[go: up one dir, main page]

CN106160388B - A kind of Low gullet torque brshless DC motor optimization method - Google Patents

A kind of Low gullet torque brshless DC motor optimization method Download PDF

Info

Publication number
CN106160388B
CN106160388B CN201510143913.3A CN201510143913A CN106160388B CN 106160388 B CN106160388 B CN 106160388B CN 201510143913 A CN201510143913 A CN 201510143913A CN 106160388 B CN106160388 B CN 106160388B
Authority
CN
China
Prior art keywords
motor
slot
notch
arc
calculate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510143913.3A
Other languages
Chinese (zh)
Other versions
CN106160388A (en
Inventor
郝晓宇
揭军
黄建
周晶晶
李建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Automation Control Equipment Institute BACEI
Original Assignee
Beijing Automation Control Equipment Institute BACEI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Automation Control Equipment Institute BACEI filed Critical Beijing Automation Control Equipment Institute BACEI
Priority to CN201510143913.3A priority Critical patent/CN106160388B/en
Publication of CN106160388A publication Critical patent/CN106160388A/en
Application granted granted Critical
Publication of CN106160388B publication Critical patent/CN106160388B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

本发明公开一种低齿槽转矩无刷直流电机优化方法,采用弧式结构槽口作为优化后槽型形成电机的定子结构;并且转子结构类型采用瓦片磁钢径向冲磁;具体包括步骤一、根据设计指标选择n组极槽配合;步骤二、计算功率Pi′;步骤三、计算电枢内径;步骤四、计算电枢铁芯长等步骤,本发明能够降低无刷直流电机齿槽转矩。

The invention discloses a method for optimizing a brushless DC motor with low cogging torque, which adopts an arc structure notch as the stator structure of the optimized slot to form a motor; and the rotor structure type adopts tile magnetic steel radially punching magnets; specifically includes Step 1, select n sets of pole-slot coordination according to the design index; Step 2, calculate the power P i ′; Step 3, calculate the inner diameter of the armature; Step 4, calculate the length of the armature iron core and other steps, the present invention can reduce the cogging torque.

Description

一种低齿槽转矩无刷直流电机优化方法A low cogging torque brushless DC motor optimization method

技术领域technical field

本发明涉及一种低齿槽转矩无刷直流电机优化方法。The invention relates to an optimization method for a brushless DC motor with low cogging torque.

技术背景technical background

齿槽转矩是定子齿槽与转子永磁体相互作用产生的磁阻转矩,齿槽转矩引起速度波动、电机振动和噪声,并且加大了电机最初的起动转矩,因此降低齿槽转矩是无刷直流电机设计的主要目标之一。无刷直流电机的基波齿槽转矩幅值与定子槽数Z和极数2p的最小公倍数相关,因此不同的极槽配合的齿槽转矩齿槽转矩幅值不同,如何能优化齿槽转矩幅值大的极槽配合对无刷直流电机性能的提高有着重要作用。The cogging torque is the reluctance torque generated by the interaction between the stator cogging and the rotor permanent magnet. The cogging torque causes speed fluctuation, motor vibration and noise, and increases the initial starting torque of the motor, thus reducing the cogging torque. Torque is one of the main goals in brushless DC motor design. The amplitude of the fundamental cogging torque of the brushless DC motor is related to the least common multiple of the number of stator slots Z and the number of poles 2p. Therefore, the amplitude of the cogging torque of different pole slots is different. How to optimize the cogging torque? Pole-slot coordination with large slot torque amplitude plays an important role in improving the performance of brushless DC motors.

现有技术通常采用定子斜槽或者转子磁极斜极的方法,实践表明这种方法可以一定程度的降低齿槽转矩,但是定子斜槽和转子斜极增加定转子加工工艺难度,且会减小定子的槽满率,降低电机输出电磁转矩,不利于电机功率密度的提升。The existing technology usually adopts the method of stator skew or rotor magnetic pole skew. Practice shows that this method can reduce the cogging torque to a certain extent, but the stator skew and rotor skew increase the difficulty of stator and rotor processing and will reduce the The slot fullness of the stator reduces the output electromagnetic torque of the motor, which is not conducive to the improvement of the power density of the motor.

发明内容Contents of the invention

发明目的purpose of invention

本发明的目的在于提供一种低齿槽转矩无刷直流电机优化方法,可以降低无刷直流电机的齿槽转矩。The purpose of the present invention is to provide a low cogging torque brushless direct current motor optimization method, which can reduce the cogging torque of the brushless direct current motor.

