CN106169617A - A kind of space safety high power lithium ion accumulator - Google Patents
A kind of space safety high power lithium ion accumulator Download PDFInfo
- Publication number
- CN106169617A CN106169617A CN201610875207.2A CN201610875207A CN106169617A CN 106169617 A CN106169617 A CN 106169617A CN 201610875207 A CN201610875207 A CN 201610875207A CN 106169617 A CN106169617 A CN 106169617A
- Authority
- CN
- China
- Prior art keywords
- lithium
- positive electrode
- component
- negative electrode
- space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 35
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000011248 coating agent Substances 0.000 claims abstract description 14
- 238000000576 coating method Methods 0.000 claims abstract description 14
- 238000003860 storage Methods 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 11
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 10
- 239000007774 positive electrode material Substances 0.000 claims abstract description 10
- 239000003792 electrolyte Substances 0.000 claims abstract description 6
- PFYQFCKUASLJLL-UHFFFAOYSA-N [Co].[Ni].[Li] Chemical compound [Co].[Ni].[Li] PFYQFCKUASLJLL-UHFFFAOYSA-N 0.000 claims abstract description 4
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims abstract description 4
- 239000002245 particle Substances 0.000 claims description 15
- 239000006258 conductive agent Substances 0.000 claims description 11
- 239000011883 electrode binding agent Substances 0.000 claims description 8
- 239000006229 carbon black Substances 0.000 claims description 7
- 239000002041 carbon nanotube Substances 0.000 claims description 7
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 7
- 239000002033 PVDF binder Substances 0.000 claims description 6
- 239000007773 negative electrode material Substances 0.000 claims description 6
- -1 polytetrafluoroethylene Polymers 0.000 claims description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 6
- 229910021389 graphene Inorganic materials 0.000 claims description 5
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 4
- 229910021383 artificial graphite Inorganic materials 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 claims description 2
- 229910021385 hard carbon Inorganic materials 0.000 claims description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 claims description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 claims description 2
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 2
- 239000004005 microsphere Substances 0.000 claims description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052744 lithium Inorganic materials 0.000 abstract description 4
- 239000011149 active material Substances 0.000 abstract description 3
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 abstract 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 abstract 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 abstract 1
- 229910001947 lithium oxide Inorganic materials 0.000 abstract 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 abstract 1
- 238000002360 preparation method Methods 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- SJHAYVFVKRXMKG-UHFFFAOYSA-N 4-methyl-1,3,2-dioxathiolane 2-oxide Chemical compound CC1COS(=O)O1 SJHAYVFVKRXMKG-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910000572 Lithium Nickel Cobalt Manganese Oxide (NCM) Inorganic materials 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- FBDMTTNVIIVBKI-UHFFFAOYSA-N [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] Chemical compound [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] FBDMTTNVIIVBKI-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000001467 acupuncture Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011076 safety test Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了一种空间用安全高功率锂离子蓄电池,其包括正极片、负极片、将正负极分开的隔膜、电解液,正极片包括正极集流体以及涂覆于正极集流体表面的正极活性涂层,该正极活性涂层包含正极活性物质,该正极活性物质是由组分A与组分B组成的混合型体系,组分A为钴酸锂、镍钴铝酸锂、镍钴锰酸锂中的至少一种,组分A的材料外表面包覆导电碳层,该导电碳层的质量与组分A的质量比为(0.1‑2):100,碳层厚度为纳米级;组分B选自锰酸锂和磷酸铁锂中的至少一种;组分B占正极活性物质的质量百分比为5%~50%。与现有技术相比,本发明中混合正极体系的使用可以大大提高空间锂离子电池的倍率性能和安全性能,拓展锂离子电池在空间电源中的应用。
The invention discloses a safe high-power lithium-ion storage battery for space use, which includes a positive electrode sheet, a negative electrode sheet, a diaphragm separating the positive and negative electrodes, and an electrolyte, and the positive electrode sheet includes a positive electrode collector and a positive electrode coated on the surface of the positive electrode collector Active coating, the positive active coating contains a positive active material, the positive active material is a mixed system composed of component A and component B, component A is lithium cobaltate, lithium nickel cobalt aluminate, nickel cobalt manganese At least one of lithium oxide, the outer surface of the material of component A is covered with a conductive carbon layer, the mass ratio of the conductive carbon layer to component A is (0.1‑2): 100, and the thickness of the carbon layer is nanoscale; The component B is selected from at least one of lithium manganese oxide and lithium iron phosphate; the mass percentage of the component B in the active material of the positive electrode is 5%-50%. Compared with the prior art, the use of the mixed positive electrode system in the present invention can greatly improve the rate performance and safety performance of the space lithium-ion battery, and expand the application of the lithium-ion battery in the space power supply.
