CN106159318A - Novel slice type solid-state serondary lithium battery that garnet-type solid electrolyte supports and preparation method thereof - Google Patents
Novel slice type solid-state serondary lithium battery that garnet-type solid electrolyte supports and preparation method thereof Download PDFInfo
- Publication number
- CN106159318A CN106159318A CN201510161598.7A CN201510161598A CN106159318A CN 106159318 A CN106159318 A CN 106159318A CN 201510161598 A CN201510161598 A CN 201510161598A CN 106159318 A CN106159318 A CN 106159318A
- Authority
- CN
- China
- Prior art keywords
- lithium
- solid
- lithium battery
- solid electrolyte
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 69
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 62
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 229920000642 polymer Polymers 0.000 claims abstract description 52
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 27
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 25
- 239000010416 ion conductor Substances 0.000 claims abstract description 17
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 13
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 13
- 239000007774 positive electrode material Substances 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 claims abstract description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims abstract description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims abstract description 4
- 229920002239 polyacrylonitrile Polymers 0.000 claims abstract description 4
- 239000004926 polymethyl methacrylate Substances 0.000 claims abstract description 4
- 229910032387 LiCoO2 Inorganic materials 0.000 claims abstract 2
- 229910052493 LiFePO4 Inorganic materials 0.000 claims abstract 2
- 229910013421 LiNixCoyMn1-x-yO2 Inorganic materials 0.000 claims abstract 2
- 229910013427 LiNixCoyMn1−x−yO2 Inorganic materials 0.000 claims abstract 2
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 claims abstract 2
- 229910000733 Li alloy Inorganic materials 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- 239000001989 lithium alloy Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 229910021389 graphene Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 6
- 239000004917 carbon fiber Substances 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- 229910052714 tellurium Inorganic materials 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 claims description 4
- 239000002002 slurry Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 239000006230 acetylene black Substances 0.000 claims description 3
- CVJYOKLQNGVTIS-UHFFFAOYSA-K aluminum;lithium;titanium(4+);phosphate Chemical compound [Li+].[Al+3].[Ti+4].[O-]P([O-])([O-])=O CVJYOKLQNGVTIS-UHFFFAOYSA-K 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- YFYTYOSYQUYIJL-UHFFFAOYSA-K P(=O)([O-])([O-])[O-].[Si+4].[Li+] Chemical compound P(=O)([O-])([O-])[O-].[Si+4].[Li+] YFYTYOSYQUYIJL-UHFFFAOYSA-K 0.000 claims description 2
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 claims description 2
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 claims description 2
- LLYXJBROWQDVMI-UHFFFAOYSA-N 2-chloro-4-nitrotoluene Chemical compound CC1=CC=C([N+]([O-])=O)C=C1Cl LLYXJBROWQDVMI-UHFFFAOYSA-N 0.000 claims 2
- 229910013098 LiBF2 Inorganic materials 0.000 claims 1
- 229910013089 LiBF3 Inorganic materials 0.000 claims 1
- 229910000552 LiCF3SO3 Inorganic materials 0.000 claims 1
- 229910013884 LiPF3 Inorganic materials 0.000 claims 1
- 229910001290 LiPF6 Inorganic materials 0.000 claims 1
- 229910006664 Li—La—Ti Inorganic materials 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 claims 1
- XRNHBMJMFUBOID-UHFFFAOYSA-N [O].[Zr].[La].[Li] Chemical compound [O].[Zr].[La].[Li] XRNHBMJMFUBOID-UHFFFAOYSA-N 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 239000008187 granular material Substances 0.000 claims 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 claims 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 claims 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 claims 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 238000006116 polymerization reaction Methods 0.000 claims 1
- 239000010959 steel Substances 0.000 claims 1
- 239000002131 composite material Substances 0.000 description 41
- 239000000919 ceramic Substances 0.000 description 24
- 239000007787 solid Substances 0.000 description 11
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 239000003792 electrolyte Substances 0.000 description 7
- 238000011161 development Methods 0.000 description 6
- 239000011149 active material Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229910003480 inorganic solid Inorganic materials 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229910013075 LiBF Inorganic materials 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 4
- 239000002041 carbon nanotube Substances 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- -1 LiCF 3 SO 3 Inorganic materials 0.000 description 3
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910021525 ceramic electrolyte Inorganic materials 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- 229910013872 LiPF Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 101150058243 Lipf gene Proteins 0.000 description 2
- NRJJZXGPUXHHTC-UHFFFAOYSA-N [Li+].[O--].[O--].[O--].[O--].[Zr+4].[La+3] Chemical compound [Li+].[O--].[O--].[O--].[O--].[Zr+4].[La+3] NRJJZXGPUXHHTC-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 238000010344 co-firing Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000002223 garnet Substances 0.000 description 2
- 238000001453 impedance spectrum Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910013188 LiBOB Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000002003 electrode paste Substances 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- CEMTZIYRXLSOGI-UHFFFAOYSA-N lithium lanthanum(3+) oxygen(2-) titanium(4+) Chemical compound [Li+].[O--].[O--].[O--].[O--].[Ti+4].[La+3] CEMTZIYRXLSOGI-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- XLUBVTJUEUUZMR-UHFFFAOYSA-B silicon(4+);tetraphosphate Chemical compound [Si+4].[Si+4].[Si+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XLUBVTJUEUUZMR-UHFFFAOYSA-B 0.000 description 1
- 238000002490 spark plasma sintering Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种石榴石型固体电解质支撑的片式固态二次锂电池,属于电池技术领域。The invention relates to a chip-type solid-state secondary lithium battery supported by a garnet-type solid electrolyte, which belongs to the technical field of batteries.
背景技术Background technique
近年来随着电动汽车的发展以及电网储能及小型储能需求的发展,开发能够在宽温度范围内使用,具有高安全性、高能量密度、功率密度以及长寿命的电池十分必要。现有的锂离子电池采用有机液态电解质,具有易燃、电化学窗口较低等问题,无法满足未来电池高比能、高安全性的双重要求。全固态锂电池采用纯固态的无机固体电解质或聚合物电解质取代有机液态电解质,具有更好的安全性和热稳定性,同时更高的电化学窗口,能够适合高电压正极材料,很有潜力开发具有高电压、长寿命、高安全性的电池,在便携式电子设备、电动车以及大型储能等设备中都具有极好的发展前景。In recent years, with the development of electric vehicles and the demand for grid energy storage and small energy storage, it is necessary to develop batteries that can be used in a wide temperature range, have high safety, high energy density, power density, and long life. Existing lithium-ion batteries use organic liquid electrolytes, which have problems such as flammability and low electrochemical windows, and cannot meet the dual requirements of high specific energy and high safety for future batteries. All-solid-state lithium batteries use pure solid-state inorganic solid electrolytes or polymer electrolytes instead of organic liquid electrolytes, which have better safety and thermal stability, and at the same time have a higher electrochemical window, which can be suitable for high-voltage cathode materials and have great potential for development Batteries with high voltage, long life, and high safety have excellent development prospects in portable electronic devices, electric vehicles, and large-scale energy storage devices.
石榴石型固体电解质Li7-xLa3Zr2-xTxO12(x=0-1,T=Al、Ta、Nb、W、Ga、Y、Te等)是一种综合性能好的氧化物无机固体电解质,具有高的室温离子电导率(最高达10-3S/cm以上)、宽的电化学窗口(6V vs Li/Li+)、良好的热稳定性、对金属Li稳定、在空气中能长期稳定以及与大多数氧化物正极相容的诸多优势,因此开发基于LLZTO氧化物无机固体电解质的全固态电池备受关注。然而氧化物无机固体电解质的全固态电池开发不像硫化物无机固体电解质以及聚合物电解质顺利,原因如下:氧化物室温离子电导率通常比硫化物要低一个数量级,同时氧化物需要在高温下烧结形成高致密的陶瓷固体电解质,而高温存在锂挥发、偏离化学计量比、离子电导率降低的问题。更困难的是常用氧化物正极如LiCoO2和LiFePO4颗粒与Li7-xLa3Zr2-xTxO12颗粒混合的复合正极如何与Li7-xLa3Zr2-xTxO12陶瓷电解质结合,形成类似硫化物的紧密的复合正极/固体电解质界面,从而降低电荷转移电阻。The garnet-type solid electrolyte Li 7-x La 3 Zr 2-x T x O 12 (x=0-1, T=Al, Ta, Nb, W, Ga, Y, Te, etc.) is a good comprehensive performance Oxide inorganic solid electrolyte, with high room temperature ionic conductivity (up to 10 -3 S/cm or more), wide electrochemical window (6V vs Li/Li + ), good thermal stability, stable to metal Li, Due to the long-term stability in air and the compatibility with most oxide cathodes, the development of all-solid-state batteries based on LLZTO oxide inorganic solid electrolytes has attracted much attention. However, the development of all-solid-state batteries with oxide inorganic solid electrolytes is not as smooth as sulfide inorganic solid electrolytes and polymer electrolytes. The reasons are as follows: the ionic conductivity of oxides at room temperature is usually an order of magnitude lower than that of sulfides, and oxides need to be sintered at high temperatures. A high-density ceramic solid electrolyte is formed, but high temperature has the problems of lithium volatilization, deviation from stoichiometric ratio, and decrease in ionic conductivity. Even more difficult is how common oxide cathodes such as LiCoO 2 and LiFePO 4 particles mixed with Li 7-x La 3 Zr 2-x T x O 12 particles how composite cathodes with Li 7-x La 3 Zr 2-x T x O 12 The ceramic electrolyte is combined to form a sulfide-like tight composite cathode/solid electrolyte interface, thereby reducing the charge transfer resistance.
目前,研究人员采用诸如在氧化物固体电解质上采用激光脉冲沉积、气溶胶沉积、Sol-gel方法制备电极薄膜;丝网印刷等涂覆电极浆料;以及通过放电等离子烧结技术、共烧技术将电极与电解质形成全固态锂电池。然而薄膜电池容量有限,丝网印刷等涂覆电极浆料方法界面阻抗比较大,放电等离子烧结技术、共烧技术需要在较高温度(>790℃),无法保证正极与电解质之间的化学稳定。在此基础上,考虑到聚合物具有很好的粘结性能,聚合物固体电解质也可以在复合正极形成良好的离子传输通道,可以考虑研发出一种新型的杂化全固态电池构建方法:即聚合物复合正极/石榴石型固体电解质/负极,此方法使用已经烧结好的石榴石型固体电解质,后续无需高温处理,从而解决基于氧化物固体电解质的全固态锂电池遇到的难题。该方法结合石榴石型固体电解质和聚合物各自的优势,同时弥补各自的不足,很有潜力开发高电压、长寿命、高安全的全固态锂电池。但是,现有技术还没有关于上述新型杂化全固态电池的报道。At present, researchers use methods such as laser pulse deposition, aerosol deposition, and Sol-gel to prepare electrode films on oxide solid electrolytes; coat electrode pastes such as screen printing; and use spark plasma sintering technology and co-firing technology to Electrodes and electrolytes form an all-solid lithium battery. However, the capacity of thin-film batteries is limited, and the interface impedance of electrode paste coating methods such as screen printing is relatively large. Discharge plasma sintering technology and co-firing technology need to be at a higher temperature (>790 ° C), which cannot guarantee the chemical stability between the positive electrode and the electrolyte. . On this basis, considering that polymers have good bonding properties, and polymer solid electrolytes can also form good ion transport channels in composite positive electrodes, a new hybrid all-solid-state battery construction method can be considered to be developed: namely Polymer composite positive electrode/garnet-type solid electrolyte/negative electrode. This method uses a sintered garnet-type solid electrolyte without subsequent high-temperature treatment, thereby solving the problems encountered by all-solid-state lithium batteries based on oxide solid electrolytes. This method combines the respective advantages of garnet-type solid electrolytes and polymers, while making up for their respective shortcomings, and has great potential to develop high-voltage, long-life, and high-safety all-solid-state lithium batteries. However, there is no report on the above-mentioned novel hybrid all-solid-state battery in the prior art.
发明内容Contents of the invention
本发明旨在克服现有固态二次锂电池的性能缺陷,本发明提供了一种固态二次锂电池及其制备方法。The invention aims to overcome the performance defects of the existing solid-state secondary lithium battery, and the invention provides a solid-state secondary lithium battery and a preparation method thereof.
本发明提供了一种固态二次锂电池,在所述固态二次锂电池中,正极涂覆在固体电解质的一侧,正极组成包括正极活性材料、聚合物、锂离子导体和导电碳,其中,正极活性材料包括LiFePO4、LiCoO2、LiMn2O4、LiNi0.5Mn1.5O4、LiNixCoyMn1-x-yO2和/或Li[LixM1- x]O2,M为Ni、Co、Mn中的至少一种,聚合物包括PEO、PVdF、PMMA、PAN中的至少一种,锂离子导体包括锂盐,正极活性材料:导电碳:聚合物:锂离子导体的质量比为10:2:1:z,z≤10。The invention provides a solid secondary lithium battery. In the solid secondary lithium battery, the positive electrode is coated on one side of the solid electrolyte, and the positive electrode composition includes positive electrode active materials, polymers, lithium ion conductors and conductive carbon, wherein , the positive electrode active material includes LiFePO 4 , LiCoO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiNi x Co y Mn 1-xy O 2 and/or Li[Li x M 1- x ]O 2 , M is At least one of Ni, Co, Mn, the polymer includes at least one of PEO, PVdF, PMMA, PAN, the lithium ion conductor includes lithium salt, the positive electrode active material: conductive carbon: polymer: the mass ratio of lithium ion conductor It is 10:2:1:z, z≤10.
较佳地,锂离子导体包括LiClO4、LiPF6、LiAsF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiPF3(CF3CF2)3、LiBF3CF3CF2、LiC(CF3SO2)3、LiB(C2O4)2、LiBF2(CO2)2、聚合硼酸锂盐PLTB、锂镧锆氧、锂镧钛氧、磷酸钛铝锂、硅磷酸锂中的至少一种。Preferably, the lithium ion conductor includes LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiCF 3 SO 3 , LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiPF 3 (CF 3 CF 2 ) 3 , LiBF 3 CF 3 CF 2 , LiC(CF 3 SO 2 ) 3 , LiB(C 2 O 4 ) 2 , LiBF 2 (CO 2 ) 2 , lithium polyborate PLTB, lithium lanthanum zirconium oxide, lithium At least one of lanthanum titanyl oxide, lithium titanium aluminum phosphate, and lithium silicon phosphate.
较佳地,导电碳包括乙炔黑、石墨、石墨烯、氧化石墨烯、多孔碳、碳纳米管、碳纤维、氮掺杂碳中的至少一种。Preferably, the conductive carbon includes at least one of acetylene black, graphite, graphene, graphene oxide, porous carbon, carbon nanotubes, carbon fibers, and nitrogen-doped carbon.
较佳地,固体电解质是材质为Li7-xLa3Zr2-xTxO12的陶瓷片,x=0-1,T为Al、Ta、Nb、W、Ga、Y、Te中的至少一种,固体电解质厚度为0.1μm-10mm。Preferably, the solid electrolyte is a ceramic sheet made of Li 7-x La 3 Zr 2-x T x O 12 , x=0-1, T is Al, Ta, Nb, W, Ga, Y, Te At least one, the thickness of the solid electrolyte is 0.1 μm-10mm.
较佳地,所述固态二次锂电池还包括涂覆在固体电解质另一侧的负极、电极集流体、封装材料、导电极耳和/或极柱。Preferably, the solid-state secondary lithium battery further includes a negative electrode coated on the other side of the solid electrolyte, an electrode collector, a packaging material, conductive tabs and/or poles.
较佳地,负极的组成包括锂、锂合金和/或含金属锂的复合物,其中,锂合金中锂的含量至少是20wt%,锂合金还含有Mg、Ca、B、Al、Ga、In、Si、Ge、Sn、Pb、Sb中的至少一种;Preferably, the composition of the negative electrode includes lithium, a lithium alloy and/or a compound containing metallic lithium, wherein the content of lithium in the lithium alloy is at least 20 wt%, and the lithium alloy also contains Mg, Ca, B, Al, Ga, In , at least one of Si, Ge, Sn, Pb, Sb;
含金属锂的复合物至少含有20wt%的金属锂,还包含碳颗粒、碳纳米管、碳纤维、石墨烯、石墨片、多孔金属、多孔碳、惰性氧化物和/或铜粉。The lithium metal-containing composite contains at least 20 wt% lithium metal, and also contains carbon particles, carbon nanotubes, carbon fibers, graphene, graphite flakes, porous metals, porous carbon, inert oxides and/or copper powder.
较佳地,正极集流体的材质包括不锈钢、Ni、Al和/或Ti。Preferably, the material of the positive electrode collector includes stainless steel, Ni, Al and/or Ti.
较佳地,固态二次锂电池的工作温度为室温到150℃,优选,工作温度为60-100℃。Preferably, the operating temperature of the solid secondary lithium battery is from room temperature to 150°C, preferably, the operating temperature is 60-100°C.
又,本发明还提供了一种上述固态二次锂电池的制备方法,包括:In addition, the present invention also provides a method for preparing the above-mentioned solid-state secondary lithium battery, comprising:
1)根据所述正极的组成,制备含有正极组成的浆料;1) According to the composition of the positive electrode, prepare a slurry containing the composition of the positive electrode;
2)将步骤1)制备的浆料涂覆于固体电解质的一侧,再进行压实、干燥,使得聚合物固化;2) coating the slurry prepared in step 1) on one side of the solid electrolyte, and then compacting and drying the polymer to solidify;
3)在固体电解质的另一侧制备负极。3) Prepare the negative electrode on the other side of the solid electrolyte.
本发明的有益效果:Beneficial effects of the present invention:
1、本发明较其他石榴石型全固态电池最大的不同是复合正极采用添加锂离子导电材料的聚合物传输锂离子,提高锂离子电导,同时聚合物优异的粘结性能确保复合正极与陶瓷无机固体电解质形成良好的固固接触,降低界面电阻;1. Compared with other garnet-type all-solid-state batteries, the biggest difference of the present invention is that the composite positive electrode uses a polymer added with lithium-ion conductive materials to transmit lithium ions to improve lithium ion conductance, and at the same time, the excellent bonding performance of the polymer ensures that the composite positive electrode is compatible with ceramic inorganic materials. Solid electrolyte forms good solid-solid contact and reduces interface resistance;
2、本杂化制备方案不需要对活性材料进行高温处理,更加简单节能,同时维持活性材料的结构,具有良好的循环性能和倍率性能,100℃时1C倍率下循环100次后容量维持率在93%以上,库伦效率在99%以上;2. This hybrid preparation scheme does not require high-temperature treatment of the active material, which is simpler and energy-saving. At the same time, the structure of the active material is maintained, and it has good cycle performance and rate performance. More than 93%, Coulombic efficiency is more than 99%;
3、本固态电池从室温到150℃都能正常工作,解决液态电池高温安全问题,在一定范围内,温度愈高电化学性能愈好,能够满足特殊场合电池的应用,例如电动车和太空领域;3. This solid-state battery can work normally from room temperature to 150°C, which solves the high-temperature safety problem of liquid batteries. Within a certain range, the higher the temperature, the better the electrochemical performance, which can meet the application of batteries in special occasions, such as electric vehicles and space fields ;
4、采用石榴石型固态电解质作为支撑,可直接采用锂金属作为负极材料,可显著提高电池的能量密度。4. The garnet-type solid electrolyte is used as a support, and lithium metal can be directly used as the negative electrode material, which can significantly increase the energy density of the battery.
附图说明Description of drawings
图1为本发明一个实施方式中全固态二次锂电池的结构示意图(图中显示的是该器件各个部件的截面),其中,1-负极金属锂,2-石榴石型陶瓷电解质片,3-正极活性颗粒,4-聚合物、锂盐以及导电碳(3和4构成聚合物复合正极),5-不锈钢片,6-封装材料;Fig. 1 is a schematic structural view of an all-solid-state secondary lithium battery in one embodiment of the present invention (shown in the figure is the cross-section of each component of the device), wherein, 1-negative metal lithium, 2-garnet type ceramic electrolyte sheet, 3 -Positive electrode active particles, 4-polymer, lithium salt and conductive carbon (3 and 4 constitute the polymer composite positive electrode), 5-stainless steel sheet, 6-encapsulation material;
图2为本发明中Li7-xLa3Zr2-xTaxO12(LLZTO)陶瓷片的XRD图(2a)以及室温交流阻抗谱(2b);Fig. 2 is the XRD pattern (2a) and room temperature AC impedance spectrum (2b) of Li 7-x La 3 Zr 2-x Tax O 12 (LLZTO) ceramic sheet in the present invention;
图3为本发明实施例2中全固态电池的断面SEM图(3a)以及表面SEM图(3b);3 is a cross-sectional SEM image (3a) and a surface SEM image (3b) of an all-solid-state battery in Example 2 of the present invention;
图4为本发明中1#全固态电池在0.05C倍率,60℃的前10次充放电曲线(4a)、以及本发明中1#全固态电池在60℃,0.05C倍率的前50次循环性能(4b);Figure 4 is the first 10 charge-discharge curves (4a) of 1# all-solid-state battery at 0.05C rate and 60°C in the present invention, and the first 50 cycles of 1# all-solid-state battery at 60°C and 0.05C rate in the present invention performance (4b);
图5为本发明中2#全固态电池在60℃下的倍率性能;Figure 5 shows the rate performance of 2# all-solid-state battery at 60°C in the present invention;
图6为本发明中3#全固态电池在100℃,1C倍率的前100次循环性能;Figure 6 shows the first 100 cycle performance of 3# all-solid-state battery in the present invention at 100°C and 1C rate;
图7为本发明中4#全固态电池在室温(25℃)下的倍率性能。Fig. 7 shows the rate performance of the 4# all-solid-state battery in the present invention at room temperature (25°C).
具体实施方式detailed description
以下结合附图和下述实施方式进一步说明本发明,应理解,附图及下述实施方式仅用于说明本发明,而非限制本发明。The present invention will be further described below in conjunction with the drawings and the following embodiments. It should be understood that the drawings and the following embodiments are only used to illustrate the present invention rather than limit the present invention.
本发明目的在于针对基于石榴石型固体电解质的全固态锂电池构造存在的高温困难、工艺复杂等不足之处,提出采用聚合物复合正极结合石榴石型固体电解质的杂化方案。The purpose of the present invention is to propose a hybrid scheme using a polymer composite positive electrode combined with a garnet-type solid electrolyte in view of the disadvantages of high temperature difficulties and complicated processes in the structure of an all-solid-state lithium battery based on a garnet-type solid electrolyte.
本发明提供了一种石榴石型固体电解质支撑的新型片式固态二次锂电池,所述全固态二次锂电池包括:石榴石型锂离子导体的陶瓷薄片作为电池的工作电解质,并作为电池的支撑体;负极,包括锂、锂合金或含金属锂的复合物,与陶瓷片的一面形成良好界面接触;正极,由正极活性材料、聚合物、锂离子导体和导电碳复合制成,与陶瓷片的另一面形成良好界面接触;电极集流体,由与电极材料化学和电化学接触稳定的金属箔片构成。The invention provides a novel chip-type solid-state secondary lithium battery supported by a garnet-type solid electrolyte. The support body; the negative electrode, including lithium, lithium alloy or metal lithium compound, forms a good interfacial contact with one side of the ceramic sheet; the positive electrode is made of positive active material, polymer, lithium ion conductor and conductive carbon composite, and The other side of the ceramic sheet forms a good interface contact; the electrode current collector is composed of a metal foil that is in stable chemical and electrochemical contact with the electrode material.
优选地,锂合金中,锂合金中锂的含量至少是20wt%,锂合金还含有Mg、Ca、B、Al、Ga、In、Si、Ge、Sn、Pb、Sb中的一种或几种;含金属锂的复合物,至少含有20wt%的金属锂,还包含碳颗粒、碳纳米管、碳纤维、石墨烯、石墨片、多孔金属、多孔碳、惰性氧化物和/或铜粉。Preferably, in the lithium alloy, the content of lithium in the lithium alloy is at least 20wt%, and the lithium alloy also contains one or more of Mg, Ca, B, Al, Ga, In, Si, Ge, Sn, Pb, Sb ; Lithium-containing composites, containing at least 20wt% lithium metal, also containing carbon particles, carbon nanotubes, carbon fibers, graphene, graphite flakes, porous metals, porous carbon, inert oxides and/or copper powder.