技术方案Technical solutions

本发明是一种低齿槽转矩无刷直流电机优化方法,其中,采用弧式结构槽口作为优化后槽型形成电机的定子结构;并且转子结构类型采用瓦片磁钢径向冲磁。The invention relates to an optimization method for a brushless DC motor with low cogging torque, wherein arc-shaped slots are used as the stator structure of the optimized groove-formed motor;

如上所述的一种低齿槽转矩无刷直流电机优化方法,其中,具体包括如下步骤:A method for optimizing a brushless DC motor with low cogging torque as described above, which specifically includes the following steps:

步骤一、根据设计指标选择n组极槽配合,n为指定的组数;其中电机槽数Zi,电机极数2pi,i≤n;求取Zi和2pi的最小公倍数LCMi,选择最大的LCMi,并取得此时的电机槽数Zi,电机极数2pi,则最终确定的槽数Z=Zi,最终确定的极数2p=2piStep 1. Select n sets of pole-slot coordination according to the design index, n is the specified number of sets; among them, the number of motor slots Z i , the number of motor poles 2p i , i≤n; find the least common multiple LCM i of Z i and 2p i , Select the largest LCM i , and obtain the number of motor slots Z i and the number of motor poles 2p i , then the final number of slots Z=Z i , and the final number of poles 2p=2p i ;

步骤二、计算功率P′i,若电机长期运行,则若电机短期运行,则其中PN为电机额定功率,η′为电机预取效率;Step 2. Calculate the power P′ i . If the motor runs for a long time, then If the motor is running for a short time, then Among them, P N is the rated power of the motor, and η' is the prefetch efficiency of the motor;

步骤三、计算电枢内径B'δ为预取气隙磁密,A'δ为预取线负荷,αi为预取计算极弧系数,λ'为预取长径比,电枢外径满足:D1>Dil,nN电机额定转速;Step 3. Calculate the inner diameter of the armature B' δ is the prefetching air gap magnetic density, A' δ is the prefetching line load, α i is the prefetching calculation pole arc coefficient, λ' is the prefetching length-to-diameter ratio, and the outer diameter of the armature satisfies: D 1 >D il , n N motor rated speed;

步骤四、计算电枢铁芯长L≈λ′Di1Step 4. Calculate the armature core length L≈λ′D i1 ;

步骤五、选择槽型,取槽口宽b01≤1mm,并且指定其它结构参数:槽口深h01,槽肩宽bx1,槽肩深hx1Step 5. Select the slot type, take the slot width b 01 ≤1mm, and specify other structural parameters: slot depth h 01 , slot shoulder width b x1 , slot shoulder depth h x1 ;

步骤六、以槽口深hx1为底边,做一顶角为150°的等腰三角形,该等腰三角形的顶角位于槽口内;以该等腰三角形的三个顶点为三点画一圆弧,形成弧式结构槽口;采用该结构作为优化后槽型,形成电机的定子结构;Step 6. Take the notch depth h x1 as the base, make an isosceles triangle with an apex angle of 150°, and the apex of the isosceles triangle is located in the notch; draw a circle with the three vertices of the isosceles triangle as three points arc, forming an arc structure notch; using this structure as the optimized slot to form the stator structure of the motor;

步骤七、转子结构类型采用瓦片磁钢径向冲磁;Step 7. The structure type of the rotor adopts tile magnetic steel radial impact magnetization;

步骤八、计算永磁体外径Dm=Di1-2δ,永磁体内径Dmi=Dm-2Hm,δ为气隙宽度,Hm为永磁体磁化方向厚度;Step 8, calculating the outer diameter of the permanent magnet D m =D i1 -2δ, the inner diameter of the permanent magnet D mi =D m -2H m , δ is the width of the air gap, and H m is the thickness of the magnetization direction of the permanent magnet;

步骤九、取转子紧圈外径D2,Dm<D2<Di1Step 9: Take the outer diameter D 2 of the rotor tight ring, D m < D 2 < D i1 ;

步骤十、取转子磁钢长度Lc=L,完成优化。Step 10: Take the rotor magnetic steel length L c =L to complete the optimization.

有益效果Beneficial effect

本方法能够降低无刷直流电机齿槽转矩。The method can reduce the cogging torque of the brushless DC motor.