Description
技术领域technical field
本发明属于锂离子蓄电池的技术领域,具体涉及一种混合体系型空间用安全高功率锂离子蓄电池。The invention belongs to the technical field of lithium ion accumulators, and in particular relates to a safe high-power lithium ion accumulator for hybrid system type space.
背景技术Background technique
锂离子蓄电池相对于铅酸电池、镉镍电池、氢镍电池具有更高的能量密度、长循环寿命以及更低自放电率等优点,当前已广泛应用于各类电子产品、新能源汽车以及空间卫星电源分系统中。Compared with lead-acid batteries, nickel-cadmium batteries, and nickel-hydrogen batteries, lithium-ion batteries have the advantages of higher energy density, long cycle life, and lower self-discharge rate. They have been widely used in various electronic products, new energy vehicles, and space In the satellite power subsystem.
目前在空间储能电源用锂离子蓄电池均为高比能量型,单体电池比能量较高,适用于轻量化以及长寿命卫星电源。而随着空间载荷对电源系统功率需求的不断提升,高比功率锂离子蓄电池因其较高的比功率且兼顾一定的比能量得到广泛关注。目前在空间用的高比功率锂离子蓄电池技术发展相对缓慢,相应的技术仍不成熟,同时由于高功率锂离子蓄电池在大电流放电时通常会产生高热量,因此提高蓄电池的安全性也至关重要。At present, lithium-ion batteries used in space energy storage power supply are all high specific energy type, and the specific energy of single battery is high, which is suitable for lightweight and long-life satellite power supply. With the continuous increase of space load on power system power requirements, high specific power lithium-ion batteries have attracted widespread attention due to their high specific power and a certain specific energy. At present, the development of high-power lithium-ion battery technology used in space is relatively slow, and the corresponding technology is still immature. At the same time, because high-power lithium-ion batteries usually generate high heat when they are discharged with large currents, it is also crucial to improve the safety of batteries. important.
为此,本发明从改善锂离子蓄电池电化学体系出发,在提高电池功率密度的同时增加电池的本征安全性,进一步拓展了其在卫星平台中的应用领域。For this reason, the present invention starts from improving the electrochemical system of the lithium-ion storage battery, increases the intrinsic safety of the battery while increasing the power density of the battery, and further expands its application field in satellite platforms.
发明内容Contents of the invention
本发明的目的是为了解决上述技术问题而设计的一种混合体系型空间用高功率锂离子蓄电池,该锂离子电池具有高倍率性能和安全性能等技术特点。The object of the present invention is to solve the above-mentioned technical problems and design a hybrid system high-power lithium-ion storage battery for space. The lithium-ion battery has technical characteristics such as high rate performance and safety performance.