优选地,所述石榴石型固体电解质为Li7-xLa3Zr2-xTxO12(x=0-1,T=Al、Ta、Nb、W、Ga、Y、Te等)陶瓷片,厚度为0.1μm-10mm。Preferably, the garnet-type solid electrolyte is Li 7-x La 3 Zr 2-x T x O 12 (x=0-1, T=Al, Ta, Nb, W, Ga, Y, Te, etc.) ceramics Sheet, thickness 0.1μm-10mm.
优选地,聚合物复合电极中,聚合物可以是PEO、PVdF、PMMA、PAN以及其共聚物中的一种或两种共混。Preferably, in the polymer composite electrode, the polymer can be one or two blends of PEO, PVdF, PMMA, PAN and their copolymers.
优选地,聚合物复合电极中,锂离子导体可以是锂盐LiClO4、LiPF6、LiAsF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2(LiTFSI)、LiN(C2F5SO2)2(LiBETI)、LiPF3(CF3CF2)3(LiFAP)、LiBF3CF3CF2(LiFAB)、LiC(CF3SO2)3(LiTFSM)、LiB(C2O4)2(LiBOB)、LiBF2(CO2)2(LiODFB)、聚合硼酸锂盐PLTB中的一种或几种,也可以是锂镧锆氧、锂镧钛氧、磷酸钛铝锂、硅磷酸锂等粉体材料的一种或几种。Preferably, in the polymer composite electrode, the lithium ion conductor can be lithium salt LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiCF 3 SO 3 , LiN(CF 3 SO 2 ) 2 (LiTFSI), LiN(C 2 F 5 SO 2 ) 2 (LiBETI), LiPF 3 (CF 3 CF 2 ) 3 (LiFAP), LiBF 3 CF 3 CF 2 (LiFAB), LiC(CF 3 SO 2 ) 3 (LiTFSM), LiB(C 2 O 4 ) 2 (LiBOB), LiBF 2 (CO 2 ) 2 (LiODFB), one or more of the polymer lithium borate salt PLTB, or lithium lanthanum zirconium oxide, lithium lanthanum titanium oxide, lithium titanium aluminum phosphate, silicon phosphate One or several kinds of powder materials such as lithium.
优选地,聚合物复合电极中,正极活性材料可以是LiFePO4、LiCoO2、LiMn2O4、LiNi0.5Mn1.5O4、、三元材料LiNixCoyMn1-x-yO2或者富锂锰基材料Li[LixM1-x]O2(M=Ni,Co,Mn或任意组合)。Preferably, in the polymer composite electrode, the positive active material can be LiFePO 4 , LiCoO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , ternary material LiNi x Co y Mn 1-xy O 2 or lithium-rich manganese Base material Li[Li x M 1-x ]O 2 (M=Ni, Co, Mn or any combination).
优选地,聚合物复合电极中,导电物质碳可以是乙炔黑、石墨、石墨烯、氧化石墨烯、多孔碳、碳纳米管、碳纤维、氮掺杂碳中的一种或几种。Preferably, in the polymer composite electrode, the conductive material carbon may be one or more of acetylene black, graphite, graphene, graphene oxide, porous carbon, carbon nanotube, carbon fiber, and nitrogen-doped carbon.
优选地,正极集流体可以是不锈钢、Ni、Al、Ti箔或它们的改性材料。Preferably, the positive current collector can be stainless steel, Ni, Al, Ti foil or their modified materials.
优选地,所述全固态锂电池还包括封装负极、固态电解质层、聚合物复合正极的电池封装材料,以及能够在工作温度使用的导电极耳、极柱。Preferably, the all-solid-state lithium battery also includes a battery packaging material for packaging the negative electrode, solid electrolyte layer, and polymer composite positive electrode, and conductive tabs and poles that can be used at operating temperatures.
优选地,所述全固态二次锂电池的工作温度为室温到150℃,优选工作温度为60-100℃。Preferably, the working temperature of the all-solid secondary lithium battery is from room temperature to 150°C, preferably 60-100°C.
优选地,所述全固态锂电池的制备方法,其特征在于包含以下步骤:Preferably, the preparation method of the all-solid-state lithium battery is characterized by comprising the following steps:
1)按化学式Li7-xLa3Zr2-xTxO12(x=0-1,T=Al、Ta、Nb、W、Ga、Y、Te等)中Li、La、Zr、T的摩尔比,选取LiOH、La(OH)3、ZrO2和相应氧化物TxOy作原料,其中LiOH过量5-20%,将其在酒精介质中球磨10-30小时后烘干,然后在850-1000℃煅烧6-10小时,得到Li7-xLa3Zr2-xTxO12陶瓷粉。将陶瓷粉转移到碳模具内,在Ar气氛下,热压烧结,1000-1200℃、15MPa烧结1-2小时。然后加工成所需厚度和尺寸的陶瓷片;1) According to the chemical formula Li 7-x La 3 Zr 2-x T x O 12 (x=0-1, T=Al, Ta, Nb, W, Ga, Y, Te, etc.) The molar ratio of LiOH, La(OH) 3 , ZrO 2 and corresponding oxides T x O y is selected as raw materials, wherein the excess of LiOH is 5-20%, it is ball-milled in an alcohol medium for 10-30 hours and dried, and then Calcining at 850-1000°C for 6-10 hours to obtain Li 7-x La 3 Zr 2-x T x O 12 ceramic powder. Transfer the ceramic powder into a carbon mold, and sinter it under Ar atmosphere by hot pressing at 1000-1200°C and 15MPa for 1-2 hours. Then processed into ceramic sheets of required thickness and size;
2)在干燥气氛中将适量的锂离子导体以及有机溶剂加入研钵中使锂离子导体材料充分分散或溶解,然后将正极活性材料、导电碳材料和聚合物溶液加入一起研磨,得到混合均匀的复合正极。其中正极活性材料:碳:聚合物:锂离子导体的质量比为10:2:1:z,z=0-10;2) In a dry atmosphere, add an appropriate amount of lithium ion conductor and organic solvent into the mortar to fully disperse or dissolve the lithium ion conductor material, and then add the positive electrode active material, conductive carbon material and polymer solution to grind together to obtain a well-mixed Composite positive electrode. Wherein positive electrode active material: carbon: polymer: the mass ratio of lithium ion conductor is 10:2:1:z, z=0-10;
3)将一定量的复合正极涂覆到陶瓷片的一面,室温下自然冷却,然后在干燥箱中烘干,用不锈钢板压实,最后在真空干燥箱中干燥,使有机溶剂完全挥发的同时固化聚合物;3) Apply a certain amount of composite positive electrode to one side of the ceramic sheet, cool it naturally at room temperature, then dry it in a drying oven, compact it with a stainless steel plate, and finally dry it in a vacuum drying oven to completely volatilize the organic solvent. curing polymer;
4)在干燥后的涂覆复合正极的陶瓷片另一面制备锂金属电极和集流体,然后封装,装配过程中无需添加EC、PC等电解液。4) A lithium metal electrode and a current collector are prepared on the other side of the dried composite cathode-coated ceramic sheet, and then packaged, without adding electrolytes such as EC and PC during the assembly process.
本发明的有益效果:Beneficial effects of the present invention:
1、本发明较其他石榴石型全固态电池最大的不同是复合正极采用添加锂离子导电材料的聚合物传输锂离子,提高锂离子电导,同时聚合物优异的粘结性能确保复合正极与陶瓷无机固体电解质形成良好的固固接触,降低界面电阻;1. Compared with other garnet-type all-solid-state batteries, the biggest difference of the present invention is that the composite positive electrode uses a polymer added with lithium-ion conductive materials to transmit lithium ions to improve lithium ion conductance, and at the same time, the excellent bonding performance of the polymer ensures that the composite positive electrode is compatible with ceramic inorganic materials. Solid electrolyte forms good solid-solid contact and reduces interface resistance;
2、本杂化制备方案不需要对活性材料进行高温处理,更加简单节能,同时维持活性材料的结构,具有良好的循环性能和倍率性能,100℃时1C倍率下循环100次后容量维持率在93%以上,库伦效率在99%以上;2. This hybrid preparation scheme does not require high-temperature treatment of the active material, which is simpler and energy-saving. At the same time, the structure of the active material is maintained, and it has good cycle performance and rate performance. More than 93%, Coulombic efficiency is more than 99%;
3、本固态电池从室温到150℃都能正常工作,解决液态电池高温安全问题,在一定范围内,温度愈高电化学性能愈好,能够满足特殊场合电池的应用,例如电动车和太空领域;3. This solid-state battery can work normally from room temperature to 150°C, which solves the high-temperature safety problem of liquid batteries. Within a certain range, the higher the temperature, the better the electrochemical performance, which can meet the application of batteries in special occasions, such as electric vehicles and space fields ;
4、采用石榴石型固态电解质作为支撑,可直接采用锂金属作为负极材料,可显著提高电池的能量密度。4. The garnet-type solid electrolyte is used as a support, and lithium metal can be directly used as the negative electrode material, which can significantly increase the energy density of the battery.
该发明提供了一种石榴石型固体电解质支撑的新型片式全固态二次锂电池。其特征是以石榴石型固体电解质的陶瓷薄片作为支撑,在陶瓷的一面,涂覆由聚合物、锂离子导体、导电碳和电极材料组成的复合正极,两者之间形成良好的界面;在另一面,沉积或压制锂、锂合金或含金属锂的复合物作为负极。复合正极构成的优点是在有效降低电极/电解质之间固/固界面电阻的同时,提高正极的导电性。此固态电池构建方法简易温和,不需要高温处理。以LiFePO4等常用材料构筑的电池在25、60、100℃都表现出优良的循环和倍率性能。本发明所构建制作的电池在保证高性能的前提下,可有效解决二次锂电池的安全性问题,对于发展应用于电动汽车和储能领域的二次电池意义重大。The invention provides a new chip-type all-solid-state secondary lithium battery supported by a garnet-type solid electrolyte. It is characterized by a ceramic sheet of garnet-type solid electrolyte as a support. On one side of the ceramic, a composite positive electrode composed of polymer, lithium ion conductor, conductive carbon and electrode material is coated, and a good interface is formed between the two; On the other hand, deposit or press lithium, lithium alloys or composites containing metallic lithium as negative electrodes. The advantage of the composition of the composite positive electrode is to improve the conductivity of the positive electrode while effectively reducing the solid/solid interfacial resistance between the electrode/electrolyte. This solid-state battery construction method is simple and gentle, and does not require high-temperature processing. Batteries constructed with commonly used materials such as LiFePO 4 exhibit excellent cycle and rate performance at 25, 60, and 100 °C. The battery constructed and produced by the invention can effectively solve the safety problem of the secondary lithium battery under the premise of ensuring high performance, and is of great significance for the development of secondary batteries used in the fields of electric vehicles and energy storage.
本发明固态电池的工作机理是:The working mechanism of the solid-state battery of the present invention is:
固态电池没有添加任何有机溶剂,在聚合物复合电极中,Li+与聚合物形成络合物,通过聚合物链段反复运动,Li+与聚合物不断解离与络合,同时向前移动,从而传导Li+,高温有助于聚合物链段运动,因此温度在一定范围内提高时离子电导率较高。The solid-state battery does not add any organic solvents. In the polymer composite electrode, Li + forms a complex with the polymer. Through the repeated movement of the polymer chain segment, Li + and the polymer continue to dissociate and complex, and move forward at the same time. Thus conducting Li + , high temperature helps polymer chain segment movement, so the ion conductivity is higher when the temperature increases within a certain range.
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。Examples are given below to describe the present invention in detail. It should also be understood that the following examples are only used to further illustrate the present invention, and should not be construed as limiting the protection scope of the present invention. Some non-essential improvements and adjustments made by those skilled in the art according to the above contents of the present invention all belong to the present invention scope of protection. The specific process parameters and the like in the following examples are only examples of suitable ranges, that is, those skilled in the art can make a selection within a suitable range through the description herein, and are not limited to the specific values exemplified below.
实施例1Example 1
一种基于石榴石型固体电解质的新型杂化全固态二次锂电池,装置的结构见附图1,采用的负极1、固体电解质层2、聚合物复合正极3和4,具体如下:A new hybrid all-solid-state secondary lithium battery based on garnet-type solid electrolyte. The structure of the device is shown in Figure 1. The negative electrode 1, solid electrolyte layer 2, and polymer composite positive electrodes 3 and 4 are used, as follows:
固体电解质层:使用高致密度的Li7-xLa3Zr2-xTaxO12(LLZTO)陶瓷片(致密度大于96%),既可以传输锂离子又可以保护金属锂的电解质层,厚度为0.1μm-10mm;Solid electrolyte layer: use high-density Li 7-x La 3 Zr 2-x Tax O 12 (LLZTO) ceramic sheets (density greater than 96%), which can not only transport lithium ions but also protect the electrolyte layer of metal lithium, The thickness is 0.1μm-10mm;
聚合物复合正极:在惰性气氛手套箱中将适量锂盐以及NMP加入玛瑙研钵中使锂盐充分溶解,然后将LiFePO4、导电碳加入研钵中,最后取预先配好的PVdF溶液(溶剂为NMP)转移到研钵中用杵研磨,得到均匀分布的复合正极,其中LiFePO4:C:PVdF:锂盐的质量比为10:2:1:x,x=0-10。将一定量的复合正极用刮刀涂覆到陶瓷片的一面,室温下自然冷却,然后在干燥箱中烘干,用不锈钢板压实,最后在真空干燥箱中干燥,使溶剂NMP完全挥发的同时使聚合物固化;Polymer composite positive electrode: In an inert atmosphere glove box, add appropriate amount of lithium salt and NMP into the agate mortar to fully dissolve the lithium salt, then add LiFePO 4 and conductive carbon into the mortar, and finally take the pre-prepared PVdF solution (solvent NMP) was transferred to a mortar and grinded with a pestle to obtain a uniformly distributed composite positive electrode, wherein the mass ratio of LiFePO 4 :C:PVdF:lithium salt was 10:2:1:x, x=0-10. Apply a certain amount of composite positive electrode to one side of the ceramic sheet with a scraper, cool it naturally at room temperature, then dry it in a drying oven, compact it with a stainless steel plate, and finally dry it in a vacuum drying oven to completely volatilize the solvent NMP to solidify the polymer;
负极:将涂覆聚合物复合正极的陶瓷片置于惰性气氛手套箱中,然后将负极金属锂片压在陶瓷电解质片的另一边,然后使用装配成图1中描述的电池。然后将该电池在室温(25℃)、60℃、100℃下进行测试。Negative electrode: Place the ceramic sheet coated with the polymer composite positive electrode in an inert atmosphere glove box, then press the negative metal lithium sheet on the other side of the ceramic electrolyte sheet, and then use it to assemble the battery described in Figure 1. The battery was then tested at room temperature (25°C), 60°C, and 100°C.
实施例2Example 2
一种基于石榴石型固体电解质的新型杂化全固态二次锂电池,装置的结构与实施例1相同。固体电解质层的制备方法同实施例1,LLZTO陶瓷片的相对密度达99%,其XRD如图2a所示,可见陶瓷主相为立方石榴石结构。采用圆形Li电极作为测试电极,在室温下对陶瓷样品进行电性能测试,得到其交流阻抗谱2b所示,计算得室温离子电导率为6.6×10-4S·cm- 1。A novel hybrid all-solid-state secondary lithium battery based on a garnet-type solid electrolyte, the structure of the device is the same as in Example 1. The preparation method of the solid electrolyte layer is the same as in Example 1, and the relative density of the LLZTO ceramic sheet is 99%. Its XRD is shown in Figure 2a, and it can be seen that the main phase of the ceramic is a cubic garnet structure. Using a circular Li electrode as the test electrode, the electrical performance of the ceramic sample was tested at room temperature, and its AC impedance spectrum was obtained as shown in 2b. The room temperature ionic conductivity was calculated to be 6.6×10 -4 S·cm - 1 .
实施例3Example 3
一种基于石榴石型固体电解质的新型杂化全固态二次锂电池,装置的结构与实施例1相同,采用的负极1、固体电解质层2、聚合物复合正极3和4及具体如下:A novel hybrid all-solid-state secondary lithium battery based on a garnet-type solid electrolyte. The structure of the device is the same as that of Example 1. The negative electrode 1, solid electrolyte layer 2, polymer composite positive electrode 3 and 4 are used, and the details are as follows:
采用的固体电解质层同实施例1、2;The solid electrolyte layer that adopts is the same as embodiment 1,2;
负极制备步骤同实施例1;Negative electrode preparation step is with embodiment 1;
聚合物复合正极LiFePO4:C:PVdF:锂盐的质量比为10:2:1:5(1#固态电池);The mass ratio of polymer composite positive electrode LiFePO 4 :C:PVdF:lithium salt is 10:2:1:5 (1# solid state battery);
电池测试温度:60℃;Battery test temperature: 60°C;
复合正极/LLZTO的断面SEM二次电子像如图3a所示,图3b为复合正极表面SEM的背散射电子像。图4a为1#固态电池在60℃,0.05C倍率下前10次充放电曲线,图4b为1#固态电池在60℃,0.05C倍率下前50次循环曲线。The cross-sectional SEM secondary electron image of the composite cathode/LLZTO is shown in Figure 3a, and Figure 3b is the SEM backscattered electron image of the composite cathode surface. Figure 4a is the first 10 charge-discharge curves of 1# solid-state battery at 60°C and 0.05C rate, and Figure 4b is the first 50 cycle curves of 1# solid-state battery at 60°C and 0.05C rate.
实施例4Example 4
一种基于石榴石型固体电解质的新型杂化全固态二次锂电池,装置的结构与实施例1相同,采用的负极1、固体电解质层2、聚合物复合正极3和4,具体如下:A novel hybrid all-solid-state secondary lithium battery based on a garnet-type solid electrolyte. The structure of the device is the same as in Example 1. The negative electrode 1, solid electrolyte layer 2, and polymer composite positive electrodes 3 and 4 are used, as follows:
采用的固体电解质层同实例1、2、3;The solid electrolyte layer that adopts is with example 1,2,3;
负极制备步骤同实施例1、3;Negative electrode preparation steps are with embodiment 1,3;
聚合物复合正极LiFePO4:C:PVdF:锂盐的质量比为10:2:1:7.5(2#固态电池);The mass ratio of polymer composite positive electrode LiFePO 4 :C:PVdF:lithium salt is 10:2:1:7.5 (2# solid state battery);
电池测试温度:60℃;Battery test temperature: 60°C;
图5显示2#固态电池在60℃时0.05C、0.1C、0.2C、0.5C和1C电流的倍率性能。Figure 5 shows the rate performance of 2# solid-state battery at 60°C at 0.05C, 0.1C, 0.2C, 0.5C and 1C current.
实施例5Example 5
一种基于石榴石型固体电解质的新型杂化全固态二次锂电池,装置的结构与实施例1相同,采用的负极1、固体电解质层2、聚合物复合正极3和4,具体如下:A novel hybrid all-solid-state secondary lithium battery based on a garnet-type solid electrolyte. The structure of the device is the same as in Example 1. The negative electrode 1, solid electrolyte layer 2, and polymer composite positive electrodes 3 and 4 are used, as follows:
采用的固体电解质层同实施例1、2、3、4;The solid electrolyte layer used is the same as that of Examples 1, 2, 3, and 4;
负极制备步骤同实例1、3、4;Negative electrode preparation steps are with example 1,3,4;
聚合物复合正极LiFePO4:C:PVdF:锂盐的质量比为10:2:1:7.5,同实施例4;The mass ratio of the polymer composite positive electrode LiFePO 4 :C:PVdF:lithium salt is 10:2:1:7.5, same as in Example 4;
电池测试温度:100℃(3#固态电池);Battery test temperature: 100°C (3# solid-state battery);
图6显示3#固态电池在100℃,1C前100次的循环性能。Figure 6 shows the cycle performance of 3# solid-state battery at 100°C and 1C for the first 100 cycles.
实施例6Example 6
一种基于石榴石型固体电解质的新型杂化全固态二次锂电池,装置的结构与实施例1相同,采用的负极1、固体电解质层2、聚合物复合正极3和4,具体如下:A novel hybrid all-solid-state secondary lithium battery based on a garnet-type solid electrolyte. The structure of the device is the same as in Example 1. The negative electrode 1, solid electrolyte layer 2, and polymer composite positive electrodes 3 and 4 are used, as follows:
采用的固体电解质层同实施例1、2、3、4、5;The solid electrolyte layer used is the same as in Examples 1, 2, 3, 4, and 5;
负极制备步骤同实施例1、3、4、5;Negative electrode preparation steps are with embodiment 1,3,4,5;
聚合物复合正极LiFePO4:C:PVdF:锂盐的质量比为10:2:1:7.5,同实例4、5;The mass ratio of the polymer composite positive electrode LiFePO 4 :C:PVdF:lithium salt is 10:2:1:7.5, same as examples 4 and 5;
电池测试温度:25℃(4#固态电池);Battery test temperature: 25°C (4# solid-state battery);
图7显示4#固态电池在室温(25℃)0.05C、0.1C、0.2C、0.5C的倍率性能。Figure 7 shows the rate performance of 4# solid-state battery at room temperature (25°C) at 0.05C, 0.1C, 0.2C, and 0.5C.
本发明具有以下显著的优点:The present invention has the following significant advantages:
(1)制作方式温和简易(1) The production method is gentle and simple
传统的基于石榴石型固体电解质的固态电池需要对电极与电解质进行高温烧结,容易导致电极与/或电解质反应,同时工艺复杂。本杂化方案使用已经制备好的陶瓷固体电解质,只要使用常规的电极浆料制备技术以及涂覆工艺即可获得陶瓷基全固态电池原型。无需对复合电极进行高温处理,维持了活性材料的性能;Traditional solid-state batteries based on garnet-type solid electrolytes require high-temperature sintering of electrodes and electrolytes, which easily leads to reactions between electrodes and/or electrolytes, and the process is complicated. This hybrid scheme uses the prepared ceramic solid electrolyte, and the ceramic-based all-solid-state battery prototype can be obtained as long as the conventional electrode slurry preparation technology and coating process are used. There is no need to perform high temperature treatment on the composite electrode, maintaining the performance of the active material;
(2)长循环寿命(2) Long cycle life
本固态电池在60及100℃分别以0.05C及1C的电流充放电,循环100次后容量保持率在93%以上,库伦效率在99%以上;The solid-state battery is charged and discharged at 0.05C and 1C at 60 and 100°C respectively. After 100 cycles, the capacity retention rate is above 93%, and the Coulombic efficiency is above 99%.