附图说明Description of drawings

图1是原有的槽结构示意图;Figure 1 is a schematic diagram of the original groove structure;

图2以槽口深为底边搭建等腰三角形示意图;Figure 2 is a schematic diagram of building an isosceles triangle with the depth of the notch as the base;

图3弧式结构槽口示意图;Fig. 3 is a schematic diagram of an arc structure notch;

图4电机定转子剖面图;Fig. 4 section view of motor stator and rotor;

图5未采用弧式结构槽口得出的齿槽转矩;Fig. 5 The cogging torque obtained without arc structure notches;

图6采用弧式结构槽口得出的齿槽转矩。Fig. 6 The cogging torque obtained by using the arc structure notch.

具体实施方式Detailed ways

以下,结合附图和具体实施方式,对本发明做进一步的说明。Hereinafter, the present invention will be further described in conjunction with the drawings and specific embodiments.

本发明为一种低齿槽转矩无刷直流电机优化方法,采用一种弧式结构的槽口来实现降低齿槽转矩的目的。The invention is an optimization method for a brushless DC motor with low cogging torque, which uses an arc-shaped notch to realize the purpose of reducing the cogging torque.

以如下电机为例进行说明:一无刷直流电机参数为额定电压UN=48V,额定转速nN=800rpm,额定转矩TN=2Nm,额定功率PN=170W,长期运行,此处,长期运行指连续运行时间大于30分钟。Take the following motor as an example: the parameters of a brushless DC motor are rated voltage U N = 48V, rated speed n N = 800rpm, rated torque T N = 2Nm, rated power P N = 170W, long-term operation, here, Long-term operation refers to continuous operation time greater than 30 minutes.

按照如下步骤进行优化:Follow the steps below to optimize:

步骤一、根据设计指标选择N组极槽配合,其中电机槽数Zi,电机极数2pi,i≤n,求取Zi和2pi的最小公倍数LCMi,选择最大的LCMi,则最终确定的槽数Z=Zi,最终确定的极数2p=2piStep 1. Select N sets of pole-slot coordination according to the design index, among which the number of motor slots Z i , the number of motor poles 2p i , i≤n, find the least common multiple LCM i of Z i and 2p i , and choose the largest LCM i , then The final number of slots Z=Z i , the final number of poles 2p=2p i ;

根据设计参数,可取的极槽配合有,Z1=12,2p1=8,LCM1=24;Z2=60,2p2=10,LCM2=60;Z3=45,2p3=12,LCM3=180;由于LCM3>LCM2>LCM1,则选定LCM3,取Z=Z3=45,2p=2p3=12。According to the design parameters, the desirable pole-slot fits are: Z 1 =12, 2p 1 =8, LCM 1 =24; Z 2 =60, 2p 2 =10, LCM 2 =60; Z 3 =45, 2p 3 =12 , LCM 3 =180; since LCM 3 >LCM 2 >LCM 1 , then LCM 3 is selected, Z=Z 3 =45, 2p=2p 3 =12.

步骤二、计算功率P′i,若电机长期运行,则若电机短期运行,则其中PN为电机额定功率,η′为电机预取效率。Step 2. Calculate the power P′ i . If the motor runs for a long time, then If the motor is running for a short time, then Among them, P N is the rated power of the motor, and η' is the prefetch efficiency of the motor.

本实施例中,预取效率η'=0.85,电机长期运行,计算功率 In this embodiment, the prefetch efficiency η'=0.85, the motor runs for a long time, and the calculated power

步骤三、计算电枢内径B'δ为预取气隙磁密,A'δ为预取线负荷,αi为预取计算极弧系数,λ'为预取长径比,电枢外径D1>Dil,nN电机额定转速。Step 3. Calculate the inner diameter of the armature B' δ is the prefetching air gap flux density, A' δ is the prefetching line load, α i is the prefetching calculation pole arc coefficient, λ' is the prefetching length-to-diameter ratio, the outer diameter of the armature D 1 >D il , n N Motor rated speed.

本实施例中,预取线负荷A's=14A/mm,预取气隙磁密B'δ=0.7T,预取计算极弧系 数αi=1,预取长径比λ'=0.4,计算电枢内径电枢外径D1= 90mm。 In this embodiment, the prefetch line load A' s =14A/mm, the prefetch air gap magnetic density B' δ =0.7T, the prefetch calculation pole arc coefficient α i =1, and the prefetch aspect ratio λ'=0.4 , calculate the inner diameter of the armature Armature outer diameter D 1 =90mm.