为达到上述目的,本发明提供了一种空间用安全高功率锂离子蓄电池,包括正极片、负极片、将正负极分开的隔膜、电解液,以及空间用锂离子蓄电池全密封壳体,所述的正极片包括正极集流体以及涂覆于正极集流体表面的正极活性涂层,按质量百分比,所述的正极活性涂层包括以下组分:In order to achieve the above object, the present invention provides a safe high-power lithium-ion storage battery for space, including a positive electrode sheet, a negative electrode sheet, a diaphragm separating the positive and negative electrodes, an electrolyte, and a fully sealed casing for the lithium-ion storage battery for space use. The positive electrode sheet includes a positive electrode current collector and a positive electrode active coating coated on the surface of the positive electrode current collector. By mass percentage, the positive electrode active coating includes the following components:
正极活性物质:85%~95%;Positive active material: 85%~95%;
正极导电剂:0.1%~10%;Positive electrode conductive agent: 0.1%~10%;
正极粘接剂:0.1%~10%;Positive electrode binder: 0.1%~10%;
所述正极活性物质是由组分A与组分B组成的混合型体系,所述组分A为钴酸锂、镍钴铝酸锂、镍钴锰酸锂中的至少一种,所述组分B选自锰酸锂和磷酸铁锂中的至少一种;The positive electrode active material is a mixed system composed of component A and component B, and the component A is at least one of lithium cobalt oxide, lithium nickel cobalt aluminate, and lithium nickel cobalt manganese oxide. Part B is selected from at least one of lithium manganate and lithium iron phosphate;
所述组分B占正极活性物质的质量百分比为5%~50%。组分B占正极活性物质的质量百分比不能太高,否则会降低电池的容量及比能量,也不能太低,否则无法提高电池的安全性。The component B accounts for 5%-50% by mass of the positive electrode active material. The mass percentage of component B in the positive electrode active material cannot be too high, otherwise the capacity and specific energy of the battery will be reduced, and it should not be too low, otherwise the safety of the battery cannot be improved.
优选地,所述的组分A的粒径D50为5~10um,组分B的粒径D50为4~10um。Preferably, the particle diameter D50 of the component A is 5-10um, and the particle diameter D50 of the component B is 4-10um.
为提高锂离子电池的倍率特性,所述的组分A的材料外表面包覆有导电碳层,所述的碳层的质量与所述组分A的质量比为(0.1-2):100,碳层厚度为纳米级。In order to improve the rate characteristics of the lithium-ion battery, the outer surface of the material of the component A is covered with a conductive carbon layer, and the mass ratio of the carbon layer to the component A is (0.1-2): 100 , the thickness of the carbon layer is nanoscale.
所述的正极导电剂选择导电超级炭黑、碳纳米管及石墨烯中的至少一种。The positive electrode conductive agent is selected from at least one of conductive super carbon black, carbon nanotubes and graphene.
所述的正极粘接剂选择聚偏氟乙烯、丁苯橡胶和聚四氟乙烯中的至少一种。The positive electrode binder is selected from at least one of polyvinylidene fluoride, styrene-butadiene rubber and polytetrafluoroethylene.
所述的负极片包括负极集流体以及涂覆于负极集流体表面的负极活性涂层,按质量百分比,所述负极活性涂层包括以下组分:The negative electrode sheet includes a negative electrode current collector and a negative electrode active coating coated on the surface of the negative electrode current collector. By mass percentage, the negative electrode active coating includes the following components:
负极活性物质:80%~95%;Negative electrode active material: 80%~95%;
负极导电剂:1%~10%;Negative electrode conductive agent: 1%~10%;
负极粘接剂:1%~10%;Negative electrode binder: 1%~10%;
所述的负极活性物质为人造石墨、中间相碳微球、硬碳、锡金属合金的至少一种。The negative electrode active material is at least one of artificial graphite, mesocarbon microspheres, hard carbon, and tin metal alloy.
所述的负极活性物质的粒径D50为5~10um,粒径小,材料粒径分布窄。The particle size D50 of the negative electrode active material is 5-10um, the particle size is small, and the particle size distribution of the material is narrow.
所述的负极导电剂选择导电超级炭黑、碳纳米管及石墨烯中的至少一种。The negative electrode conductive agent is selected from at least one of conductive super carbon black, carbon nanotubes and graphene.
作为本发明空间安全高功率锂离子蓄电池的一种改进,所述的正极导电剂和负极导电剂均为导电超级炭黑和碳纳米管、石墨烯中的至少一种。通过一些二维以及三维导电材料的引入构建三维导电网络,提高电极材料活性物质之间的电接触,增强极片导电能力以及与集流体的电接触。同时一定的高效导电剂加入可以更好的串联活性物质与集流体间接触力,增强电极片的韧性。As an improvement of the space-safe high-power lithium-ion battery of the present invention, the positive electrode conductive agent and the negative electrode conductive agent are at least one of conductive super carbon black, carbon nanotubes, and graphene. Through the introduction of some two-dimensional and three-dimensional conductive materials to build a three-dimensional conductive network, improve the electrical contact between the active materials of the electrode material, enhance the electrical conductivity of the pole piece and the electrical contact with the current collector. At the same time, the addition of a certain high-efficiency conductive agent can better connect the contact force between the active material and the current collector in series, and enhance the toughness of the electrode sheet.
所述的负极粘接剂选择聚偏氟乙烯、丁苯橡胶和聚四氟乙烯中的至少一种。The negative electrode binder is selected from at least one of polyvinylidene fluoride, styrene-butadiene rubber and polytetrafluoroethylene.
相对于现有技术,本发明具有如下有益效果:本发明通过组分A和组分B进行简单的物理混合,不仅可以兼顾钴酸锂、镍钴铝酸锂、镍钴锰酸锂等材料的高容量和高倍率等特点,以及锰酸锂和磷酸铁锂等的优异的倍率及安全特性优势,而且机械混合简单易于实现。而且,组分A的材料外面包覆的导电碳层,能提高上述混合体系型电池的放电能力,使得电池结构更加稳定,有利于提高电池的循环性能。此外,本发明中材料均选用小尺寸颗粒材料,组分A的粒径D50为5~10um,组分B的粒径D50为4~10um,材料粒径分布窄。小尺寸颗粒的材料具有粒径小,比表面积大的特点,表现出以下优越性:(1)提高锂离子传输的动力学性能。由于颗粒粒径小,锂离子扩散路径短,大大降低了锂离子在固相中的平均扩散时间;更短的传输路径使得大电流充放电成为可能,更大的比表面积降低了实际电流密度,减小了对电极材料的破坏,有利于循环性能的保持;(2)缓解充放电过程中材料结构产生的晶格内应力,表现出较高的嵌锂容量以及长循环寿命。Compared with the prior art, the present invention has the following beneficial effects: the present invention carries out simple physical mixing of component A and component B, not only can take into account lithium cobaltate, lithium nickel cobalt aluminate, lithium nickel cobalt manganate and other materials It has the characteristics of high capacity and high rate, as well as the excellent rate and safety characteristics of lithium manganate and lithium iron phosphate, and the mechanical mixing is simple and easy to realize. Moreover, the conductive carbon layer coated on the outside of the material of component A can improve the discharge capacity of the above-mentioned hybrid battery, make the battery structure more stable, and help improve the cycle performance of the battery. In addition, the materials in the present invention all use small-sized particle materials, the particle size D50 of component A is 5-10um, the particle size D50 of component B is 4-10um, and the particle size distribution of the material is narrow. Materials with small-sized particles have the characteristics of small particle size and large specific surface area, showing the following advantages: (1) Improve the kinetic performance of lithium ion transport. Due to the small particle size and the short diffusion path of lithium ions, the average diffusion time of lithium ions in the solid phase is greatly reduced; the shorter transmission path makes it possible to charge and discharge large currents, and the larger specific surface area reduces the actual current density. The damage to the electrode material is reduced, which is conducive to the maintenance of cycle performance; (2) the internal stress of the lattice generated by the material structure during the charging and discharging process is relieved, showing a high lithium intercalation capacity and a long cycle life.
附图说明Description of drawings
图1为本发明的实施例1的高倍率放电示意图。FIG. 1 is a schematic diagram of a high-rate discharge in Example 1 of the present invention.
具体实施方式detailed description
以下结合实施例和附图对本发明的具体实施方式作进一步地说明。The specific implementation manners of the present invention will be further described below in conjunction with the embodiments and the accompanying drawings.
实施例1-3Example 1-3
实施例1-3提供的锂离子电池,包括正极片、负极片、隔膜以及电解液,电池设计容量4Ah;正极片包括正极集流体和涂覆于正极集流体表面的正极活性涂层,正极集流体为厚度为20um的铝箔;正极活性涂层的配方如表1所示。负极片包括负极集流体和涂覆于负极集流体表面的负极活性涂层,负极集流体为厚度为12um的铜箔;负极活性涂层的配方如表1所示。The lithium ion battery that embodiment 1-3 provides, comprises positive electrode sheet, negative electrode sheet, separator and electrolyte, battery design capacity 4Ah; The fluid is an aluminum foil with a thickness of 20um; the formulation of the positive active coating is shown in Table 1. The negative electrode sheet includes a negative electrode current collector and a negative electrode active coating coated on the surface of the negative electrode current collector. The negative electrode current collector is a copper foil with a thickness of 12um; the formula of the negative electrode active coating is shown in Table 1.
表1:实施例1-3的原料配方(以质量份数计)Table 1: The raw material formula of embodiment 1-3 (in parts by mass)
电解液主要包括有机溶剂、添加剂和锂盐,锂盐为LiFP6,浓度为1.2mol/L,有机溶剂主要为DMC(碳酸二甲酯)、EMCEMC(碳酸甲乙酯)、EC(碳酸乙烯酯)等,同时添加VC(碳酸亚乙烯酯)、PS(亚硫酸丙烯酯)、LiODFB等添加剂。The electrolyte mainly includes organic solvents, additives and lithium salts. The lithium salt is LiFP 6 with a concentration of 1.2mol/L. The organic solvents are mainly DMC (dimethyl carbonate), EMCEMC (ethyl methyl carbonate), EC (ethylene carbonate ), etc., while adding VC (vinylene carbonate), PS (propylene sulfite), LiODFB and other additives.
隔膜的厚度为25um的PP(聚丙烯)/PE(聚乙烯)/PP三层复合膜。The thickness of the diaphragm is PP (polypropylene)/PE (polyethylene)/PP three-layer composite film with a thickness of 25um.
本实施例的电池的制备方法为:The preparation method of the battery of this embodiment is:
正极片的制备:将钴酸锂、锰酸锂、炭黑、碳纳米管、聚偏氟乙烯加入NMP中混合成浆料,均匀涂覆于铝箔上,经干燥、辊压、裁切后,得到正极片;Preparation of positive electrode sheet: Add lithium cobaltate, lithium manganate, carbon black, carbon nanotubes, and polyvinylidene fluoride into NMP and mix them into a slurry, and evenly coat them on aluminum foil. After drying, rolling, and cutting, Get the positive plate;
负极片的制备:将人造石墨、炭黑、碳纳米管聚偏氟乙烯加入NMP中混合成浆料,均匀涂覆于铜箔上,经干燥、辊压、裁切后,得到负极片;Preparation of negative electrode sheet: Add artificial graphite, carbon black, and carbon nanotube polyvinylidene fluoride to NMP and mix to form a slurry, which is evenly coated on copper foil, and after drying, rolling, and cutting, the negative electrode sheet is obtained;
电芯的制备:将正极片、负极片以及隔膜用Z形层叠片方式制成电芯,然后在正极片和负极片上分别通过超声波焊接正极极耳和负极极耳,最后将电芯置于全密封壳体内,烘烤,除去电芯中的水分;The preparation of the cell: the positive electrode sheet, the negative electrode sheet and the diaphragm are made into a cell by Z-shaped laminated sheets, and then the positive electrode tab and the negative electrode tab are ultrasonically welded on the positive electrode sheet and the negative electrode sheet respectively, and finally the cell is placed in the full Seal the shell, bake, and remove the moisture in the battery core;
注液:向上述电芯中注入一定量的上述电解液,封口静置;Injection: Inject a certain amount of the above-mentioned electrolyte into the above-mentioned cell, seal it and let it stand;
最后,对上述电芯进行化成分容,经过一段时间的老化,得到高功率的锂离子蓄电池。Finally, the above-mentioned battery cells are chemically divided into volumes, and after a period of aging, a high-power lithium-ion battery is obtained.
将上述4Ah的电池进行高倍率放电,如图1所示,为实施例1制备的电池的高倍率放电示意图,电池最高可以200A放电,倍率最高可达50C,倍率性能优秀。实施例2、实施例3经上述高倍率放电检测,倍率也均高达50C,而现有技术的锂离子蓄电池的倍率性能一般为10C~20C,可见,本发明提供的电池倍率性能大幅提高。The above 4Ah battery was discharged at a high rate, as shown in Figure 1, which is a schematic diagram of the high rate discharge of the battery prepared in Example 1. The battery can be discharged at a maximum of 200A, and the rate can reach 50C, with excellent rate performance. In Example 2 and Example 3, after the above-mentioned high-rate discharge test, the rate is also as high as 50C, while the rate performance of the lithium-ion storage battery in the prior art is generally 10C-20C. It can be seen that the rate performance of the battery provided by the present invention is greatly improved.
同时将实施例1-3制备的电池以国标以及国军标相关安全测试,可以通过针刺、短路、过充电、过放电等安全测试,安全性能优秀,能用于空间电源。At the same time, the batteries prepared in Examples 1-3 are tested according to national standards and national military standards, and can pass safety tests such as acupuncture, short circuit, overcharge, and overdischarge. They have excellent safety performance and can be used for space power supplies.
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。Although the content of the present invention has been described in detail through the above preferred embodiments, it should be understood that the above description should not be considered as limiting the present invention. Various modifications and alterations to the present invention will become apparent to those skilled in the art upon reading the above disclosure. Therefore, the protection scope of the present invention should be defined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610875207.2A CN106169617A (en) | 2016-09-30 | 2016-09-30 | A kind of space safety high power lithium ion accumulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610875207.2A CN106169617A (en) | 2016-09-30 | 2016-09-30 | A kind of space safety high power lithium ion accumulator |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106169617A true CN106169617A (en) | 2016-11-30 |
Family
ID=57376439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610875207.2A Pending CN106169617A (en) | 2016-09-30 | 2016-09-30 | A kind of space safety high power lithium ion accumulator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106169617A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107579245A (en) * | 2017-09-16 | 2018-01-12 | 江苏超电新能源科技发展有限公司 | A kind of charge rate lithium ion battery and preparation method thereof |
CN107742727A (en) * | 2017-10-13 | 2018-02-27 | 江苏海四达电源股份有限公司 | Lithium cell cathode material, cathode of lithium battery and preparation method thereof and lithium battery |
CN108511753A (en) * | 2017-05-02 | 2018-09-07 | 万向二三股份公司 | A kind of lithium iron phosphate battery anode conductive agent and its application |
CN108963198A (en) * | 2017-05-22 | 2018-12-07 | 动力专家有限公司 | Positive electrode, negative electrode, preparation method thereof and lithium ion battery comprising positive electrode and negative electrode |
CN109786854A (en) * | 2018-12-30 | 2019-05-21 | 广州力柏能源科技有限公司 | A kind of fast charge lithium ion battery and preparation method thereof |
CN109860484A (en) * | 2018-12-12 | 2019-06-07 | 上海空间电源研究所 | A high-performance fully sealed lithium-ion battery |
CN110224131A (en) * | 2019-07-03 | 2019-09-10 | 珠海冠宇电池有限公司 | A kind of lithium ion battery and preparation method thereof |
CN113130910A (en) * | 2019-12-30 | 2021-07-16 | 江西格林德能源有限公司 | Positive pole piece of lithium ion battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102165628A (en) * | 2008-09-19 | 2011-08-24 | He3Da有限责任公司 | Lithium accumulator and the method of producing thereof |
CN104347880A (en) * | 2014-10-14 | 2015-02-11 | 东莞新能源科技有限公司 | Fast-charge Li-ion battery |
CN105047907A (en) * | 2015-09-08 | 2015-11-11 | 上海空间电源研究所 | High-safety lithium ion battery |
CN105355889A (en) * | 2015-11-28 | 2016-02-24 | 西安瑟福能源科技有限公司 | High-voltage high-magnification lithium ion battery |
CN105932325A (en) * | 2016-07-18 | 2016-09-07 | 上海空间电源研究所 | Long-storage life lithium ion storage battery |
-
2016
- 2016-09-30 CN CN201610875207.2A patent/CN106169617A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102165628A (en) * | 2008-09-19 | 2011-08-24 | He3Da有限责任公司 | Lithium accumulator and the method of producing thereof |
CN104347880A (en) * | 2014-10-14 | 2015-02-11 | 东莞新能源科技有限公司 | Fast-charge Li-ion battery |
CN105047907A (en) * | 2015-09-08 | 2015-11-11 | 上海空间电源研究所 | High-safety lithium ion battery |
CN105355889A (en) * | 2015-11-28 | 2016-02-24 | 西安瑟福能源科技有限公司 | High-voltage high-magnification lithium ion battery |
CN105932325A (en) * | 2016-07-18 | 2016-09-07 | 上海空间电源研究所 | Long-storage life lithium ion storage battery |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108511753A (en) * | 2017-05-02 | 2018-09-07 | 万向二三股份公司 | A kind of lithium iron phosphate battery anode conductive agent and its application |
CN108963198A (en) * | 2017-05-22 | 2018-12-07 | 动力专家有限公司 | Positive electrode, negative electrode, preparation method thereof and lithium ion battery comprising positive electrode and negative electrode |
CN107579245A (en) * | 2017-09-16 | 2018-01-12 | 江苏超电新能源科技发展有限公司 | A kind of charge rate lithium ion battery and preparation method thereof |
CN107742727A (en) * | 2017-10-13 | 2018-02-27 | 江苏海四达电源股份有限公司 | Lithium cell cathode material, cathode of lithium battery and preparation method thereof and lithium battery |
CN109860484A (en) * | 2018-12-12 | 2019-06-07 | 上海空间电源研究所 | A high-performance fully sealed lithium-ion battery |
CN109786854A (en) * | 2018-12-30 | 2019-05-21 | 广州力柏能源科技有限公司 | A kind of fast charge lithium ion battery and preparation method thereof |
CN109786854B (en) * | 2018-12-30 | 2022-04-22 | 广州力柏能源科技有限公司 | A kind of fast charging lithium ion battery and preparation method thereof |
CN110224131A (en) * | 2019-07-03 | 2019-09-10 | 珠海冠宇电池有限公司 | A kind of lithium ion battery and preparation method thereof |
CN113130910A (en) * | 2019-12-30 | 2021-07-16 | 江西格林德能源有限公司 | Positive pole piece of lithium ion battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020177623A1 (en) | Negative pole piece, secondary battery and apparatus thereof | |
CN104916809B (en) | A kind of integrated flexible electrode | |
CN111785925B (en) | Pole piece and application, low-temperature elevated safety lithium-ion battery containing the pole piece | |
CN106169617A (en) | A kind of space safety high power lithium ion accumulator | |
CN101626099A (en) | Polymer lithium vanadium phosphate power battery and preparation method thereof | |
WO2021008429A1 (en) | Secondary battery, and battery module, battery pack and device related thereto | |
CN105161309B (en) | Lithium ion hybrid capacitors | |
CN104916825A (en) | Preparation method of lithium battery high-voltage modified cathode material | |
CN106449126B (en) | A kind of embedding lithium method using the 3rd electrode pair lithium-ion capacitor | |
CN115810718A (en) | Negative electrode sheet and secondary battery including same | |
CN107910484A (en) | It is a kind of using fast charge lithium ion battery of ceramic diaphragm and preparation method thereof | |
US20240363856A1 (en) | Lithium-ion battery | |
CN112614703B (en) | Negative electrode material of ionic capacitor and preparation method and application thereof | |
WO2023077516A1 (en) | Negative pole piece and preparation method therefor, secondary battery, battery module, battery pack, and electric apparatus | |
CN214428670U (en) | Lithium ion battery capable of being charged at low temperature | |
CN212907803U (en) | Lithium ion battery with high-rate charge and discharge | |
CN115036444A (en) | A kind of pre-lithiated, pre-sodiumized composite negative electrode material and its preparation method and application | |
CN104466236A (en) | Energy and power compatible lithium ion battery and preparation method thereof | |
CN102332604A (en) | A high-power lithium-ion battery | |
WO2023029002A1 (en) | Negative current collector and secondary battery comprising same, and battery module, battery pack and electric device | |
CN101414693A (en) | Energy storage battery based on lithium ion conduction and preparation method (thereof) | |
CN103066321A (en) | High capacity and high rate type soft-package lithium iron phosphate battery | |
CN116349077A (en) | A battery, a battery module, a battery pack and an electrical device | |
CN116632368B (en) | Secondary battery and electronic device | |
CN106169616A (en) | A kind of nickel cobalt lithium aluminate large-capacity high-power lithium ion accumulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20161130 |