(3)高安全性(3) High security
本固态电池未添加任何有机溶剂,在100℃高温也不会有任何危险。另外LLZTO固体电解质本身具有高热稳定性,高抗腐蚀性和电化学窗口,大大提高了体系工作过程中的安全性能,同时可以提高固态电池的电化学窗口,适合高电压正极材料;This solid-state battery does not add any organic solvents, and there is no danger at a high temperature of 100°C. In addition, the LLZTO solid electrolyte itself has high thermal stability, high corrosion resistance and electrochemical window, which greatly improves the safety performance of the system during operation. At the same time, it can improve the electrochemical window of solid-state batteries and is suitable for high-voltage cathode materials;
(4)较宽的使用温度范围(4) Wide operating temperature range
本固态电池在室温(25℃)、60℃、100℃都具有良好的电化学性能,同时由于聚合物锂盐以及陶瓷固体电解质随着温度升高离子电导率都提高,整个电池的阻抗在100℃显著降低,达到液态电池水平,具有大电流充放电能力,预计在更高温度下电池性能将进一步提高,尤其适合有温度控制的应用领域。The solid-state battery has good electrochemical performance at room temperature (25°C), 60°C, and 100°C. At the same time, the ionic conductivity of the polymer lithium salt and ceramic solid electrolyte increases with the increase of temperature, and the impedance of the entire battery is at 100 The ℃ is significantly lowered, reaching the level of liquid batteries, with high current charge and discharge capabilities, and it is expected that the battery performance will be further improved at higher temperatures, especially suitable for applications with temperature control.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510161598.7A CN106159318A (en) | 2015-04-07 | 2015-04-07 | Novel slice type solid-state serondary lithium battery that garnet-type solid electrolyte supports and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510161598.7A CN106159318A (en) | 2015-04-07 | 2015-04-07 | Novel slice type solid-state serondary lithium battery that garnet-type solid electrolyte supports and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106159318A true CN106159318A (en) | 2016-11-23 |
Family
ID=57337650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510161598.7A Pending CN106159318A (en) | 2015-04-07 | 2015-04-07 | Novel slice type solid-state serondary lithium battery that garnet-type solid electrolyte supports and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106159318A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107017388A (en) * | 2017-02-09 | 2017-08-04 | 上海蔚来汽车有限公司 | A kind of preparation method of composite positive pole for solid lithium ion battery |
CN107565090A (en) * | 2017-08-30 | 2018-01-09 | 清陶(昆山)能源发展有限公司 | A kind of positive plate of lithium battery and preparation method thereof |
CN107579276A (en) * | 2017-07-25 | 2018-01-12 | 华南理工大学 | A kind of solid polymer electrolyte film and preparation method thereof and application as lithium-ion battery separator |
CN107591536A (en) * | 2017-09-02 | 2018-01-16 | 清陶(昆山)能源发展有限公司 | Gel anode composite piece and preparation method thereof and the method for preparing solid lithium battery |
CN107591568A (en) * | 2017-08-19 | 2018-01-16 | 电子科技大学 | A kind of preparation method of stacked all-solid lithium-ion battery |
CN107706352A (en) * | 2017-10-13 | 2018-02-16 | 清陶(昆山)能源发展有限公司 | A kind of anode pole piece applied to flexible solid lithium battery and preparation method thereof |
CN108365165A (en) * | 2018-02-06 | 2018-08-03 | 哈尔滨工业大学 | A kind of solid state lithium battery and preparation method thereof of novel electrolytes complex method |
CN108539182A (en) * | 2018-05-14 | 2018-09-14 | 哈尔滨工业大学 | A kind of preparation method of composite sulfur positive electrode and its application in all solid state lithium-sulfur cell |
CN108598561A (en) * | 2018-03-08 | 2018-09-28 | 浙江大学 | A kind of quasi- solid lithium ion conducting electrolyte and its preparation method and application |
CN108923060A (en) * | 2018-06-29 | 2018-11-30 | 桑顿新能源科技有限公司 | A kind of solid state lithium battery and preparation method of modifying interface |
CN109119684A (en) * | 2017-06-22 | 2019-01-01 | 精工爱普生株式会社 | Electrolyte, battery and electronic equipment |
CN109360947A (en) * | 2018-08-31 | 2019-02-19 | 哈尔滨理工大学 | Preparation method of porous carbon cathode material for quasi-solid-state lithium-sulfur battery |
CN109742332A (en) * | 2018-11-23 | 2019-05-10 | 颍上北方动力新能源有限公司 | A kind of production method of positive plate of lithium battery |
CN110224120A (en) * | 2019-05-23 | 2019-09-10 | 清华大学深圳研究生院 | Preparation method, combination electrode and the lithium ion battery of combination electrode |
CN110395980A (en) * | 2019-07-26 | 2019-11-01 | 惠州市富济电子材料有限公司 | Porous ceramic film material, solid electrolyte material and preparation method thereof and lithium ion battery |
CN110447127A (en) * | 2017-03-20 | 2019-11-12 | 罗伯特·博世有限公司 | Electrode active material, the method for preparing the electrode active material and the Anode and battery comprising the electrode active material |
CN110832687A (en) * | 2018-03-27 | 2020-02-21 | 株式会社Lg化学 | Composite solid electrolyte membrane for all-solid battery and all-solid battery comprising same |
CN111106392A (en) * | 2019-12-30 | 2020-05-05 | 华南师范大学 | Preparation method of all-solid-state electrolyte battery |
CN111755733A (en) * | 2019-03-28 | 2020-10-09 | 揖斐电株式会社 | All-solid-state battery and its manufacturing method |
CN111868994A (en) * | 2017-11-07 | 2020-10-30 | 密执安州立大学董事会 | Solid-state battery electrolytes with improved stability for cathode materials |
CN111886090A (en) * | 2018-02-15 | 2020-11-03 | 马里兰大学派克分院 | Ordered porous solid electrolyte structure, electrochemical device having the same, and method of manufacturing the same |
CN112086626A (en) * | 2019-06-13 | 2020-12-15 | 重庆九环新越新能源科技发展有限公司 | Conductive composite electrode positive electrode material of all-solid-state battery |
CN112514136A (en) * | 2018-03-08 | 2021-03-16 | 崔屹 | Solid electrolyte based molten lithium electrochemical cell |
CN114335758A (en) * | 2021-12-31 | 2022-04-12 | 郑州大学 | High temperature molten lithium iodine battery based on garnet solid electrolyte |
CN114551985A (en) * | 2021-07-27 | 2022-05-27 | 万向一二三股份公司 | High-toughness high-conductivity inorganic solid composite electrolyte and preparation method thereof |
CN118472358A (en) * | 2024-07-09 | 2024-08-09 | 溧阳中科固能新能源科技有限公司 | Novel battery based on composite solid electrolyte and organic lithium negative electrode |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1067529A (en) * | 1991-06-04 | 1992-12-30 | 中国科学院物理研究所 | Mix all solid state room temperature lithium storage battery of phase solid electrolyte and preparation method thereof |
US20040130061A1 (en) * | 2002-03-07 | 2004-07-08 | Paul-Andre Lavoie | Positive electrode films for alkali metal polymer batteries and method for making same |
CN103113107A (en) * | 2013-02-28 | 2013-05-22 | 中国科学院上海硅酸盐研究所 | Method for preparing ceramic solid electrolyte |
-
2015
- 2015-04-07 CN CN201510161598.7A patent/CN106159318A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1067529A (en) * | 1991-06-04 | 1992-12-30 | 中国科学院物理研究所 | Mix all solid state room temperature lithium storage battery of phase solid electrolyte and preparation method thereof |
US20040130061A1 (en) * | 2002-03-07 | 2004-07-08 | Paul-Andre Lavoie | Positive electrode films for alkali metal polymer batteries and method for making same |
CN103113107A (en) * | 2013-02-28 | 2013-05-22 | 中国科学院上海硅酸盐研究所 | Method for preparing ceramic solid electrolyte |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107017388A (en) * | 2017-02-09 | 2017-08-04 | 上海蔚来汽车有限公司 | A kind of preparation method of composite positive pole for solid lithium ion battery |
CN110447127A (en) * | 2017-03-20 | 2019-11-12 | 罗伯特·博世有限公司 | Electrode active material, the method for preparing the electrode active material and the Anode and battery comprising the electrode active material |
CN109119684A (en) * | 2017-06-22 | 2019-01-01 | 精工爱普生株式会社 | Electrolyte, battery and electronic equipment |
CN109119684B (en) * | 2017-06-22 | 2023-02-28 | 精工爱普生株式会社 | Electrolytes, Batteries, and Electronics |
CN107579276A (en) * | 2017-07-25 | 2018-01-12 | 华南理工大学 | A kind of solid polymer electrolyte film and preparation method thereof and application as lithium-ion battery separator |
CN107591568A (en) * | 2017-08-19 | 2018-01-16 | 电子科技大学 | A kind of preparation method of stacked all-solid lithium-ion battery |
CN107591568B (en) * | 2017-08-19 | 2019-12-10 | 电子科技大学 | A kind of preparation method of laminated all-solid-state lithium-ion battery |
CN107565090A (en) * | 2017-08-30 | 2018-01-09 | 清陶(昆山)能源发展有限公司 | A kind of positive plate of lithium battery and preparation method thereof |
CN107591536A (en) * | 2017-09-02 | 2018-01-16 | 清陶(昆山)能源发展有限公司 | Gel anode composite piece and preparation method thereof and the method for preparing solid lithium battery |
CN107591536B (en) * | 2017-09-02 | 2020-08-11 | 清陶(昆山)能源发展有限公司 | Gel composite positive plate, preparation method thereof and method for preparing all-solid-state lithium battery |
CN107706352A (en) * | 2017-10-13 | 2018-02-16 | 清陶(昆山)能源发展有限公司 | A kind of anode pole piece applied to flexible solid lithium battery and preparation method thereof |
CN107706352B (en) * | 2017-10-13 | 2020-09-04 | 清陶(昆山)能源发展有限公司 | Positive pole piece applied to flexible solid-state lithium battery and preparation method thereof |
CN111868994A (en) * | 2017-11-07 | 2020-10-30 | 密执安州立大学董事会 | Solid-state battery electrolytes with improved stability for cathode materials |
CN108365165A (en) * | 2018-02-06 | 2018-08-03 | 哈尔滨工业大学 | A kind of solid state lithium battery and preparation method thereof of novel electrolytes complex method |
CN108365165B (en) * | 2018-02-06 | 2020-05-19 | 哈尔滨工业大学 | A new type of solid-state lithium battery with electrolyte composite method and preparation method thereof |
CN111886090B (en) * | 2018-02-15 | 2023-07-04 | 马里兰大学派克分院 | Ordered porous solid electrolyte structure, electrochemical device having the structure, method for manufacturing the structure |
CN111886090A (en) * | 2018-02-15 | 2020-11-03 | 马里兰大学派克分院 | Ordered porous solid electrolyte structure, electrochemical device having the same, and method of manufacturing the same |
CN108598561A (en) * | 2018-03-08 | 2018-09-28 | 浙江大学 | A kind of quasi- solid lithium ion conducting electrolyte and its preparation method and application |
CN112514136A (en) * | 2018-03-08 | 2021-03-16 | 崔屹 | Solid electrolyte based molten lithium electrochemical cell |
US12237474B2 (en) | 2018-03-08 | 2025-02-25 | Metagenesis, Ltd. | Solid electrolyte-based molten lithium electrochemical cells |
CN110832687A (en) * | 2018-03-27 | 2020-02-21 | 株式会社Lg化学 | Composite solid electrolyte membrane for all-solid battery and all-solid battery comprising same |
US11476498B2 (en) | 2018-03-27 | 2022-10-18 | Lg Energy Solution, Ltd. | Complex solid electrolyte membrane for all-solid-state battery and all-solid-state battery including same |
CN110832687B (en) * | 2018-03-27 | 2023-05-05 | 株式会社Lg新能源 | Composite solid electrolyte membrane for all-solid-state battery and all-solid-state battery comprising same |
CN108539182B (en) * | 2018-05-14 | 2020-07-17 | 哈尔滨工业大学 | Preparation method of composite sulfur positive electrode material and application of composite sulfur positive electrode material in all-solid-state lithium-sulfur battery |
CN108539182A (en) * | 2018-05-14 | 2018-09-14 | 哈尔滨工业大学 | A kind of preparation method of composite sulfur positive electrode and its application in all solid state lithium-sulfur cell |
CN108923060A (en) * | 2018-06-29 | 2018-11-30 | 桑顿新能源科技有限公司 | A kind of solid state lithium battery and preparation method of modifying interface |
CN109360947B (en) * | 2018-08-31 | 2022-01-28 | 哈尔滨理工大学 | Preparation method of porous carbon cathode material of quasi-solid-state lithium-sulfur battery |
CN109360947A (en) * | 2018-08-31 | 2019-02-19 | 哈尔滨理工大学 | Preparation method of porous carbon cathode material for quasi-solid-state lithium-sulfur battery |
CN109742332A (en) * | 2018-11-23 | 2019-05-10 | 颍上北方动力新能源有限公司 | A kind of production method of positive plate of lithium battery |
CN111755733A (en) * | 2019-03-28 | 2020-10-09 | 揖斐电株式会社 | All-solid-state battery and its manufacturing method |
CN111755733B (en) * | 2019-03-28 | 2024-07-26 | 揖斐电株式会社 | All-solid-state battery and method for manufacturing same |
CN110224120A (en) * | 2019-05-23 | 2019-09-10 | 清华大学深圳研究生院 | Preparation method, combination electrode and the lithium ion battery of combination electrode |
CN112086626A (en) * | 2019-06-13 | 2020-12-15 | 重庆九环新越新能源科技发展有限公司 | Conductive composite electrode positive electrode material of all-solid-state battery |
CN110395980A (en) * | 2019-07-26 | 2019-11-01 | 惠州市富济电子材料有限公司 | Porous ceramic film material, solid electrolyte material and preparation method thereof and lithium ion battery |
CN110395980B (en) * | 2019-07-26 | 2022-02-11 | 深圳市富济新材料科技有限公司 | Porous ceramic material, solid electrolyte material, preparation method of solid electrolyte material and lithium ion battery |
CN111106392A (en) * | 2019-12-30 | 2020-05-05 | 华南师范大学 | Preparation method of all-solid-state electrolyte battery |
CN114551985A (en) * | 2021-07-27 | 2022-05-27 | 万向一二三股份公司 | High-toughness high-conductivity inorganic solid composite electrolyte and preparation method thereof |
CN114335758B (en) * | 2021-12-31 | 2023-03-17 | 郑州大学 | High-temperature molten lithium-iodine battery based on garnet solid electrolyte |
CN114335758A (en) * | 2021-12-31 | 2022-04-12 | 郑州大学 | High temperature molten lithium iodine battery based on garnet solid electrolyte |
CN118472358A (en) * | 2024-07-09 | 2024-08-09 | 溧阳中科固能新能源科技有限公司 | Novel battery based on composite solid electrolyte and organic lithium negative electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106159318A (en) | Novel slice type solid-state serondary lithium battery that garnet-type solid electrolyte supports and preparation method thereof | |
He et al. | Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery | |
CN110838576B (en) | A kind of doped coated sodium ion battery cathode material and preparation method and use thereof | |
CN101572305B (en) | A preparation method of LiFePO4/C cathode material with high rate performance | |
CN107452954B (en) | Lithium-rich manganese-based composite positive electrode material for solid-state battery and preparation method thereof | |
CN107017388A (en) | A kind of preparation method of composite positive pole for solid lithium ion battery | |
US20120021298A1 (en) | All-solid lithium ion secondary battery and electrode therefor | |
CN107017387A (en) | It is a kind of for composite positive pole of solid lithium ion battery and preparation method thereof | |
CN110323495A (en) | A kind of lithium borate complex lithium lanthanum zirconium tantalum oxygen solid electrolyte | |
CN102646810A (en) | Preparation method of a three-dimensional porous graphene doped and coated lithium titanate composite negative electrode material | |
CN113054241A (en) | Solid-state lithium battery and preparation method thereof | |
EP4435898A1 (en) | Positive electrode lithium supplement additive and preparation method therefor, positive sheet, and secondary battery | |
EP4391112A1 (en) | Composite coating method for highly-compacted nickelic layered positive electrode material of solid-state battery | |
CN107978738B (en) | A composite cathode material of sodium manganese pyrophosphate/carbon and its preparation and application | |
CN114512718B (en) | Composite solid electrolyte, preparation method thereof and high-performance all-solid battery | |
CN101789506B (en) | Composite cathode material for lithium ion battery and preparation method | |
CN107706392A (en) | A kind of carbon nitrogen coats the preparation method of vanadium phosphate sodium sodium-ion battery positive material altogether | |
CN108199011B (en) | Preparation method of lithium titanate negative electrode material | |
JP2017224427A (en) | Solid electrolyte and battery | |
CN111697204B (en) | Lithium lanthanum zirconium oxide/lithium cobaltate composite material and preparation method and application thereof | |
Lai et al. | Lithium dendrites suppressed by low temperature in-situ anti-perovskite coated garnet solid-state electrolyte | |
CN102104149A (en) | Lithium iron phosphate composite anode material in lithium-ion battery and preparation method thereof | |
CN118117052A (en) | Lithium ion battery fast-charge anode material and preparation and application thereof | |
CN113921755A (en) | A composite solid-state positive electrode for solid-state lithium battery and preparation method thereof | |
CN108630916A (en) | A kind of bacteria cellulose supported titanium niobium O compoiste material and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20161123 |