步骤四、计算电枢铁芯长L≈λ′Di1。电枢铁芯长L≈λ′Di1=28mm。Step 4: Calculate the armature core length L≈λ′D i1 . Armature core length L≈λ′D i1 =28mm.

步骤五、选择槽型,取槽口宽b01≤1mm,确定槽口深h01,槽肩宽bx1,槽肩深hx1等结构参数。槽型结构参数如图1所示,此处为开口底半梨形槽,槽口宽0.5mm,槽口深0.5mm、槽肩宽2.8mm、槽肩深0.7mm;Step 5. Select the slot type, take the slot width b 01 ≤ 1mm, and determine the slot depth h 01 , slot shoulder width b x1 , slot shoulder depth h x1 and other structural parameters. The groove structure parameters are shown in Figure 1, here is a semi-pear-shaped groove with an open bottom, the groove width is 0.5mm, the groove depth is 0.5mm, the groove shoulder width is 2.8mm, and the groove shoulder depth is 0.7mm;

步骤六、以槽口深hx1为底边,做一顶角为150°的等腰三角形,该等腰三角形的顶角位于槽口内。以该等腰三角形的三个顶点为三点画一圆弧,形成弧式结构槽口。采用该结构作为优化后槽型,形成电机的定子结构;Step 6. Taking the depth h x1 of the notch as the base, make an isosceles triangle with an apex angle of 150°, and the apex angle of the isosceles triangle is located in the notch. Draw an arc with the three vertices of the isosceles triangle as three points to form an arc-shaped structural notch. This structure is used as the optimized slot type to form the stator structure of the motor;

以槽口深为底边,做一顶角为150°的等腰三角形,该等腰三角形的顶角位于槽口内,如图2所示。以该等腰三角形的三个顶点为三点画一圆弧,形成弧式结构槽口,如图3所示。将该弧式结构槽口形成的槽型作为电机的定子槽型。With the depth of the notch as the base, make an isosceles triangle with an apex angle of 150°, and the apex of the isosceles triangle is located in the notch, as shown in Figure 2. Draw an arc with the three vertices of the isosceles triangle as three points to form an arc-shaped structural notch, as shown in Figure 3. The groove shape formed by the arc structure notch is used as the stator groove shape of the motor.

步骤七、转子结构类型采用瓦片磁钢径向冲磁。Step 7. The structure type of the rotor adopts tile magnetic steel with radial impact magnetization.

步骤八、计算永磁体外径Dm=Di1-2δ,永磁体内径Dmi=Dm-2Hm,δ为气隙宽度,Hm为永磁体磁化方向厚度;Step 8, calculating the outer diameter of the permanent magnet D m =D i1 -2δ, the inner diameter of the permanent magnet D mi =D m -2H m , δ is the width of the air gap, and H m is the thickness of the magnetization direction of the permanent magnet;

此处,取气隙宽度δ=0.8mm,则永磁体外径Dm=Di1-2δ=68.4mm。取永磁体磁化方向厚度Hm=5mm,则永磁体内径Dmi=Dm-2Hm=58.4mm。Here, taking the air gap width δ=0.8mm, the outer diameter of the permanent magnet D m =D i1 -2δ=68.4mm. Assuming that the magnetization direction thickness of the permanent magnet is H m =5 mm, then the inner diameter of the permanent magnet is D mi =D m -2H m =58.4 mm.

步骤九、取转子紧圈外径D2,Dm<D2<Di1。此处,取转子紧圈外径D2=69mm;Step 9: Take the outer diameter D 2 of the tight ring of the rotor, D m < D 2 < D i1 . Here, take the rotor tight ring outer diameter D 2 =69mm;

步骤十、取转子磁钢长度Lc=L。此处,取转子磁钢长度Lc=L=28mm。Step 10: Take the rotor magnetic steel length L c =L. Here, the rotor magnetic steel length L c =L=28mm is taken.

得到电机定转子剖面图如图4所示。The cross-sectional view of the stator and rotor of the motor is shown in Figure 4.

分别对未采用弧式结构槽口电机模型和采用弧式结构槽口电机模型进行有限元分析,得到的齿槽转矩分别如图5、图6所示。由仿真结果可知,采用弧式结构槽口的电机模型齿槽转矩最大为8mNm,未采用弧式结构槽口的电机模型齿槽转矩最大为13mNm。结果表明采用弧式结构槽口优化可以降低无刷直流电机齿槽转矩。The finite element analysis is carried out on the model of notch motor without arc structure and the model of notch motor with arc structure, and the obtained cogging torques are shown in Fig. 5 and Fig. 6 respectively. It can be seen from the simulation results that the maximum cogging torque of the motor model with arc-shaped slots is 8mNm, and the maximum cogging torque of the motor model without arc-shaped slots is 13mNm. The results show that the arc structure notch optimization can reduce the cogging torque of brushless DC motor.

上述说明并不是对本发明的限定,在不脱离本发明的主旨的范围内,可以进行各种变形和变更。The above description does not limit the present invention, and various modifications and changes can be made without departing from the gist of the present invention.

Claims (1)

1.一种低齿槽转矩无刷直流电机优化方法,其特征在于,采用弧式结构槽口作为优化后槽型形成电机的定子结构;并且转子结构类型采用瓦片磁钢径向冲磁,具体包括如下步骤:1. A low cogging torque brushless DC motor optimization method is characterized in that, adopting the arc-shaped structure notch as the stator structure of the motor after optimization; and the rotor structure type adopts the tile magnetic steel radial punch , including the following steps: 步骤一、根据设计指标选择n组极槽配合,n为指定的组数;其中电机槽数Zi,电机极数2pi,i≤n;求取Zi和2pi的最小公倍数LCMi,选择最大的LCMi,并取得此时的电机槽数Zi,电机极数2pi,则最终确定的槽数Z=Zi,最终确定的极数2p=2piStep 1. Select n sets of pole-slot coordination according to the design index, n is the specified number of sets; among them, the number of motor slots Z i , the number of motor poles 2p i , i≤n; find the least common multiple LCM i of Z i and 2p i , Select the largest LCM i , and obtain the number of motor slots Z i and the number of motor poles 2p i , then the final number of slots Z=Z i , and the final number of poles 2p=2p i ; 步骤二、计算功率P′i,若电机长期运行,则若电机短期运行,则其中PN为电机额定功率,η′为电机预取效率;Step 2. Calculate the power P′ i . If the motor runs for a long time, then If the motor runs for a short time, then Among them, P N is the rated power of the motor, and η' is the prefetch efficiency of the motor; 步骤三、计算电枢内径B'δ为预取气隙磁密,A'δ为预取线负荷,αi为预取计算极弧系数,λ'为预取长径比,电枢外径满足:D1>Dil,nN电机额定转速;Step 3. Calculate the inner diameter of the armature B' δ is the prefetching air gap magnetic density, A' δ is the prefetching line load, α i is the prefetching calculation pole arc coefficient, λ' is the prefetching length-to-diameter ratio, and the outer diameter of the armature satisfies: D 1 >D il , n N motor rated speed; 步骤四、计算电枢铁芯长L≈λ′Di1Step 4. Calculate the armature core length L≈λ′D i1 ; 步骤五、选择槽型,取槽口宽b01≤1mm,并且指定其它结构参数:槽口深h01,槽肩宽bx1,槽肩深hx1Step 5. Select the slot type, take the slot width b 01 ≤1mm, and specify other structural parameters: slot depth h 01 , slot shoulder width b x1 , slot shoulder depth h x1 ; 步骤六、以槽口深hx1为底边,做一顶角为150°的等腰三角形,该等腰三角形的顶角位于槽口内;以该等腰三角形的三个顶点为三点画一圆弧,形成弧式结构槽口;采用该结构作为优化后槽型,形成电机的定子结构;Step 6. Take the notch depth h x1 as the base, make an isosceles triangle with an apex angle of 150°, and the apex of the isosceles triangle is located in the notch; draw a circle with the three vertices of the isosceles triangle as three points arc, forming an arc structure notch; using this structure as the optimized slot to form the stator structure of the motor; 步骤七、转子结构类型采用瓦片磁钢径向冲磁;Step 7. The structure type of the rotor adopts tile magnetic steel radial impact magnetization; 步骤八、计算永磁体外径Dm=Di1-2δ,永磁体内径Dmi=Dm-2Hm,δ为气隙宽度,Hm为永磁体磁化方向厚度;Step 8, calculating the outer diameter of the permanent magnet D m =D i1 -2δ, the inner diameter of the permanent magnet D mi =D m -2H m , δ is the width of the air gap, and H m is the thickness of the magnetization direction of the permanent magnet; 步骤九、取转子紧圈外径D2,Dm<D2<Di1Step 9: Take the outer diameter D 2 of the rotor tight ring, D m < D 2 < D i1 ; 步骤十、取转子磁钢长度Lc=L,完成优化。Step 10: Take the rotor magnetic steel length L c =L to complete the optimization.
CN201510143913.3A 2015-03-30 2015-03-30 A kind of Low gullet torque brshless DC motor optimization method Active CN106160388B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510143913.3A CN106160388B (en) 2015-03-30 2015-03-30 A kind of Low gullet torque brshless DC motor optimization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510143913.3A CN106160388B (en) 2015-03-30 2015-03-30 A kind of Low gullet torque brshless DC motor optimization method

Publications (2)

Publication Number Publication Date
CN106160388A CN106160388A (en) 2016-11-23
CN106160388B true CN106160388B (en) 2018-11-30

Family

ID=57339900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510143913.3A Active CN106160388B (en) 2015-03-30 2015-03-30 A kind of Low gullet torque brshless DC motor optimization method

Country Status (1)

Country Link
CN (1) CN106160388B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203206002U (en) * 2013-03-14 2013-09-18 珠海格力电器股份有限公司 Stator punching sheet and motor
CN103701230A (en) * 2012-09-27 2014-04-02 日立汽车系统株式会社 Rotating electrical machine and electric power steering system using the same
CN204156618U (en) * 2014-08-28 2015-02-11 捷和电机制品(深圳)有限公司 Brushless electric machine
CN204168025U (en) * 2014-10-22 2015-02-18 上海特波电机有限公司 Low torque fluctuation permanent magnetic motor used for electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103701230A (en) * 2012-09-27 2014-04-02 日立汽车系统株式会社 Rotating electrical machine and electric power steering system using the same
CN203206002U (en) * 2013-03-14 2013-09-18 珠海格力电器股份有限公司 Stator punching sheet and motor
CN204156618U (en) * 2014-08-28 2015-02-11 捷和电机制品(深圳)有限公司 Brushless electric machine
CN204168025U (en) * 2014-10-22 2015-02-18 上海特波电机有限公司 Low torque fluctuation permanent magnetic motor used for electric vehicle

Also Published As

Publication number Publication date
CN106160388A (en) 2016-11-23

Similar Documents

Publication Publication Date Title
Hao et al. Cogging torque reduction of axial-field flux-switching permanent magnet machine by rotor tooth notching
Hao et al. Cogging torque reduction of axial field flux-switching permanent magnet machine by adding magnetic bridge in stator tooth
Yu et al. A dual notched design of radial-flux permanent magnet motors with low cogging torque and rare earth material
CN208142940U (en) A kind of surface-mounted permanent magnet machine stator structure that stator rabbet is not wide
CN106300853B (en) Permanent magnet synchronous motor stator for electric automobile
CN103915925B (en) Rotor structure for permanent magnet synchronous motor with step-shaped permanent magnets
CN104767338B (en) A torque-angle approximation permanent magnet motor
Hao et al. Analysis of cogging torque reduction techniques in axial-field flux-switching permanent-magnet machine
CN203554102U (en) Permanent magnetic motor structure reducing torque ripple of surface mounted permanent magnet rotor
CN103929033B (en) A kind of permanent magnet is the permanent-magnetic synchronous motor rotor structure of arch
CN107017749A (en) It is a kind of to reduce the optimization method of improper fraction groove winding permanent magnet synchronous electric machine torque pulsation
CN104022611B (en) A kind of self-starting Rare-earth PMSM Rotor Structure
CN105932846B (en) A kind of powder low-torque pulsation permanent magnet synchronous motor rotor structure
CN205407440U (en) Rotor core and have its PMSM
WO2013170672A1 (en) Motor with concentrated winding, generator, and electric motor
CN103915926B (en) Rotor structure for permanent magnet synchronous motor with triangular-step-shaped permanent magnets
CN106941285A (en) Weaken the method for permanent magnetism wheel hub motor cogging torque
CN109672286A (en) A kind of asymmetry magnetic barrier formula permanent-magnet magnetic resistance synchronous motor rotor structure
CN111509882A (en) A rotor assembly and an axial magnetic field motor
CN108599413A (en) A kind of internal permanent magnet synchronous motor cogging torque weakening method
CN106160388B (en) A kind of Low gullet torque brshless DC motor optimization method
CN109586441B (en) An Air Gap Magnetic Field Equivalent Motor Rotor Structure
CN205791830U (en) A kind of motor stator punching
CN103683783B (en) A kind of rotor sectional type flux switching motor and rotor displacement angle defining method thereof
CN105743311A (en) Cogging torque weakening structure of built-in permanent magnet synchronous motor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant