 6
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 claims 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 2
- 229910052799 carbon Inorganic materials 0.000 claims 2
- 239000002131 composite material Substances 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 claims 2
- 229910052739 hydrogen Inorganic materials 0.000 claims 2
- 239000001257 hydrogen Substances 0.000 claims 2
- 239000000463 material Substances 0.000 claims 2
- 239000002243 precursor Substances 0.000 claims 2
- 239000002994 raw material Substances 0.000 claims 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims 2
- 239000004254 Ammonium phosphate Substances 0.000 claims 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims 1
- BRDTZYWNTKMDQH-UHFFFAOYSA-N [As].O[N+]([O-])=O Chemical compound [As].O[N+]([O-])=O BRDTZYWNTKMDQH-UHFFFAOYSA-N 0.000 claims 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 claims 1
- 235000019289 ammonium phosphates Nutrition 0.000 claims 1
- 238000000498 ball milling Methods 0.000 claims 1
- 239000006229 carbon black Substances 0.000 claims 1
- 238000003763 carbonization Methods 0.000 claims 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 238000000227 grinding Methods 0.000 claims 1
- 229910017604 nitric acid Inorganic materials 0.000 claims 1
- 238000003756 stirring Methods 0.000 claims 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
Landscapes
- Powder Metallurgy (AREA)
- Carbon And Carbon Compounds (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
一种含砷和磷的仲钨酸铵或偏钨酸铵制备超细碳化钨粉的方法,包括以下步骤:含砷和磷的仲钨酸铵或偏钨酸铵前驱体复合粉末的制备;前躯体复合粉末焙烧制备三氧化钨粉末;氢还原三氧化钨制备钨粉;钨粉碳化制备碳化钨粉。本发明工艺简单,生产成本低廉,适合工厂批量生产超细碳化钨粉,制备出的碳化钨粉分散性良好且粒度分布均匀,其粒径为120~200 nm,有效地推进了超细WC‑Co硬质合金的发展与应用。
A method for preparing superfine tungsten carbide powder from ammonium paratungstate or ammonium metatungstate containing arsenic and phosphorus, comprising the following steps: preparation of precursor composite powder of ammonium paratungstate or ammonium metatungstate containing arsenic and phosphorus; preparation of precursor composite powder by roasting Tungsten trioxide powder; hydrogen reduction of tungsten trioxide to prepare tungsten powder; tungsten powder carbonization to prepare tungsten carbide powder. The invention has simple process and low production cost, and is suitable for mass production of superfine tungsten carbide powder in factories. The prepared tungsten carbide powder has good dispersibility and uniform particle size distribution, and its particle size is 120-200 nm, which effectively promotes superfine WC- Development and application of Co cemented carbide.
Description
技术领域technical field
本发明属于金属粉末冶金制粉领域。The invention belongs to the field of powder making by metal powder metallurgy.
背景技术Background technique
超细晶WC-Co硬质合金因其同时具备高硬度和高强度的特性,而被广泛应用于切削刀具、冲击工具和耐磨蚀零部件等领域。粒度均匀、分散性良好的超细碳化钨粉是制备高性能超细晶WC-Co硬质合金的关键技术。Ultrafine-grained WC-Co cemented carbide is widely used in cutting tools, impact tools and wear-resistant parts because of its high hardness and high strength. Ultra-fine tungsten carbide powder with uniform particle size and good dispersion is the key technology for preparing high-performance ultra-fine-grained WC-Co cemented carbide.
目前,工业上主要采用钨粉碳化或氧化钨粉直接还原碳化法制备碳化钨粉。对于钨粉碳化而言,碳化所需的高温将造成WC颗粒易长大,很难制备出超细WC粉;采用氧化钨直接还原碳化法制备的超细碳化钨粉,易发生团聚现象,形成粗大的二次颗粒,且碳化钨粉中的碳含量难以控制。因此,采用传统碳化钨粉制备工艺很难制备出优良的超细碳化钨粉。然而,一些新型的超细碳化钨粉制备方法也不断涌出,如高能球磨法、热化学合成法、“氮化-碳化”法等,但是上述制备方法均需特殊工装设备,并存在高能耗、生产效率低及工艺控制难度大等问题,而难以在工业上获得大规模应用。At present, the industry mainly uses tungsten powder carbonization or tungsten oxide powder direct reduction carbonization method to prepare tungsten carbide powder. For the carbonization of tungsten powder, the high temperature required for carbonization will cause the WC particles to grow easily, and it is difficult to prepare ultra-fine WC powder; the ultra-fine tungsten carbide powder prepared by direct reduction carbonization of tungsten oxide is prone to agglomeration, forming Coarse secondary particles, and the carbon content in tungsten carbide powder is difficult to control. Therefore, it is difficult to prepare excellent ultra-fine tungsten carbide powder by using the traditional tungsten carbide powder preparation process. However, some new preparation methods of ultra-fine tungsten carbide powder are also emerging, such as high-energy ball milling method, thermochemical synthesis method, "nitridation-carbonization" method, etc., but the above-mentioned preparation methods all require special tooling and equipment, and have high energy consumption , low production efficiency and difficult process control, etc., and it is difficult to obtain large-scale application in industry.
发明内容Contents of the invention
本发明的目的是克服现有技术的不足,提供一种含砷和磷的仲钨酸铵或偏钨酸铵制备超细碳化钨粉的方法。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a method for preparing superfine tungsten carbide powder from ammonium paratungstate or ammonium metatungstate containing arsenic and phosphorus.
本发明是通过以下技术方案实现的。The present invention is achieved through the following technical solutions.
本发明所述的一种含砷和磷的仲钨酸铵或偏钨酸铵制备超细碳化钨粉的方法,步骤如下。A method for preparing superfine tungsten carbide powder from ammonium paratungstate or ammonium metatungstate containing arsenic and phosphorus according to the present invention, the steps are as follows.
(1)含砷和磷的仲钨酸铵或偏钨酸铵前驱体复合粉末的制备。(1) Preparation of ammonium paratungstate or ammonium metatungstate precursor composite powder containing arsenic and phosphorus.
首先将一定量的单质砷溶于质量百分比浓度为65%~68%的硝酸溶液中,待砷完全溶解后,再将磷酸铵、仲钨酸铵或偏钨酸铵加入到砷的硝酸溶液中,原料中砷和磷的总含量为0.01~2wt%,其中砷元素与磷元素的质量比为1:1;电动搅拌使原料混合均匀后,置于烘箱内烘干,烘箱温度为70~90℃,时间为8~10h,经研磨后制得含砷和磷的仲钨酸铵或偏钨酸铵前驱体复合粉末。First, a certain amount of elemental arsenic is dissolved in a nitric acid solution with a mass percentage concentration of 65%~68%. After the arsenic is completely dissolved, ammonium phosphate, ammonium paratungstate or ammonium metatungstate is added to the arsenic nitric acid solution. The total content of arsenic and phosphorus is 0.01~2wt%, and the mass ratio of arsenic to phosphorus is 1:1; electric stirring is used to mix the raw materials evenly, and then they are dried in an oven at a temperature of 70~90°C. For 8~10h, the ammonium paratungstate or ammonium metatungstate precursor composite powder containing arsenic and phosphorus is obtained after grinding.
(2)前躯体复合粉末焙烧制备三氧化钨粉末。(2) Prepare tungsten trioxide powder by roasting the precursor composite powder.
将将步骤(1)制备的含砷和磷的仲钨酸铵或偏钨酸铵前驱体复合粉末置于箱式电阻炉中,在空气气氛下进行焙烧,焙烧温度为550~700℃,保温时间为2~4h,制备出黄色三氧化钨粉末。Put the arsenic and phosphorus-containing ammonium paratungstate or ammonium metatungstate precursor composite powder prepared in step (1) in a box-type resistance furnace, and roast in an air atmosphere at a roasting temperature of 550-700°C and a holding time of 2 ~4h, yellow tungsten trioxide powder was prepared.
(3)氢还原三氧化钨制备钨粉。(3) Hydrogen reduction of tungsten trioxide to prepare tungsten powder.
将步骤(2)制得的黄色三氧化钨粉末置于管式气氛炉中,通入氢气进行还原,升温速率为5℃ /min,还原温度为700~820℃,保温时间为2~4h,制备出钨粉。Put the yellow tungsten trioxide powder prepared in step (2) in a tube-type atmosphere furnace, pass in hydrogen for reduction, the heating rate is 5°C/min, the reduction temperature is 700~820°C, and the holding time is 2~4h. Prepare tungsten powder.
(4)钨粉碳化制备碳化钨粉。(4) Tungsten carbide powder is prepared by carbonization of tungsten powder.
将步骤(3)制得的钨粉进行配碳,碳黑为C源,配碳量为6.13 wt%,并采用行星式球磨机干磨,球磨时间1~4 h,球料比为10:1~20:1;将球磨后的料置于管式气氛炉内,在氢气气氛下碳化,升温速率为5℃ /min,碳化温度为1280~1420℃,保温1~3 h,制备出超细碳化钨粉。The tungsten powder prepared in step (3) was mixed with carbon, the carbon black was used as the C source, and the carbon content was 6.13 wt%, and it was dry-milled with a planetary ball mill. The ball-milling time was 1-4 h, and the ball-to-material ratio was 10:1. ~20:1; put the ball-milled material in a tubular atmosphere furnace, and carbonize it in a hydrogen atmosphere. The heating rate is 5°C/min, the carbonization temperature is 1280-1420°C, and the heat preservation is 1-3 h. Tungsten carbide powder.
As和P元素普遍存在于钨矿石内,在钨冶金过程中,为了将其去除而增加一道“镁盐沉淀法除As和P”工序。而我们研究发现,As和P元素在WC粉的制备过程中具有显著地晶粒细化作用。通过在仲钨酸铵或偏钨酸铵中添加一定量的As和P元素,采用传统的WC粉制备工艺,即可制备出分散性良好、粒度均匀的超细WC粉。本发明“一种含砷和磷的仲钨酸铵和偏钨酸铵制备超细碳化钨粉的方法”不仅解决了传统WC粉制备过程中,WC颗粒易因高温而长大的问题;而且为今后钨冶金过程中,考虑省去“镁盐沉淀法除As和P”工序,利用As和P的细化作用制备出优良超细WC粉提供实验依据。As and P elements are commonly found in tungsten ore. In the process of tungsten metallurgy, in order to remove them, a process of "removing As and P by magnesium salt precipitation" is added. However, our research found that As and P elements have a significant effect on grain refinement during the preparation of WC powder. By adding a certain amount of As and P elements to ammonium paratungstate or ammonium metatungstate, the traditional WC powder preparation process can be used to prepare ultrafine WC powder with good dispersion and uniform particle size. The present invention "a method for preparing superfine tungsten carbide powder from ammonium paratungstate and ammonium metatungstate containing arsenic and phosphorus" not only solves the problem that WC particles are easy to grow due to high temperature in the traditional WC powder preparation process; In the metallurgical process, it is considered to omit the "magnesium salt precipitation method to remove As and P" process, and use the refinement of As and P to prepare excellent ultra-fine WC powder to provide an experimental basis.
本发明采用的是钨粉碳化法制备超细碳化钨粉;而本发明人申请的另一发明专利“一种含砷的偏钨酸铵制备超细碳化钨粉的方法”(申请号:2015101692112)则采用氧化钨一步还原碳化法制备超细碳化钨粉。这两种超细钨粉的制备方法相比,氧化钨一步还原碳化法制备超细碳化钨粉中游离碳含量很难控制;而钨粉碳化法制备出的超细碳化钨粉中的游离碳含量很少。The present invention adopts tungsten powder carbonization method to prepare ultra-fine tungsten carbide powder; and another invention patent applied by the inventor is "A method for preparing ultra-fine tungsten carbide powder with arsenic-containing ammonium metatungstate" (application number: 2015101692112 ) uses tungsten oxide one-step reduction carbonization method to prepare ultra-fine tungsten carbide powder. Compared with the preparation methods of these two ultrafine tungsten powders, the free carbon content in the ultrafine tungsten carbide powder prepared by the tungsten oxide one-step reduction carbonization method is difficult to control; while the free carbon content in the ultrafine tungsten carbide powder prepared by the tungsten powder carbonization method The content is very small.
本发明制备超细碳化钨粉的方法工艺简单,生产成本低廉,适合工厂批量生产超细碳化钨粉,制备出的碳化钨粉分散性良好且粒度分布均匀,其粒径为120~200 nm,有效地推进了超细WC-Co硬质合金的发展与应用。The method for preparing ultra-fine tungsten carbide powder of the present invention has simple process and low production cost, and is suitable for mass production of ultra-fine tungsten carbide powder in factories. The prepared tungsten carbide powder has good dispersibility and uniform particle size distribution, and its particle size is 120-200 nm. Effectively promote the development and application of ultra-fine WC-Co cemented carbide.
附图说明Description of drawings
图1为实施例1制备出的超细碳化钨粉的SEM形貌图。Fig. 1 is the SEM topography diagram of the ultrafine tungsten carbide powder prepared in Example 1.
图2为实施例1制备出的超细碳化钨粉的XRD衍射图谱。Figure 2 is the XRD diffraction pattern of the ultrafine tungsten carbide powder prepared in Example 1.
具体实施方式detailed description
下面通过附图和具体实施方式对本发明做进一步说明,但并不意味着对本发明保护范围的限制。The present invention will be further described below through the drawings and specific embodiments, but it does not mean to limit the protection scope of the present invention.
实施例1。Example 1.
A. 按下述质量百分比配料,仲钨酸铵(APT)为99.4wt%,砷为0.3wt%,磷为0.3wt%。将0.30 g As溶于100 ml质量百分比浓度为65%的硝酸中,水浴加热10 h,加热温度为30℃。待As完全溶解后,将99.40 g APT和1.44 g磷酸铵((NH4)3PO4)加入到As的硝酸溶液中,电动搅拌使原料充分混合。A. According to the following mass percentage, ammonium paratungstate (APT) is 99.4wt%, arsenic is 0.3wt%, and phosphorus is 0.3wt%. Dissolve 0.30 g of As in 100 ml of nitric acid with a concentration of 65% by mass, and heat in a water bath for 10 h at a temperature of 30 °C. After As was completely dissolved, 99.40 g of APT and 1.44 g of ammonium phosphate ((NH 4 ) 3 PO 4 ) were added into the nitric acid solution of As, and the raw materials were fully mixed by electric stirring.
B. 待原料混合均匀后,放入烘箱内烘干,烘箱温度为80℃,时间10 h,制得含砷和磷的仲钨酸铵前驱体复合粉末。B. After the raw materials are mixed evenly, put them into an oven and dry them at 80°C for 10 hours to prepare the ammonium paratungstate precursor composite powder containing arsenic and phosphorus.
C. 将含砷和磷的仲钨酸铵前驱体复合粉末放入箱式电阻炉中,在空气气氛下直接焙烧,焙烧温度为600℃,保温2h,制备三氧化钨粉。C. Put the ammonium paratungstate precursor composite powder containing arsenic and phosphorus into a box-type resistance furnace, and directly roast it in an air atmosphere at a roasting temperature of 600°C for 2 hours to prepare tungsten trioxide powder.
D. 将制得的黄色三氧化钨粉末放入管式气氛炉中,通入氢气进行还原,升温速率5℃/min,还原温度为800℃,保温时间3h,制备钨粉。D. Put the prepared yellow tungsten trioxide powder into a tubular atmosphere furnace, pass in hydrogen for reduction, the heating rate is 5°C/min, the reduction temperature is 800°C, and the holding time is 3h to prepare tungsten powder.
E. 将制得的钨粉进行配碳,碳黑为C源,配碳量为6.13 wt%,并采用行星式球磨机干磨,球磨时间2 h,球料比为15:1。E. The prepared tungsten powder was mixed with carbon, the carbon black was used as the C source, and the carbon content was 6.13 wt%, and it was dry-milled with a planetary ball mill for 2 hours, and the ball-to-material ratio was 15:1.
F. 将球磨后的料置于管式气氛炉内,在氢气气氛下碳化,升温速率为5℃ /min,碳化温度为1280~1420℃,保温2 h,制备超细碳化钨粉。F. Put the ball-milled material in a tubular atmosphere furnace and carbonize it in a hydrogen atmosphere. The heating rate is 5°C/min, the carbonization temperature is 1280~1420°C, and the temperature is kept for 2 hours to prepare ultrafine tungsten carbide powder.
按上述所描述的方法制成的碳化钨粉分散性良好、粒度均匀,其SEM照片和XRD衍射图谱分别见附图1和2,超细碳化钨粉平均粒径为180 nm。The tungsten carbide powder produced by the method described above has good dispersion and uniform particle size. The SEM photos and XRD diffraction patterns are shown in Figures 1 and 2, respectively. The average particle size of the ultrafine tungsten carbide powder is 180 nm.
实施例2。Example 2.
A. 按下述质量百分比配料,仲钨酸铵(APT)为99.7wt%,砷为0.15wt%,磷为0.15wt%。将0.15 g As溶于100 ml质量百分比浓度为68%的硝酸中,水浴加热10 h,加热温度为30℃。待As完全溶解后,将99.70 g APT和0.72 g磷酸铵((NH4)3PO4)加入到As的硝酸溶液中,电动搅拌使原料充分混合。A. According to the following mass percentages, ammonium paratungstate (APT) is 99.7wt%, arsenic is 0.15wt%, and phosphorus is 0.15wt%. 0.15 g As was dissolved in 100 ml of nitric acid with a concentration of 68% by mass, and heated in a water bath for 10 h at a temperature of 30 °C. After the As was completely dissolved, 99.70 g of APT and 0.72 g of ammonium phosphate ((NH 4 ) 3 PO 4 ) were added into the nitric acid solution of As, and the raw materials were fully mixed by electric stirring.
B. 待原料混合均匀后,放入烘箱内烘干,烘箱温度为80℃,时间10 h,制得含砷和磷的仲钨酸铵前驱体复合粉末。B. After the raw materials are mixed evenly, put them into an oven and dry them at 80°C for 10 hours to prepare the ammonium paratungstate precursor composite powder containing arsenic and phosphorus.
C. 将含砷和磷的仲钨酸铵前驱体复合粉末放入箱式电阻炉中,在空气气氛下直接焙烧,焙烧温度为600℃,保温2h,制备三氧化钨粉。C. Put the ammonium paratungstate precursor composite powder containing arsenic and phosphorus into a box-type resistance furnace, and directly roast it in an air atmosphere at a roasting temperature of 600°C for 2 hours to prepare tungsten trioxide powder.
D. 将制得的黄色三氧化钨粉末放入管式气氛炉中,通入氢气进行还原,升温速率5℃/min,还原温度为800℃,保温时间3h,制备钨粉。D. Put the prepared yellow tungsten trioxide powder into a tubular atmosphere furnace, pass in hydrogen for reduction, the heating rate is 5°C/min, the reduction temperature is 800°C, and the holding time is 3h to prepare tungsten powder.
E. 将制得的钨粉进行配碳,碳黑为C源,配碳量为6.13 wt%,并采用行星式球磨机干磨,球磨时间2 h,球料比为15:1。E. The prepared tungsten powder was mixed with carbon, the carbon black was used as the C source, and the carbon content was 6.13 wt%, and it was dry-milled with a planetary ball mill for 2 hours, and the ball-to-material ratio was 15:1.
F. 将球磨后的料置于管式气氛炉内,在氢气气氛下碳化,升温速率为5℃ /min,碳化温度为1280~1420℃,保温2 h,制备超细碳化钨粉。F. Put the ball-milled material in a tubular atmosphere furnace and carbonize it in a hydrogen atmosphere. The heating rate is 5°C/min, the carbonization temperature is 1280~1420°C, and the temperature is kept for 2 hours to prepare ultrafine tungsten carbide powder.
按上述所描述的方法制成的碳化钨粉粒度均匀,平均粒度为150 nm。The tungsten carbide powder produced by the method described above has a uniform particle size, with an average particle size of 150 nm.
实施例3。Example 3.
A. 按下述质量百分比配料,偏钨酸铵(AMT)为99.4wt%,砷为0.3wt%,磷为0.3wt%。将0.30 g As溶于100 ml质量百分比浓度为67%的硝酸中,水浴加热10 h,加热温度为30℃。待As完全溶解后,将99.40 g AMT和1.44 g磷酸铵((NH4)3PO4)加入到As的硝酸溶液中,电动搅拌使原料充分混合。A. According to the following mass percentage, ammonium metatungstate (AMT) is 99.4wt%, arsenic is 0.3wt%, and phosphorus is 0.3wt%. Dissolve 0.30 g of As in 100 ml of nitric acid with a concentration of 67% by mass, and heat in a water bath for 10 h at a temperature of 30 °C. After As was completely dissolved, 99.40 g of AMT and 1.44 g of ammonium phosphate ((NH 4 ) 3 PO 4 ) were added into the nitric acid solution of As, and the raw materials were fully mixed by electric stirring.
B. 待原料混合均匀后,放入烘箱内烘干,烘箱温度为80℃,时间10 h,制得含砷和磷的偏钨酸铵前驱体复合粉末。B. After the raw materials are mixed evenly, put them into an oven and dry them at 80°C for 10 hours to prepare the ammonium metatungstate precursor composite powder containing arsenic and phosphorus.
C. 将含砷和磷的偏钨酸铵前驱体复合粉末放入箱式电阻炉中,在空气气氛下直接焙烧,焙烧温度为600℃,保温2h,制备三氧化钨粉末。C. Put the ammonium metatungstate precursor composite powder containing arsenic and phosphorus into a box-type resistance furnace, and directly roast it in an air atmosphere at a roasting temperature of 600°C for 2 hours to prepare tungsten trioxide powder.
D. 将制得的黄色三氧化钨粉末放入管式气氛炉中,通入氢气进行还原,升温速率5℃/min,还原温度为800℃,保温时间3h,制备钨粉。D. Put the prepared yellow tungsten trioxide powder into a tubular atmosphere furnace, pass in hydrogen for reduction, the heating rate is 5°C/min, the reduction temperature is 800°C, and the holding time is 3h to prepare tungsten powder.
E. 将制得的钨粉进行配碳,碳黑为C源,配碳量为6.13 wt%,并采用行星式球磨机干磨,球磨时间2 h,球料比为15:1。E. The prepared tungsten powder was mixed with carbon, the carbon black was used as the C source, and the carbon content was 6.13 wt%, and it was dry-milled with a planetary ball mill for 2 hours, and the ball-to-material ratio was 15:1.
F. 将球磨后的料置于管式气氛炉内,在氢气气氛下碳化,升温速率为5℃ /min,碳化温度为1280~1420℃,保温2 h,制备超细碳化钨粉。F. Put the ball-milled material in a tubular atmosphere furnace and carbonize it in a hydrogen atmosphere. The heating rate is 5°C/min, the carbonization temperature is 1280~1420°C, and the temperature is kept for 2 hours to prepare ultrafine tungsten carbide powder.
按上述所描述的方法制成的碳化钨粉粒度均匀,平均粒度为175 nm。The tungsten carbide powder produced by the method described above has a uniform particle size, with an average particle size of 175 nm.
实施例4。Example 4.
A. 按下述质量百分比配料,偏钨酸铵(AMT)为99.7wt%,砷为0.15wt%,磷为0.15wt%。将0.15 g As溶于100 ml质量百分比浓度为68%的硝酸中,水浴加热10 h,加热温度为30℃。待As完全溶解后,将99.70 g AMT和0.72 g磷酸铵((NH4)3PO4)加入到As的硝酸溶液中,电动搅拌使原料充分混合。A. According to the following mass percentage, ammonium metatungstate (AMT) is 99.7wt%, arsenic is 0.15wt%, and phosphorus is 0.15wt%. 0.15 g As was dissolved in 100 ml of nitric acid with a concentration of 68% by mass, and heated in a water bath for 10 h at a temperature of 30 °C. After As was completely dissolved, 99.70 g of AMT and 0.72 g of ammonium phosphate ((NH 4 ) 3 PO 4 ) were added into the As nitric acid solution, and the raw materials were fully mixed with electric stirring.
B. 待原料混合均匀后,放入烘箱内烘干,烘箱温度为80℃,时间10 h,制得含砷和磷的偏钨酸铵前驱体复合粉末。B. After the raw materials are mixed evenly, put them into an oven and dry them at 80°C for 10 hours to prepare the ammonium metatungstate precursor composite powder containing arsenic and phosphorus.
C. 将含砷和磷的偏钨酸铵前驱体复合粉末放入箱式电阻炉中,在空气气氛下直接焙烧,焙烧温度为600℃,保温2h,制备三氧化钨粉末。C. Put the ammonium metatungstate precursor composite powder containing arsenic and phosphorus into a box-type resistance furnace, and directly roast it in an air atmosphere at a roasting temperature of 600°C for 2 hours to prepare tungsten trioxide powder.
D. 将制得的黄色三氧化钨粉末放入管式气氛炉中,通入氢气进行还原,升温速率5℃/min,还原温度为800℃,保温时间3h,制备钨粉。D. Put the prepared yellow tungsten trioxide powder into a tubular atmosphere furnace, pass in hydrogen for reduction, the heating rate is 5°C/min, the reduction temperature is 800°C, and the holding time is 3h to prepare tungsten powder.
E. 将制得的钨粉进行配碳,碳黑为C源,配碳量为6.13 wt%,并采用行星式球磨机干磨,球磨时间2 h,球料比为15:1。E. The prepared tungsten powder was mixed with carbon, the carbon black was used as the C source, and the carbon content was 6.13 wt%, and it was dry-milled with a planetary ball mill for 2 hours, and the ball-to-material ratio was 15:1.
F. 将球磨后的料置于管式气氛炉内,在氢气气氛下碳化,升温速率为5℃ /min,碳化温度为1280~1420℃,保温2 h,制备超细碳化钨粉。F. Put the ball-milled material in a tubular atmosphere furnace and carbonize it in a hydrogen atmosphere. The heating rate is 5°C/min, the carbonization temperature is 1280~1420°C, and the temperature is kept for 2 hours to prepare ultrafine tungsten carbide powder.
按上述所描述的方法制成的碳化钨粉粒度均匀,平均粒度为140 nm。The tungsten carbide powder produced by the method described above has a uniform particle size, with an average particle size of 140 nm.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610502973.4A CN106185944B (en) | 2016-07-01 | 2016-07-01 | The method that a kind of ammonium paratungstate or ammonium metatungstate containing arsenic and phosphorus prepare superfine tungsten carbide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610502973.4A CN106185944B (en) | 2016-07-01 | 2016-07-01 | The method that a kind of ammonium paratungstate or ammonium metatungstate containing arsenic and phosphorus prepare superfine tungsten carbide |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106185944A true CN106185944A (en) | 2016-12-07 |
CN106185944B CN106185944B (en) | 2018-01-19 |
Family
ID=57463208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610502973.4A Active CN106185944B (en) | 2016-07-01 | 2016-07-01 | The method that a kind of ammonium paratungstate or ammonium metatungstate containing arsenic and phosphorus prepare superfine tungsten carbide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106185944B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107128921A (en) * | 2017-04-24 | 2017-09-05 | 赣州有色冶金研究所 | A kind of method for preparing niobium tungsten binary double carbide nano powder |
CN107265458A (en) * | 2017-07-01 | 2017-10-20 | 赣州海盛钨钼集团有限公司 | Tungsten powder grading system for extra-coarse grained carbide alloy method |
CN107867691A (en) * | 2017-11-30 | 2018-04-03 | 株洲三鑫硬质合金生产有限公司 | A kind of preparation method and application of high-quality coarse-grained WC powder |
CN108217655A (en) * | 2018-01-15 | 2018-06-29 | 中国科学院过程工程研究所 | A kind of nanometer tungsten carbide preparation system and preparation method |
CN108892141A (en) * | 2018-09-06 | 2018-11-27 | 北京科技大学 | A kind of high-purity, ultrafine tungsten carbide preparation method |
CN110127703A (en) * | 2019-06-20 | 2019-08-16 | 蓬莱市超硬复合材料有限公司 | Preparation method that is scattered, crystallizing complete, purity is high superfine tungsten carbide powder |
CN111961941A (en) * | 2020-09-02 | 2020-11-20 | 四川大学 | Preparation method of ultra-fine carbide tool material |
CN114525416A (en) * | 2022-02-21 | 2022-05-24 | 江西理工大学 | Method for preparing ultrafine tungsten powder and elemental arsenic based on ammonium arsenotungstate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101633502A (en) * | 2009-08-13 | 2010-01-27 | 南昌硬质合金有限责任公司 | Method for preparing micro-fine and nanometer particle tungsten carbide |
CN103408015A (en) * | 2013-09-02 | 2013-11-27 | 株洲硬质合金集团有限公司 | Preparation method of ultrafine tungsten carbide powder |
CN103626181A (en) * | 2013-12-12 | 2014-03-12 | 株洲硬质合金集团有限公司 | Method for preparing uniform and ultrafine tungsten carbide |
CN103978224A (en) * | 2014-05-13 | 2014-08-13 | 南昌大学 | Method for preparing tungsten nano-powder from arsenic-doped ammonium paratungstate or ammonium metatungstate |
CN104803385A (en) * | 2015-04-13 | 2015-07-29 | 南昌大学 | Method for preparing ultrafine tungsten carbide powder from arsenic-containing ammonium metatungstate |
-
2016
- 2016-07-01 CN CN201610502973.4A patent/CN106185944B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101633502A (en) * | 2009-08-13 | 2010-01-27 | 南昌硬质合金有限责任公司 | Method for preparing micro-fine and nanometer particle tungsten carbide |
CN103408015A (en) * | 2013-09-02 | 2013-11-27 | 株洲硬质合金集团有限公司 | Preparation method of ultrafine tungsten carbide powder |
CN103626181A (en) * | 2013-12-12 | 2014-03-12 | 株洲硬质合金集团有限公司 | Method for preparing uniform and ultrafine tungsten carbide |
CN103978224A (en) * | 2014-05-13 | 2014-08-13 | 南昌大学 | Method for preparing tungsten nano-powder from arsenic-doped ammonium paratungstate or ammonium metatungstate |
CN104803385A (en) * | 2015-04-13 | 2015-07-29 | 南昌大学 | Method for preparing ultrafine tungsten carbide powder from arsenic-containing ammonium metatungstate |
Non-Patent Citations (1)
Title |
---|
HONGBO ZHU ET AL: ""Refining mechanisms of arsenic in the hydrogen reduction process of tungsten oxide"", 《ADVANCED POWDER TECHNOLOGY》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107128921A (en) * | 2017-04-24 | 2017-09-05 | 赣州有色冶金研究所 | A kind of method for preparing niobium tungsten binary double carbide nano powder |
CN107128921B (en) * | 2017-04-24 | 2019-03-05 | 赣州有色冶金研究所 | A method of preparing niobium tungsten binary double carbide nano powder |
CN107265458A (en) * | 2017-07-01 | 2017-10-20 | 赣州海盛钨钼集团有限公司 | Tungsten powder grading system for extra-coarse grained carbide alloy method |
CN107867691A (en) * | 2017-11-30 | 2018-04-03 | 株洲三鑫硬质合金生产有限公司 | A kind of preparation method and application of high-quality coarse-grained WC powder |
CN108217655A (en) * | 2018-01-15 | 2018-06-29 | 中国科学院过程工程研究所 | A kind of nanometer tungsten carbide preparation system and preparation method |
CN108217655B (en) * | 2018-01-15 | 2019-10-22 | 中国科学院过程工程研究所 | A kind of nano tungsten carbide preparation system and preparation method |
CN108892141A (en) * | 2018-09-06 | 2018-11-27 | 北京科技大学 | A kind of high-purity, ultrafine tungsten carbide preparation method |
CN110127703A (en) * | 2019-06-20 | 2019-08-16 | 蓬莱市超硬复合材料有限公司 | Preparation method that is scattered, crystallizing complete, purity is high superfine tungsten carbide powder |
CN111961941A (en) * | 2020-09-02 | 2020-11-20 | 四川大学 | Preparation method of ultra-fine carbide tool material |
CN111961941B (en) * | 2020-09-02 | 2021-02-12 | 四川大学 | Preparation method of superfine hard alloy cutter material |
CN114525416A (en) * | 2022-02-21 | 2022-05-24 | 江西理工大学 | Method for preparing ultrafine tungsten powder and elemental arsenic based on ammonium arsenotungstate |
CN114525416B (en) * | 2022-02-21 | 2023-09-19 | 江西理工大学 | A method for preparing ultrafine tungsten powder and elemental arsenic based on ammonium arsenic tungstate |
Also Published As
Publication number | Publication date |
---|---|
CN106185944B (en) | 2018-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106185944B (en) | The method that a kind of ammonium paratungstate or ammonium metatungstate containing arsenic and phosphorus prepare superfine tungsten carbide | |
CN103978224B (en) | The method of nano-tungsten powder prepared by a kind of arsenic doping ammonium paratungstate or ammonium metatungstate | |
CN100444997C (en) | A Simple and Rapid Preparation Method of Ultrafine WC-Co Composite Powder | |
CN106825599A (en) | A kind of preparation method of the WC Co nanometer powders for adding grain growth inhibitor | |
CN103302309B (en) | A kind of preparation method of nanometer tungsten carbide | |
JP2004323968A (en) | Method for producing ultrafine TiC-transition metal based composite powder | |
US6293989B1 (en) | Method of producing nanophase WC/TiC/Co composite powder | |
CN104803385B (en) | Method for preparing ultrafine tungsten carbide powder from arsenic-containing ammonium metatungstate | |
CN106041111B (en) | The method that a kind of ammonium paratungstate or ammonium metatungstate containing arsenic and phosphorus prepare nano-tungsten powder | |
CN101428344A (en) | Nano-scale wolfram carbine composite powder and method of manufacturing the same | |
CN102603007A (en) | Preparation method of tungsten oxide nano powder and metal tungsten nano powder | |
CN108080647B (en) | Nano/superfine WC-Co composite powder and preparation method thereof | |
CN102674844A (en) | Method for preparing nanometer vanadium/chromium carbide composite powder by reduction with microwave method | |
CN103962575A (en) | Method for preparing ultra-fine tungsten powder through rare-earth yttrium-doped ammonium paratungstate | |
CN103979508B (en) | A kind of preparation method of nano Ti(C,N) solid solution powder | |
CN107470646B (en) | A kind of preparation method of ultrafine tungsten powder composite powder | |
CN106756168B (en) | The method that one kind prepares Ti (C, N) based ceramic metal based on carbon thermal reduction molybdenum trioxide | |
CN103274407B (en) | Preparation method of composite crystalline grain growth inhibitor with adjustable ratio | |
CN108044126A (en) | The method that platy structure WC-Co composite powder end is prepared using scrap hard alloy | |
JP2004332103A (en) | Method for producing nanostructured TaC-transition metal based composite powder | |
CN110055417B (en) | A kind of method for efficiently separating vanadium and titanium from vanadium slag mixture | |
CN112209446B (en) | Method for recycling Cr-containing tungsten carbide waste and application thereof | |
CN110817896B (en) | A kind of preparation method of nanometer titanium diboride powder | |
CN103302308A (en) | Preparation method of nano tungsten powder | |
CN103979566A (en) | Preparation method of vanadium diboride powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |