CN106159057B - LED chip and preparation method thereof - Google Patents
LED chip and preparation method thereof Download PDFInfo
- Publication number
- CN106159057B CN106159057B CN201510153145.XA CN201510153145A CN106159057B CN 106159057 B CN106159057 B CN 106159057B CN 201510153145 A CN201510153145 A CN 201510153145A CN 106159057 B CN106159057 B CN 106159057B
- Authority
- CN
- China
- Prior art keywords
- layer
- type semiconductor
- transparency conducting
- transparent conductive
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title 1
- 229910052751 metal Inorganic materials 0.000 claims abstract description 152
- 239000002184 metal Substances 0.000 claims abstract description 152
- 239000004065 semiconductor Substances 0.000 claims abstract description 82
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910052709 silver Inorganic materials 0.000 claims abstract description 41
- 239000004332 silver Substances 0.000 claims abstract description 41
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 claims abstract description 29
- 239000010410 layer Substances 0.000 claims description 735
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 62
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 52
- 239000000463 material Substances 0.000 claims description 49
- 229910052697 platinum Inorganic materials 0.000 claims description 31
- 229910052759 nickel Inorganic materials 0.000 claims description 26
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 20
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 20
- 239000010936 titanium Substances 0.000 claims description 20
- 229910052719 titanium Inorganic materials 0.000 claims description 20
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 18
- 229910052804 chromium Inorganic materials 0.000 claims description 18
- 239000011651 chromium Substances 0.000 claims description 18
- 239000002356 single layer Substances 0.000 claims description 13
- 239000011787 zinc oxide Substances 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 7
- 230000008021 deposition Effects 0.000 claims description 7
- 238000001020 plasma etching Methods 0.000 claims description 4
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims 8
- 229910052721 tungsten Inorganic materials 0.000 claims 8
- 239000010937 tungsten Substances 0.000 claims 8
- 238000010276 construction Methods 0.000 claims 7
- MRNHPUHPBOKKQT-UHFFFAOYSA-N indium;tin;hydrate Chemical compound O.[In].[Sn] MRNHPUHPBOKKQT-UHFFFAOYSA-N 0.000 claims 2
- 238000004062 sedimentation Methods 0.000 claims 2
- 238000004544 sputter deposition Methods 0.000 claims 2
- LWUVWAREOOAHDW-UHFFFAOYSA-N lead silver Chemical compound [Ag].[Pb] LWUVWAREOOAHDW-UHFFFAOYSA-N 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 abstract description 23
- 230000004888 barrier function Effects 0.000 abstract description 7
- 229910002601 GaN Inorganic materials 0.000 description 88
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 44
- 239000011241 protective layer Substances 0.000 description 26
- MAKDTFFYCIMFQP-UHFFFAOYSA-N titanium tungsten Chemical compound [Ti].[W] MAKDTFFYCIMFQP-UHFFFAOYSA-N 0.000 description 25
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 18
- 229910052737 gold Inorganic materials 0.000 description 18
- 239000010931 gold Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 11
- 238000002161 passivation Methods 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000002310 reflectometry Methods 0.000 description 5
- 239000011135 tin Substances 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 229910004541 SiN Inorganic materials 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 238000001579 optical reflectometry Methods 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 229910020068 MgAl Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910003465 moissanite Inorganic materials 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical group O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 229910052950 sphalerite Inorganic materials 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
- H10H20/841—Reflective coatings, e.g. dielectric Bragg reflectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/833—Transparent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/032—Manufacture or treatment of electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/034—Manufacture or treatment of coatings
Landscapes
- Led Devices (AREA)
Abstract
本发明提供一种LED芯片及其制作方法,制作方法包括:提供衬底、N型半导体层、有源层和P型半导体层;形成第一、第二透明导电层;形成功函数大于透明导电层的含银的金属反射层,其中位于第一透明导电层上的金属反射层为P电极,位于第二透明导电层上的金属反射层为N电极;LED芯片包括衬底、N型半导体层、有源层和P型半导体层,第一、第二透明导电层;金属反射层,其中位于第一透明导电层上的金属反射层为P电极,位于第二透明导电层上的金属反射层为N电极。本发明的有益效果在于,降低P、N型半导体层与金属反射层之间的势垒高度,进而减小P、N型半导体层与金属反射层之间的欧姆接触,减小LED芯片的工作电压,增加LED芯片的发光效率。
The invention provides an LED chip and a manufacturing method thereof. The manufacturing method includes: providing a substrate, an N-type semiconductor layer, an active layer, and a P-type semiconductor layer; forming a first and a second transparent conductive layer; forming a work function greater than the transparent conductive layer The silver-containing metal reflective layer of the layer, wherein the metal reflective layer positioned on the first transparent conductive layer is a P electrode, and the metal reflective layer positioned on the second transparent conductive layer is an N electrode; the LED chip includes a substrate, an N-type semiconductor layer , an active layer and a P-type semiconductor layer, the first and second transparent conductive layers; the metal reflective layer, wherein the metal reflective layer positioned on the first transparent conductive layer is a P electrode, and the metal reflective layer positioned on the second transparent conductive layer For the N electrode. The beneficial effect of the present invention is to reduce the barrier height between the P, N type semiconductor layer and the metal reflective layer, thereby reducing the ohmic contact between the P, N type semiconductor layer and the metal reflective layer, and reducing the working time of the LED chip. voltage to increase the luminous efficiency of the LED chip.
Description
技术领域technical field
本发明涉及LED制造技术领域,具体涉及一种LED芯片及其制作方法。The invention relates to the technical field of LED manufacturing, in particular to an LED chip and a manufacturing method thereof.
背景技术Background technique
发光二极管(Light Emitting Diode,LED)是一种半导体固态发光器件,其利用半导体PN结电致发光原理制成。LED器件具有开启电压低、体积小、响应快、稳定性好、寿命长、无污染等良好光电性能,因此在室外室内照明、背光、显示、交通指示等领域具有越来越广泛的应用。A light emitting diode (Light Emitting Diode, LED) is a semiconductor solid-state light-emitting device, which is made using the principle of semiconductor PN junction electroluminescence. LED devices have good photoelectric properties such as low turn-on voltage, small size, fast response, good stability, long life, and no pollution. Therefore, they are widely used in outdoor and indoor lighting, backlighting, display, traffic indication and other fields.
一般来说LED芯片结构分为水平结构(正装芯片)、垂直结构(垂直结构芯片)和倒装结构(倒装芯片)三种类型;其中,倒装结构LED芯片中的P、N电极均位于发光区同一侧,芯LED片中的量子阱层所发出的光主要通过透明的蓝宝石层逸出,这样的LED芯片的发光效率更高。Generally speaking, the LED chip structure is divided into three types: horizontal structure (front chip), vertical structure (vertical structure chip) and flip chip structure (flip chip); among them, the P and N electrodes in the flip structure LED chip are located On the same side of the light-emitting area, the light emitted by the quantum well layer in the core LED chip mainly escapes through the transparent sapphire layer, and the luminous efficiency of such an LED chip is higher.
但是,现有技术中的倒装结构的LED芯片为了提升芯片的发光效率,采用了具有较高光反射率的材料形成电极层。但是这可能对LED芯片的其他性能造成影响,例如,导致LED芯片的使用电压升高。However, in order to improve the luminous efficiency of the LED chip with the flip-chip structure in the prior art, a material with a relatively high light reflectivity is used to form the electrode layer. However, this may affect other performances of the LED chip, for example, causing an increase in the operating voltage of the LED chip.
因此,如何在尽量不影响LED芯片其他性能的前提下尽量提升LED芯片的发光效率,成为本领域技术人员亟待解决的技术问题之一。Therefore, how to improve the luminous efficiency of the LED chip as much as possible without affecting other performances of the LED chip has become one of the technical problems to be solved urgently by those skilled in the art.
发明内容Contents of the invention
本发明解决的问题是提供一种LED芯片及其制作方法,以在尽量不影响LED芯片其他性能的前提下尽量提升LED芯片的发光效率。The problem to be solved by the present invention is to provide an LED chip and a manufacturing method thereof, so as to improve the luminous efficiency of the LED chip as much as possible on the premise of not affecting other performances of the LED chip as much as possible.
为解决上述问题,本发明提供一种LED芯片的制作方法,包括:In order to solve the above problems, the present invention provides a method for manufacturing an LED chip, comprising:
提供衬底;provide the substrate;
在所述衬底上依次形成N型半导体层、有源层和P型半导体层;sequentially forming an N-type semiconductor layer, an active layer, and a P-type semiconductor layer on the substrate;
在所述P型半导体层和有源层中形成露出部分N型半导体层的开口;forming an opening exposing part of the N-type semiconductor layer in the P-type semiconductor layer and the active layer;
在所述P型半导体层上以及开口底部形成功函数大于所述P型半导体层以及N型半导体层的透明导电层,其中位于所述P型半导体层上的透明导电层为第一透明导电层,位于所述开口中露出的N型半导体层上的透明导电层为第二透明导电层,所述第一透明导电层和第二透明导电层之间不接触;A transparent conductive layer having a work function greater than that of the P-type semiconductor layer and the N-type semiconductor layer is formed on the P-type semiconductor layer and at the bottom of the opening, wherein the transparent conductive layer on the P-type semiconductor layer is the first transparent conductive layer , the transparent conductive layer on the N-type semiconductor layer exposed in the opening is a second transparent conductive layer, and there is no contact between the first transparent conductive layer and the second transparent conductive layer;
在所述第一透明导电层以及第二透明导电层的表面和侧壁形成含银的金属反射层,所述含银的金属反射层的功函数大于所述透明导电层的功函数,其中,位于所述第一透明导电层上的金属反射层作为所述LED芯片的P电极,位于所述第二透明导电层上的金属反射层作为所述LED芯片的N电极,所述P电极和N电极之间不接触。A silver-containing metal reflective layer is formed on the surface and sidewall of the first transparent conductive layer and the second transparent conductive layer, and the work function of the silver-containing metal reflective layer is greater than the work function of the transparent conductive layer, wherein, The metal reflective layer located on the first transparent conductive layer serves as the P electrode of the LED chip, the metal reflective layer located on the second transparent conductive layer serves as the N electrode of the LED chip, and the P electrode and the N electrode There is no contact between electrodes.
可选的,在P型半导体层和有源层中形成开口的步骤包括:Optionally, the step of forming openings in the P-type semiconductor layer and the active layer includes:
采用等离子刻蚀的方式去除部分P型半导体层材料以及有源层材料,以形成所述开口。Plasma etching is used to remove part of the material of the P-type semiconductor layer and the material of the active layer to form the opening.
可选的,形成透明导电层的步骤包括:Optionally, the step of forming a transparent conductive layer includes:
使靠近所述开口的P型半导体层从所述第一透明导电层露出,并使所述第二透明导电层覆盖所述开口的部分底面,所述第二透明导电层与所述开口的侧壁之间具有第一间隙;The P-type semiconductor layer close to the opening is exposed from the first transparent conductive layer, and the second transparent conductive layer covers part of the bottom surface of the opening, and the second transparent conductive layer is connected to the side of the opening. a first gap between the walls;
在第二透明导电层的表面和侧壁形成金属反射层的步骤包括:使金属反射层形成于所述第二透明导电层表面和侧壁,且所述金属反射层的侧壁与所述开口的侧壁之间具有第二间隙。The step of forming a metal reflective layer on the surface and sidewall of the second transparent conductive layer includes: forming the metal reflective layer on the surface and sidewall of the second transparent conductive layer, and the sidewall of the metal reflective layer is connected to the opening There is a second gap between the side walls.
可选的,形成氧化铟锡或者氧化锌材料的透明导电层。Optionally, a transparent conductive layer of indium tin oxide or zinc oxide material is formed.
可选的,形成透明导电层的步骤包括:采用磁控溅射沉积或者反应等离子沉积的方式形成所述透明导电层。Optionally, the step of forming the transparent conductive layer includes: forming the transparent conductive layer by means of magnetron sputtering deposition or reactive plasma deposition.
可选的,形成金属反射层的步骤包括:形成单层或者叠层结构的金属反射层。Optionally, the step of forming the metal reflective layer includes: forming a single-layer or laminated metal reflective layer.
可选的,形成金属反射层的步骤包括:在所述透明导电层上依次形成银层以及钛化钨层,所述银层以及钛化钨层共同构成所述叠层结构的金属反射层;Optionally, the step of forming the metal reflective layer includes: sequentially forming a silver layer and a titanium tungsten layer on the transparent conductive layer, and the silver layer and the titanium tungsten layer together constitute the metal reflective layer of the laminated structure;
或者,在所述透明导电层上依次形成银层、钛化钨层以及铂层,所述银层、钛化钨层以及铂层共同构成所述叠层结构的反射层。Alternatively, a silver layer, a titanium tungsten layer and a platinum layer are sequentially formed on the transparent conductive layer, and the silver layer, the titanium tungsten layer and the platinum layer together constitute the reflective layer of the stacked structure.
可选的,形成金属反射层的步骤之后,形成N电极或P电极的步骤之前,所述制作方法还包括:Optionally, after the step of forming the metal reflective layer and before the step of forming the N electrode or the P electrode, the manufacturing method further includes:
在所述金属反射层表面形成导电保护层。A conductive protection layer is formed on the surface of the metal reflection layer.
可选的,所述导电保护层的材料为钛化钨,或者,为铬、铂、钛、铜、镍中一种或多种的组合。Optionally, the material of the conductive protection layer is titanium tungsten, or a combination of one or more of chromium, platinum, titanium, copper, and nickel.
可选的,形成导电保护层的步骤包括:形成单层或者叠层结构的导电保护层。Optionally, the step of forming the conductive protection layer includes: forming a single-layer or laminated conductive protection layer.
可选的,形成导电保护层的步骤包括:形成叠层结构的导电保护层,并使所述叠层结构的导电保护层的表面为镍层。Optionally, the step of forming the conductive protection layer includes: forming a conductive protection layer of a stacked structure, and making the surface of the conductive protection layer of the stacked structure a nickel layer.
可选的,形成导电保护层的步骤包括:采用磁控溅射沉积或者化学气相沉积的方式形成所述导电保护层。Optionally, the step of forming the conductive protective layer includes: forming the conductive protective layer by means of magnetron sputtering deposition or chemical vapor deposition.
此外,本发明还提供一种LED芯片,包括:In addition, the present invention also provides an LED chip, comprising:
衬底;Substrate;
位于所述衬底上的N型半导体层;An N-type semiconductor layer on the substrate;
位于所述N型半导体层上的有源层;an active layer located on the N-type semiconductor layer;
位于所述有源层上的P型半导体层,所述P型半导体层和有源层中具有露出N型半导体层的开口;a P-type semiconductor layer on the active layer, the P-type semiconductor layer and the active layer have openings exposing the N-type semiconductor layer;
透明导电层,包括位于P型半导体层上的第一透明导电层以及位于所述开口底部的第二透明导电层,所述第一透明导电层和第二透明导电层之间不接触;所述透明导电层的功函数大于所述P型半导体层以及N型半导体层的透明导电层的功函数;The transparent conductive layer includes a first transparent conductive layer on the P-type semiconductor layer and a second transparent conductive layer at the bottom of the opening, and there is no contact between the first transparent conductive layer and the second transparent conductive layer; the The work function of the transparent conductive layer is greater than the work function of the transparent conductive layer of the P-type semiconductor layer and the N-type semiconductor layer;
含银的金属反射层,其位于第一透明导电层以及第二透明导电层表面以及侧壁,其中位于所述第一透明导电层上的金属反射层为P电极,位于所述第二透明导电层上的金属反射层为N电极,所述P电极和N电极之间不接触;所述金属反射层的功函数大于所述透明导电层的功函数。Silver-containing metal reflective layer, which is located on the surface and sidewall of the first transparent conductive layer and the second transparent conductive layer, wherein the metal reflective layer located on the first transparent conductive layer is a P electrode, located on the second transparent conductive layer The metal reflective layer on the layer is an N electrode, and the P electrode and the N electrode are not in contact; the work function of the metal reflective layer is greater than that of the transparent conductive layer.
可选的,所述透明导电层的材料为氧化铟锡或者氧化锌。Optionally, the material of the transparent conductive layer is indium tin oxide or zinc oxide.
可选的,所述金属反射层为单层或者叠层结构。Optionally, the metal reflective layer is a single layer or a laminated structure.
可选的,所述金属反射层包括位于所述透明导电层上的银层以及位于所述银层上的钛化钨层;Optionally, the metal reflective layer includes a silver layer on the transparent conductive layer and a titanium tungsten layer on the silver layer;
或者,所述金属反射层包括依次位于所述透明导电层上的银层、位于所述银层上的钛化钨层以及位于所述钛化钨层上的铂层。Alternatively, the metal reflective layer includes a silver layer on the transparent conductive layer, a titanium tungsten layer on the silver layer, and a platinum layer on the titanium tungsten layer in sequence.
可选的,所述LED芯片还包括:Optionally, the LED chip also includes:
位于所述金属反射层表面的导电保护层。A conductive protective layer located on the surface of the metal reflective layer.
可选的,所述导电保护层为单层或者叠层结构。Optionally, the conductive protection layer is a single-layer or laminated structure.
可选的,所述导电保护层的表面为镍层。Optionally, the surface of the conductive protection layer is a nickel layer.
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
在所述衬底上依次形成N型半导体层、有源层和P型半导体层之后,形成露出N型半导体层的开口;在这之后,在所述P型半导体层上以及开口中形成透明导电层,其中位于所述P型半导体层上的透明导电层为第一透明导电层,位于所述开口中露出的N型半导体层上的透明导电层为第二透明导电层;在所述第一透明导电层以及第二透明导电层的表面和侧壁形成含银的金属反射层,其中位于所述第一透明导电层上的金属反射层作为所述LED芯片的P电极,位于所述第二透明导电层上的金属反射层作为所述LED芯片的N电极。本发明的N电极和P电极可以在同一工艺步骤中形成,相对于分别形成两种类型电极的现有技术来说,简化了工艺步骤;此外,由于P电极与P型半导体层之间、N电极与N型半导体层之间隔有透明导电层,且所述透明导电层的功函数大于所述P型半导体层以及N型半导体层且小于所述金属反射层,也就是说,所述透明导电层的功函数介于所述P、N型半导体层与金属反射层之间,这样有利于降低P、N型半导体层与金属反射层之间的势垒高度,进而有利于减小P、N型半导体层与金属反射层之间的欧姆接触,这有利于改善LED芯片的工作性能,例如,减小LED芯片的工作电压。此外,所述透明导电层一般具有相对较小的电阻大小,进而可以帮助LED芯片工作时的电流在透明导电层上扩散开来,达到电流扩展的目的,防止电流拥堵现象的发生,增加量子效率,这有利于提升LED芯片的工作性能。此外,由于透明导电层具有导电性,因而不会影响到P电极与P型半导体层之间、N电极与N型半导体层之间的电连接;且透明导电层具有透光性。因而可以使芯片产生的光透过所述透明导电层直至金属反射层,然后经金属反射层反射后从衬底透出,进而有利于增加LED芯片的发光效率。After sequentially forming an N-type semiconductor layer, an active layer, and a P-type semiconductor layer on the substrate, an opening exposing the N-type semiconductor layer is formed; after that, a transparent conductive layer is formed on the P-type semiconductor layer and in the opening. layer, wherein the transparent conductive layer on the P-type semiconductor layer is the first transparent conductive layer, and the transparent conductive layer on the N-type semiconductor layer exposed in the opening is the second transparent conductive layer; in the first The surface and sidewall of the transparent conductive layer and the second transparent conductive layer form a silver-containing metal reflective layer, wherein the metal reflective layer positioned on the first transparent conductive layer serves as the P electrode of the LED chip, and is positioned on the second transparent conductive layer. The metal reflective layer on the transparent conductive layer serves as the N electrode of the LED chip. The N electrode and the P electrode of the present invention can be formed in the same process step, which simplifies the process steps compared to the prior art of forming two types of electrodes respectively; There is a transparent conductive layer between the electrode and the N-type semiconductor layer, and the work function of the transparent conductive layer is greater than the P-type semiconductor layer and the N-type semiconductor layer and smaller than the metal reflective layer, that is, the transparent conductive layer The work function of the layer is between the P, N-type semiconductor layer and the metal reflective layer, which helps to reduce the barrier height between the P, N-type semiconductor layer and the metal reflective layer, and then helps to reduce the P, N The ohmic contact between the type semiconductor layer and the metal reflective layer is conducive to improving the working performance of the LED chip, for example, reducing the working voltage of the LED chip. In addition, the transparent conductive layer generally has a relatively small resistance, which can help the current of the LED chip to spread on the transparent conductive layer to achieve the purpose of current expansion, prevent the occurrence of current congestion, and increase the quantum efficiency. , which is conducive to improving the working performance of the LED chip. In addition, since the transparent conductive layer has conductivity, it will not affect the electrical connection between the P electrode and the P-type semiconductor layer, or between the N electrode and the N-type semiconductor layer; and the transparent conductive layer has light transmittance. Therefore, the light generated by the chip can pass through the transparent conductive layer to the metal reflective layer, and then pass through the substrate after being reflected by the metal reflective layer, which is beneficial to increase the luminous efficiency of the LED chip.
附图说明Description of drawings
图1至图11是本发明LED芯片的制作方法一实施例中各个步骤的结构示意图。1 to 11 are structural schematic diagrams of various steps in an embodiment of the manufacturing method of the LED chip of the present invention.
具体实施方式Detailed ways
现有技术中为了增加倒装结构的LED芯片的效率,采用了一些反射率较高的材料作为LED芯片的电极。但是改变LED芯片的电极材料会导致LED芯片的其他性能受到影响,例如,导致LED芯片内部的材料层之间的接触电阻增加,进而导致LED芯片整体的工作电压升高。为此,现有技术中一般仅在一种类型的电极(例如,仅在P电极)上采用上述的反射率较高的材料,另一种类型的电极则还是选择普通材料。但是这样不利于增加电极反射率,进而不利于增加LED芯片的效率;另外,这种方式需要分别形成两种类型的电极,也增加了生产制造的难度和繁琐程度。In the prior art, in order to increase the efficiency of the flip-chip LED chip, some materials with high reflectivity are used as electrodes of the LED chip. However, changing the electrode material of the LED chip will affect other properties of the LED chip, for example, increase the contact resistance between the material layers inside the LED chip, and thus increase the overall operating voltage of the LED chip. For this reason, in the prior art, generally only one type of electrode (for example, only the P electrode) uses the above-mentioned material with high reflectivity, and the other type of electrode still chooses ordinary materials. However, this is not conducive to increasing the reflectivity of the electrodes, which in turn is not conducive to increasing the efficiency of the LED chip; in addition, this method needs to form two types of electrodes separately, which also increases the difficulty and cumbersomeness of manufacturing.
为此,本发明提供一种LED芯片及其制作方法,其中LED芯片的制作方法包括以下步骤:For this reason, the present invention provides a kind of LED chip and manufacturing method thereof, wherein the manufacturing method of LED chip comprises the following steps:
提供衬底;在所述衬底上依次形成N型半导体层、有源层和P型半导体层;在所述P型半导体层和有源层中形成露出部分N型半导体层的开口;在所述P型半导体层上以及开口中形成功函数大于所述P型半导体层以及N型半导体层的透明导电层,其中位于所述P型半导体层上的透明导电层为第一透明导电层,位于所述开口中露出的N型半导体层上的透明导电层为第二透明导电层,所述第一透明导电层和第二透明导电层之间不接触;在所述第一透明导电层以及第二透明导电层的表面和侧壁形成功函数大于所述透明导电层的含银的金属反射层,其中,位于所述第一透明导电层上的金属反射层作为所述LED芯片的P电极,位于所述第二透明导电层上的金属反射层作为所述LED芯片的N电极,所述P电极和N电极之间不接触。A substrate is provided; an N-type semiconductor layer, an active layer, and a P-type semiconductor layer are sequentially formed on the substrate; an opening exposing a part of the N-type semiconductor layer is formed in the P-type semiconductor layer and the active layer; A transparent conductive layer with a work function greater than that of the P-type semiconductor layer and the N-type semiconductor layer is formed on the P-type semiconductor layer and in the opening, wherein the transparent conductive layer located on the P-type semiconductor layer is the first transparent conductive layer, located at The transparent conductive layer on the N-type semiconductor layer exposed in the opening is the second transparent conductive layer, and there is no contact between the first transparent conductive layer and the second transparent conductive layer; between the first transparent conductive layer and the second transparent conductive layer The surfaces and side walls of the two transparent conductive layers form a silver-containing metal reflective layer whose work function is greater than that of the transparent conductive layer, wherein the metal reflective layer positioned on the first transparent conductive layer serves as the P electrode of the LED chip, The metal reflective layer on the second transparent conductive layer is used as the N electrode of the LED chip, and the P electrode and the N electrode are not in contact with each other.
通过上述步骤,在形成LED芯片的P电极和N电极之前,在P型半导体层和N型半导体层上形成透明导电层(第一透明导电层和第二透明导电层),这样后续形成的P电极和N电极便形成于第一透明导电层和第二透明导电层上。本发明的N电极和P电极可以在同一工艺步骤中形成,简化了工艺步骤;所述透明导电层的功函数介于所述P、N型半导体层与金属反射层之间,这样有利于降低P、N型半导体层与金属反射层之间的势垒高度,进而有利于减小P、N型半导体层与金属反射层之间的欧姆接触,这可以改善LED芯片的工作性能,例如,减小LED芯片的工作电压。此外,所述透明导电层一般具有相对较小的电阻大小,进而帮助LED芯片工作时的电流在透明导电层上扩散开来,达到电流扩展的目的,防止电流拥堵现象的发生,增加量子效率,这有利于提升LED芯片的工作性能。此外,透明导电层不会影响到P电极与P型半导体层之间、N电极与N型半导体层之间的电连接,且可以使芯片产生的光透过所述透明导电层直至金属反射层,然后经金属反射层反射后从衬底透出,进而利于增加LED芯片的发光效率。Through the above steps, before forming the P electrode and the N electrode of the LED chip, a transparent conductive layer (the first transparent conductive layer and the second transparent conductive layer) is formed on the P-type semiconductor layer and the N-type semiconductor layer, so that the subsequently formed P The electrodes and the N electrodes are formed on the first transparent conductive layer and the second transparent conductive layer. The N electrode and the P electrode of the present invention can be formed in the same process step, which simplifies the process step; the work function of the transparent conductive layer is between the P, N type semiconductor layer and the metal reflective layer, which is beneficial to reduce the The barrier height between the P, N-type semiconductor layer and the metal reflective layer is conducive to reducing the ohmic contact between the P, N-type semiconductor layer and the metal reflective layer, which can improve the performance of the LED chip, for example, reduce The operating voltage of the small LED chip. In addition, the transparent conductive layer generally has a relatively small resistance, thereby helping the current of the LED chip to spread on the transparent conductive layer to achieve the purpose of current expansion, prevent the occurrence of current congestion, and increase the quantum efficiency. This is beneficial to improve the working performance of the LED chip. In addition, the transparent conductive layer will not affect the electrical connection between the P electrode and the P-type semiconductor layer, and between the N electrode and the N-type semiconductor layer, and can allow the light generated by the chip to pass through the transparent conductive layer until the metal reflective layer , and then pass through the substrate after being reflected by the metal reflective layer, which is beneficial to increase the luminous efficiency of the LED chip.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
请参考图1至图11,为本发明LED芯片的制作方法各个步骤的结构示意图。Please refer to FIG. 1 to FIG. 11 , which are structural schematic diagrams of each step of the manufacturing method of the LED chip of the present invention.
首先请参考图1,提供衬底100;本实施例中的衬底100为蓝宝石(Al2O3)衬底。但是本发明对所述衬底100的材料并不限定,其材料也可以是例如尖晶石(MgAl2O4)、SiC、ZnS、ZnO或GaAs等其他衬底。First, referring to FIG. 1 , a substrate 100 is provided; the substrate 100 in this embodiment is a sapphire (Al 2 O 3 ) substrate. However, the present invention does not limit the material of the substrate 100 , and the material may also be other substrates such as spinel (MgAl 2 O 4 ), SiC, ZnS, ZnO or GaAs.
在所述衬底100上依次形成N型半导体层、有源层和P型半导体层。具体的,在本实施例中,所述N型半导体层为N型氮化镓层110,所述有源层为多量子阱层120(MQW),所述P型半导体层为P型氮化镓层130。所述N型氮化镓层110、多量子阱层120和P型氮化镓层130可以通过外延工艺依次形成于所述衬底100上,且所述N型氮化镓层110、多量子阱层120和P型氮化镓层130可能为单层或者多层结构。An N-type semiconductor layer, an active layer and a P-type semiconductor layer are sequentially formed on the substrate 100 . Specifically, in this embodiment, the N-type semiconductor layer is an N-type gallium nitride layer 110, the active layer is a multi-quantum well layer 120 (MQW), and the P-type semiconductor layer is a P-type gallium nitride layer. gallium layer 130 . The N-type gallium nitride layer 110, the multi-quantum well layer 120 and the P-type gallium nitride layer 130 can be sequentially formed on the substrate 100 through an epitaxial process, and the N-type gallium nitride layer 110, the multi-quantum well layer The well layer 120 and the P-type GaN layer 130 may be a single-layer or multi-layer structure.
例如,所述P型氮化镓层130可以是由依次形成于多量子阱层120上的掺Mg的In-GaN、掺Mg的P-GaN以及掺Mg的Al-GaN构成,所述多量子阱层120可以是由InGaN层和GaN层交替堆叠构成的量子阱结构,所述N型氮化镓层110可以是由掺Si的GaN层构成。For example, the P-type gallium nitride layer 130 may be composed of Mg-doped In-GaN, Mg-doped P-GaN, and Mg-doped Al-GaN sequentially formed on the multi-quantum well layer 120. The well layer 120 may be a quantum well structure formed by alternately stacking InGaN layers and GaN layers, and the N-type gallium nitride layer 110 may be formed by Si-doped GaN layers.
但是需要说明的是,所述N型氮化镓层110、多量子阱层120和P型氮化镓层130的材料和结构仅仅是一个示例,本发明对此不作任何限定。However, it should be noted that the materials and structures of the N-type GaN layer 110 , the multi-quantum well layer 120 and the P-type GaN layer 130 are just examples, and the present invention does not make any limitation thereto.
请继续参考图2,在所述P型氮化镓层130和多量子阱层120中形成露出部分N型氮化镓层110的开口131,进而形成制作LED芯片的Mesa台面。形成Mesa台面为本领域常见技术,因此本发明对此步骤不作限定。Please continue to refer to FIG. 2 , an opening 131 exposing part of the N-type GaN layer 110 is formed in the P-type GaN layer 130 and the multi-quantum well layer 120 , so as to form a Mesa mesa for manufacturing LED chips. Forming a Mesa table is a common technique in the art, so the present invention is not limited to this step.
在本实施例中,可以采用等离子刻蚀的方式去除部分P型氮化镓层材料以及多量子阱层材料,以形成所述开口131。这种刻蚀方式的各向异性较强,形成的开口131边缘较为整齐,因而开口的尺寸更加容易控制。In this embodiment, the opening 131 may be formed by removing part of the P-type gallium nitride layer material and the multi-quantum well layer material by means of plasma etching. This etching method has strong anisotropy, and the edges of the formed opening 131 are relatively neat, so the size of the opening is easier to control.
具体的可以采用三氯化硼气体和氯气作为等离子刻蚀气体,氩气作为刻蚀气体的载气。Specifically, boron trichloride gas and chlorine gas can be used as the plasma etching gas, and argon gas can be used as the carrier gas of the etching gas.
但是需要说明的是,采用干法刻蚀以及干法刻蚀所采用的刻蚀气体只是本发明的一个示例,本发明对如何形成所述开口131不作限定,其他刻蚀方式例如湿法刻蚀等同样可以用于形成所述开口131。However, it should be noted that the dry etching and the etching gas used in the dry etching are only an example of the present invention, and the present invention does not limit how to form the opening 131. Other etching methods such as wet etching etc. can also be used to form the opening 131 .
在这之后,请参考图3,在所述P型氮化镓层130上以及开口131中形成功函数大于所述P型氮化镓层130以及N型氮化镓层110的透明导电层140,其中,位于所述P型氮化镓层130上的透明导电层为第一透明导电层140a,位于所述开口131中露出的N型氮化镓层110上的透明导电层为第二透明导电层140b。After that, referring to FIG. 3 , a transparent conductive layer 140 with a work function greater than that of the P-type GaN layer 130 and the N-type GaN layer 110 is formed on the P-type GaN layer 130 and in the opening 131 , wherein the transparent conductive layer located on the P-type gallium nitride layer 130 is the first transparent conductive layer 140a, and the transparent conductive layer located on the N-type gallium nitride layer 110 exposed in the opening 131 is the second transparent conductive layer Conductive layer 140b.
本发明旨在使形成的透明导电层140的功函数大于P型氮化镓层130以及N型氮化镓层110,并小于后续形成的金属反射层,也就是说,使所述透明导电层140的功函数介于所述P、N型氮化镓层130、110与金属反射层之间,这样有利于降低N型氮化镓层110、P型氮化镓层130与金属反射层之间的势垒高度,进而有利于减小N型氮化镓层110、P型氮化镓层130与金属反射层之间的欧姆接触,这可以改善LED芯片的工作性能,例如,减小LED芯片的工作电压。The present invention aims to make the work function of the formed transparent conductive layer 140 larger than that of the P-type gallium nitride layer 130 and the N-type gallium nitride layer 110, and smaller than that of the metal reflective layer formed subsequently, that is to say, to make the transparent conductive layer The work function of 140 is between the P and N-type gallium nitride layers 130, 110 and the metal reflective layer, which is beneficial to reduce the gap between the N-type gallium nitride layer 110, the P-type gallium nitride layer 130 and the metal reflective layer. The height of the potential barrier between them is beneficial to reduce the ohmic contact between the N-type GaN layer 110, the P-type GaN layer 130 and the metal reflective layer, which can improve the performance of the LED chip, for example, reduce the size of the LED The operating voltage of the chip.
此外,所述透明导电层140一般具有相对较小的电阻大小,进而帮助LED芯片工作时的电流在透明导电层140上扩散开来,这样有利于达到电流扩展的目的,进而防止电流拥堵现象的发生,增加量子效率,这进一步有利于提升LED芯片的工作性能。In addition, the transparent conductive layer 140 generally has a relatively small resistance, thereby helping the current of the LED chip to spread on the transparent conductive layer 140, which is beneficial to achieve the purpose of current expansion, thereby preventing the phenomenon of current congestion. Occurs and increases the quantum efficiency, which is further conducive to improving the working performance of the LED chip.
此外,透明导电层140不会影响到P电极与P型氮化镓层130之间、N电极与N型氮化镓层110之间的电连接,且可以使芯片产生的光透过所述透明导电层140直至金属反射层,然后经金属反射层反射后从衬底100透出,进而利于增加LED芯片的发光效率。In addition, the transparent conductive layer 140 will not affect the electrical connection between the P electrode and the P-type gallium nitride layer 130, and between the N electrode and the N-type gallium nitride layer 110, and can allow the light generated by the chip to pass through the The transparent conductive layer 140 reaches the metal reflective layer, and then passes through the substrate 100 after being reflected by the metal reflective layer, which is beneficial to increase the luminous efficiency of the LED chip.
所述第一透明导电层140a和第二透明导电层140b之间不接触,以防止后续形成N电极和P电极后发生短路。There is no contact between the first transparent conductive layer 140a and the second transparent conductive layer 140b, so as to prevent a short circuit after the subsequent formation of the N electrode and the P electrode.
具体的,在本实施例中,可以先在P型氮化镓层130上形成带有图案的掩模版来控制形成的透明导电层140的图案,掩模版的图案将需要形成所述透明导电层140的部分露出,这样不需要形成所述透明导电层140的部分被掩模版遮盖。Specifically, in this embodiment, a mask plate with a pattern can be formed on the P-type gallium nitride layer 130 to control the pattern of the formed transparent conductive layer 140, and the pattern of the mask plate will be required to form the transparent conductive layer 140 is exposed, so that the part that does not need to form the transparent conductive layer 140 is covered by the mask.
具体的,在本实施例中,可以使位于所述P型氮化镓层130表面的第一透明导电层140a的面积略小于P型氮化镓层130的面积,进而使位于开口131周围的部分P型氮化镓层130露出。同时,使第二透明导电层140b仅覆盖所述开口131的部分底面而不接触开口131的侧壁,也就是说,所述第二透明导电层140b之间具有第一间隙1401,这样第一、第二透明导电层140a、140b之间相互不接触。Specifically, in this embodiment, the area of the first transparent conductive layer 140a located on the surface of the P-type GaN layer 130 can be made slightly smaller than the area of the P-type GaN layer 130, so that the area around the opening 131 Part of the P-type GaN layer 130 is exposed. At the same time, the second transparent conductive layer 140b only covers part of the bottom surface of the opening 131 without contacting the sidewall of the opening 131, that is, there is a first gap 1401 between the second transparent conductive layers 140b, so that the first , The second transparent conductive layers 140a, 140b are not in contact with each other.
在本实施例中,可以形成氧化铟锡(ITO)材料的透明导电层140,这种材料的透明导电层140具有较高的透光率,也就是说,其可见光波段内透过率比较高,因此可以基本不挡量子阱发出的光,降低光的损失。In this embodiment, the transparent conductive layer 140 of indium tin oxide (ITO) material can be formed, and the transparent conductive layer 140 of this material has a relatively high light transmittance, that is to say, its transmittance in the visible light band is relatively high , so it can basically not block the light emitted by the quantum well and reduce the loss of light.
并且,本实施例中的P型氮化镓层130中包含掺Mg的In-GaN层,也就是说,氧化铟锡材料的透明导电层140与所述P型氮化镓层130均具有In组分,因此进一步有利于氧化铟锡的透明导电层140与所述P型氮化镓层130之间相互渗透,这样有利于降低透明导电层140的电阻率,进而进一步帮助LED芯片工作时的电流在透明导电层140上扩散开来,达到电流扩展的目的,防止电流拥堵现象的发生,增加量子效率,这进一步有利于提升LED芯片的工作性能。Moreover, the P-type GaN layer 130 in this embodiment includes an In-GaN layer doped with Mg, that is to say, the transparent conductive layer 140 made of indium tin oxide and the P-type GaN layer 130 both have In components, so it is further beneficial for the interpenetration between the transparent conductive layer 140 of indium tin oxide and the P-type gallium nitride layer 130, which is conducive to reducing the resistivity of the transparent conductive layer 140, and further helps the LED chip work. The current diffuses on the transparent conductive layer 140 to achieve the purpose of current expansion, prevent the occurrence of current congestion, and increase the quantum efficiency, which is further conducive to improving the working performance of the LED chip.
此外,氧化铟锡材料的功函数大小一般介于所述P、N型氮化镓层130、110与后续形成的金属反射层之间,应此能够达到上述的降低P、N型氮化镓层130、110与金属反射层之间的势垒高度的目的。In addition, the work function of the indium tin oxide material is generally between the P and N-type GaN layers 130, 110 and the metal reflective layer formed subsequently, so that the above-mentioned reduction in P and N-type GaN can be achieved. The purpose of the barrier height between layers 130, 110 and the metal reflective layer.
但是需要说明的是,本领域技术人员应当了解透明导电层140具体的功函数大小可以通过调整其形成时的工艺参数进行调整,本发明旨在使形成的透明导电层140的功函数介于N型氮化镓层110与后续形成的金属反射层之间(或者P型氮化镓层130与后续形成的金属反射层之间),所以其具体功函数大小应当根据实际情况进行调整,本发明对此不作限定。However, it should be noted that those skilled in the art should understand that the specific work function of the transparent conductive layer 140 can be adjusted by adjusting the process parameters during its formation. The present invention aims to make the work function of the formed transparent conductive layer 140 between N between the P-type gallium nitride layer 110 and the subsequently formed metal reflective layer (or between the P-type gallium nitride layer 130 and the subsequently formed metal reflective layer), so its specific work function should be adjusted according to the actual situation, the present invention There is no limit to this.
但是本发明对是否必须形成氧化铟锡材料的透明导电层140不作限定,在本发明的其他实施例中,还可以采用其他透明且具有导电性的材料,例如氧化锌,氧化锌和氧化铟锡具有相似的功函数,同样有利于降低N型氮化镓层110、P型氮化镓层130与金属反射层之间的势垒高度,减小N型氮化镓层110、P型氮化镓层130与金属反射层之间的欧姆接触,进而改善LED芯片的工作性能,降低LED芯片的工作电压。However, the present invention does not limit whether it is necessary to form the transparent conductive layer 140 of indium tin oxide material. In other embodiments of the present invention, other transparent and conductive materials can also be used, such as zinc oxide, zinc oxide and indium tin oxide. Having a similar work function is also conducive to reducing the barrier height between the N-type GaN layer 110, the P-type GaN layer 130 and the metal reflective layer, reducing the N-type GaN layer 110, the P-type GaN layer The ohmic contact between the gallium layer 130 and the metal reflective layer improves the working performance of the LED chip and reduces the working voltage of the LED chip.
在本实施中,可以形成厚度范围在50~3000埃之内的透明导电层140。在此厚度范围内的透明导电层140不至于过薄而降低导电能力(也就是导致电阻变大),又不至于过厚了人导致对光的吸收过多,导致透光率降低。In this embodiment, the transparent conductive layer 140 may be formed with a thickness ranging from 50 to 3000 angstroms. The transparent conductive layer 140 within this thickness range will not be too thin to reduce the conductivity (that is, increase the resistance), and it will not be too thick to absorb too much light, resulting in a decrease in light transmittance.
在本实施例中,可以采用磁控溅射沉积(Sputter)的方式形成所述透明导电层140,这种方式形成的透明导电层140具有较好的保形覆盖能力,也就是说能够较好的覆盖于开口131的内壁。但是本发明对其形成方式不作限定,其他形成工艺例如反应等离子沉积(Reactive Plasma Deposition,RPD)等其他方式同样可以用于形成所述透明导电层140。In this embodiment, the transparent conductive layer 140 can be formed by magnetron sputtering (Sputter), and the transparent conductive layer 140 formed in this way has better conformal coverage, that is to say, it can better covering the inner wall of the opening 131 . However, the present invention does not limit its formation method, and other formation processes such as reactive plasma deposition (Reactive Plasma Deposition, RPD) and other methods can also be used to form the transparent conductive layer 140 .
请参考图4,在所述第一透明导电层140a以及第二透明导电层140b的表面和侧壁形成功函数大于所述透明导电层140的含银的金属反射层150,其中,位于所述第一透明导电层140a上的金属反射层150作为所述LED芯片的P电极150a,位于所述第二透明导电层140b上的金属反射层150作为所述LED芯片的N电极150b。Please refer to FIG. 4 , a silver-containing metal reflective layer 150 whose work function is greater than that of the transparent conductive layer 140 is formed on the surface and sidewalls of the first transparent conductive layer 140a and the second transparent conductive layer 140b, wherein, in the The metal reflective layer 150 on the first transparent conductive layer 140a serves as the P electrode 150a of the LED chip, and the metal reflective layer 150 on the second transparent conductive layer 140b serves as the N electrode 150b of the LED chip.
具体的,由于本实施例中的所述第二透明导电层140b之间具有第一间隙1401,所以在本实施例中,对应于第二透明导电层140b的金属反射层150(也就是N电极150b)形成于所述第二透明导电层140b表面和侧壁,且所述金属反射层150的侧壁与所述开口131的侧壁之间具有第二间隙1402。形成有所述第二间隙1402有利于尽量使N电极150b与P电极150a隔开,进而有利于降低漏电风险。Specifically, since there is a first gap 1401 between the second transparent conductive layers 140b in this embodiment, in this embodiment, the metal reflective layer 150 corresponding to the second transparent conductive layer 140b (that is, the N electrode 150b) is formed on the surface and sidewall of the second transparent conductive layer 140b, and there is a second gap 1402 between the sidewall of the metal reflective layer 150 and the sidewall of the opening 131 . The formation of the second gap 1402 is beneficial to separate the N electrode 150b from the P electrode 150a as much as possible, thereby reducing the risk of electric leakage.
所述P电极150a和N电极150b之间不接触,以防止P电极150a和N电极150b之间短路。There is no contact between the P electrode 150a and the N electrode 150b to prevent a short circuit between the P electrode 150a and the N electrode 150b.
如前文所述,所述金属反射层150与P、N型氮化镓层130、110之间隔有第一透明导电层140a以及第二透明导电层140b,因此金属反射层150与P、N型氮化镓层130、110之间的功函数差值能够得到减小,这样金属反射层150与P、N型氮化镓层130、110之间的欧姆接触电阻较小,有利于降低LED芯片的工作电压。As mentioned above, the first transparent conductive layer 140a and the second transparent conductive layer 140b are separated between the metal reflective layer 150 and the P and N type gallium nitride layers 130 and 110, so the metal reflective layer 150 and the P and N type GaN layers The work function difference between the gallium nitride layers 130 and 110 can be reduced, so that the ohmic contact resistance between the metal reflective layer 150 and the P and N-type gallium nitride layers 130 and 110 is small, which is beneficial to reduce the LED chip working voltage.
此外,所述含银的金属反射层150具有较高的光反射率,这样由多量子阱层120发出的光线能够更多的被反射至衬底100并从衬底100透出,这样进一步有利于增加LED芯片的发光效率。In addition, the silver-containing metal reflective layer 150 has a higher light reflectivity, so that more light emitted by the multi-quantum well layer 120 can be reflected to the substrate 100 and transmitted from the substrate 100, which is further effective. It is beneficial to increase the luminous efficiency of the LED chip.
使所述金属反射层150形成在所述第一透明导电层140a以及第二透明导电层140b的表面和侧壁,有利于比较全面的反射透过所述透明导电层140的光线。Forming the metal reflective layer 150 on the surface and sidewalls of the first transparent conductive layer 140 a and the second transparent conductive layer 140 b is beneficial to comprehensively reflect light passing through the transparent conductive layer 140 .
具体的,可以形成单层或者叠层结构的金属反射层150。Specifically, the metal reflective layer 150 may be formed in a single layer or in a stacked structure.
在本实施例中,可以形成叠层结构的金属反射层150,例如,可以在所述透明导电层140上依次形成银层以及钛化钨层,所述银层以及钛化钨层共同构成所述叠层结构的金属反射层150。In this embodiment, a metal reflective layer 150 with a laminated structure can be formed. For example, a silver layer and a titanium tungsten layer can be sequentially formed on the transparent conductive layer 140, and the silver layer and the titanium tungsten layer together constitute the The metal reflective layer 150 of the above-mentioned stacked structure.
具体的,可以使银层的厚度在750~3000埃的范围内,钛化钨的厚度在100~1000埃的范围内。在此厚度范围内能够使形成的金属反射层150不至于过薄而导致反射率降低,同时也不至于导致金属反射层150过厚而影响整个LED芯片的结构。但是本领域技术人员应当了解,此数值范围仅是一个示例,在实际操作过程中,这些构成金属反射层150的各个材料层的厚度应当根据实际情况进行调整。Specifically, the thickness of the silver layer can be in the range of 750-3000 angstroms, and the thickness of the tungsten titanium can be in the range of 100-1000 angstroms. Within this thickness range, the metal reflective layer 150 formed will not be too thin to reduce the reflectivity, and at the same time, the metal reflective layer 150 will not be too thick to affect the structure of the entire LED chip. However, those skilled in the art should understand that this numerical range is only an example, and in actual operation, the thicknesses of the various material layers constituting the metal reflective layer 150 should be adjusted according to actual conditions.
此外,本发明对所述叠层结构的金属反射层150是否必须是银层以及钛化钨层不作限定,在本发明的其他实施例中,还可以在所述透明导电层140上依次形成银层、钛化钨层以及铂层,所述银层、钛化钨层以及铂层共同构成所述叠层结构的反射层。其中,所述银层的厚度在750~3000埃的范围内,钛化钨的厚度在100~1000埃的范围内,铂层的厚度可以在100~1000埃的范围内。同样的,上述的厚度参数也仅仅是一个示例,本发明对金属反射层150的厚度,以及叠层结构的金属反射层150中各个材料层的厚度不作任何限定。In addition, the present invention does not limit whether the metal reflective layer 150 of the laminated structure must be a silver layer or a titanium tungsten layer. In other embodiments of the present invention, silver can also be sequentially formed on the transparent conductive layer 140. layer, a titanium tungsten layer and a platinum layer, and the silver layer, the titanium tungsten layer and the platinum layer together constitute the reflective layer of the laminated structure. Wherein, the thickness of the silver layer is in the range of 750-3000 angstroms, the thickness of the tungsten titanium is in the range of 100-1000 angstroms, and the thickness of the platinum layer can be in the range of 100-1000 angstroms. Similarly, the above thickness parameter is only an example, and the present invention does not make any limitation on the thickness of the metal reflective layer 150 and the thickness of each material layer in the metal reflective layer 150 of the laminated structure.
请参考图5,在本实施例中,在形成所述金属反射层150的步骤之后,还包括以下步骤:Please refer to FIG. 5, in this embodiment, after the step of forming the metal reflective layer 150, the following steps are further included:
在所述金属反射层150表面形成导电保护层160。所述导电保护层160用于对形成的金属反射层150进行保护。后续制作LED芯片的引线的步骤中,引线将形成于所述导电保护层160表面。由于导电保护层160具有导电性,因此不会影响引线与N、P电极150b、150a之间的电连接。A conductive protective layer 160 is formed on the surface of the metal reflective layer 150 . The conductive protection layer 160 is used to protect the formed metal reflective layer 150 . In the subsequent step of manufacturing the leads of the LED chip, the leads will be formed on the surface of the conductive protection layer 160 . Since the conductive protection layer 160 has conductivity, it will not affect the electrical connection between the leads and the N and P electrodes 150b and 150a.
具体的,本实施例中的导电保护层160形成于所述P电极150a的表面以及侧壁,并形成于N电极150b的表面。其中,为了避免形成在P电极150a上的导电保护层160与形成于N电极150b上的导电保护层160之间桥接,在本实施例中,形成于所述N电极150b表面的导电保护层160与开口131的侧壁之间具有第三间隙1403。Specifically, the conductive protection layer 160 in this embodiment is formed on the surface and sidewall of the P electrode 150a, and is formed on the surface of the N electrode 150b. Wherein, in order to avoid bridging between the conductive protective layer 160 formed on the P electrode 150a and the conductive protective layer 160 formed on the N electrode 150b, in this embodiment, the conductive protective layer 160 formed on the surface of the N electrode 150b There is a third gap 1403 between it and the sidewall of the opening 131 .
在本实施例中,所述导电保护层160为叠层结构,具体来说,叠层结构的导电保护层160的材料可以是铬、铂、钛、金、镍中一种或多种的组合。In this embodiment, the conductive protective layer 160 is a laminated structure, specifically, the material of the conductive protective layer 160 of the laminated structure may be one or more combinations of chromium, platinum, titanium, gold, nickel .
例如,可以依次形成铬层、铂层、钛层、金层和镍层以构成所述导电保护层160,其中,铂层和钛层化学性质比较稳定,主要起到保护P电极150a、N电极150b的作用;铬层主要起到粘附作用,也就是说用于增加P电极150a、N电极150b与导电保护层160之间的粘附性;金层和镍层起到保护导电保护层160中其他材料层的作用。For example, a chromium layer, a platinum layer, a titanium layer, a gold layer, and a nickel layer can be sequentially formed to form the conductive protection layer 160, wherein the platinum layer and the titanium layer have relatively stable chemical properties and mainly serve to protect the P electrode 150a and the N electrode. The role of 150b; the chromium layer mainly plays an adhesion role, that is to say, it is used to increase the adhesion between the P electrode 150a, the N electrode 150b and the conductive protective layer 160; the gold layer and the nickel layer play a role in protecting the conductive protective layer 160 The role of other material layers in the
在本实施例中,所述铬层的厚度在20~500埃的范围内,所述铂层的厚度在200~1000埃的范围内;所述钛层的厚度在200~1000埃的范围内;所述金层的厚度在2000~5000埃的范围内,所述镍层的厚度在200~2000埃的范围内。这些材料层在各自的厚度参数范围内有利于在足够起到保护作用的同时不至于过厚而影响LED芯片体积。In this embodiment, the thickness of the chromium layer is in the range of 20-500 angstroms, the thickness of the platinum layer is in the range of 200-1000 angstroms; the thickness of the titanium layer is in the range of 200-1000 angstroms ; The thickness of the gold layer is in the range of 2000-5000 angstroms, and the thickness of the nickel layer is in the range of 200-2000 angstroms. These material layers are within their respective thickness parameter ranges, which are beneficial to protect enough while not being too thick to affect the volume of the LED chip.
在本实施例中,在形成叠层结构的导电保护层160时,可以最后形成镍层,也就是说,在整个叠层结构的导电保护层160中,镍层位于最表层。这样的好处在于,镍的材料性质较为稳定,不容易被腐蚀,采用镍作为叠层结构的导电保护层160的表层有利于使导电保护层160不容易在后续的其他步骤受到影响。In this embodiment, when forming the conductive protective layer 160 of the laminated structure, the nickel layer may be formed last, that is, the nickel layer is located at the outermost layer of the conductive protective layer 160 of the entire laminated structure. The advantage of this is that the material properties of nickel are relatively stable and are not easily corroded. Using nickel as the surface layer of the conductive protective layer 160 in a laminated structure is beneficial to make the conductive protective layer 160 less likely to be affected by other subsequent steps.
但是本发明对所述导电保护层160是否必须为多层结构不作限定,在本发明的其他实施例中,还可以是单层结构,具体的,所述导电保护层160的材料可以是厚度范围在200~5000埃的范围内的钛化钨。基于同样的理由,在此厚度范围内有利于在足够起到保护作用的同时不至于过厚而影响LED芯片体积。However, the present invention does not limit whether the conductive protective layer 160 must be a multilayer structure. In other embodiments of the present invention, it can also be a single-layer structure. Specifically, the material of the conductive protective layer 160 can be in the thickness range Tungsten titanium in the range of 200 to 5000 Angstroms. Based on the same reason, within this thickness range, it is beneficial to have sufficient protection while not being too thick to affect the volume of the LED chip.
此外,在本实施例中,可以采用磁控溅射沉积或者化学气相沉积的方式形成所述导电保护层160。但是本发明对如何形成所述导电保护层160不作限定。In addition, in this embodiment, the conductive protective layer 160 may be formed by magnetron sputtering deposition or chemical vapor deposition. However, the present invention does not limit how to form the conductive protection layer 160 .
请继续参考图6,在本实施例中,在形成所述导电保护层160的步骤之后,还包括以下步骤:Please continue to refer to FIG. 6. In this embodiment, after the step of forming the conductive protection layer 160, the following steps are further included:
在所述导电保护层160上形成起绝缘保护作用的绝缘介质层170。An insulating dielectric layer 170 for insulating protection is formed on the conductive protection layer 160 .
在本实施例中,所述绝缘介质层170可以采用SiO2、SiN或者SiON材料的绝缘介质层170。这些材料比较是容易生产过程中比较获得的绝缘介质材料。In this embodiment, the insulating dielectric layer 170 may be an insulating dielectric layer 170 made of SiO 2 , SiN or SiON. These materials are relatively easy to obtain insulating dielectric materials in the production process.
在本实施例中,可以采用等离子体增强化学气相沉积(Plasma EnhancedChemical Vapor Deposition,PECVD)的方式形成所述绝缘介质层170。这种方式比较容易控制,且具有较好的覆盖性。但是本发明对如何形成所述绝缘介质层170并不作限定。In this embodiment, the insulating dielectric layer 170 may be formed by means of plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD). This method is easier to control and has better coverage. However, the present invention does not limit how to form the insulating dielectric layer 170 .
在本实施例中,可以形成厚度范围在5000~20000埃的绝缘介质层170,在此厚度范围内的绝缘介质层170不至于过薄而难以起到绝缘介质效果,又不至于过厚而影响整个LED芯片的体积。但是上述的厚度范围仅仅是一个实施例,本发明对此并不作任何限定。In this embodiment, the insulating dielectric layer 170 can be formed with a thickness ranging from 5000 to 20000 angstroms. The insulating dielectric layer 170 within this thickness range will not be too thin to have the effect of an insulating dielectric, and will not be too thick to affect The volume of the entire LED chip. However, the above-mentioned thickness range is only an example, and the present invention does not make any limitation thereto.
在这之后,刻蚀所述绝缘介质层170以形成露出部分导电保护层160的孔171、172,其中孔171的位置对应于P电极150a,孔172的位置对应于开口131中的N电极150b,在后续步骤中将在所述孔171、172中形成金属引线。After that, the insulating dielectric layer 170 is etched to form holes 171, 172 exposing part of the conductive protection layer 160, wherein the position of the hole 171 corresponds to the P electrode 150a, and the position of the hole 172 corresponds to the N electrode 150b in the opening 131 , metal leads will be formed in the holes 171, 172 in subsequent steps.
在本实施例中,可以采用BOE刻蚀工艺(buffer oxide etch)形成露出部分导电保护层160孔171、172。如前文所述,由于所述部分导电保护层160表面为镍层,因此导电保护层160不容易受到本步骤的BOE刻蚀的影响。In this embodiment, a BOE etching process (buffer oxide etch) may be used to form the holes 171 and 172 exposing part of the conductive protection layer 160 . As mentioned above, since the surface of the part of the conductive protection layer 160 is a nickel layer, the conductive protection layer 160 is not easily affected by the BOE etching in this step.
请继续参考图7并结合参考图8,图8为图7所示结构的俯视图。在所述绝缘介质层170上以及孔171、172中形成金属层180,其中,所述金属层180位于孔171、172中的部分为金属导电柱181、182(图7中仅示出了金属层180位于171、172中的部分),金属层180位于所述绝缘介质层170表面的部分包括图案183、184(请参考图8),其中,图案183对应于金属导电柱181,用于通过所述金属导电柱181将P电极引出;同理,所述图案184对应于金属导电柱182,用于通过上述金属导电柱182将所述N电极150引出。Please continue to refer to FIG. 7 together with reference to FIG. 8 . FIG. 8 is a top view of the structure shown in FIG. 7 . A metal layer 180 is formed on the insulating medium layer 170 and in the holes 171, 172, wherein the parts of the metal layer 180 located in the holes 171, 172 are metal conductive pillars 181, 182 (only metal columns 181, 182 are shown in FIG. layer 180 located in the part 171, 172), and the part of the metal layer 180 located on the surface of the insulating dielectric layer 170 includes patterns 183, 184 (please refer to FIG. 8), wherein the pattern 183 corresponds to the metal conductive pillar 181 for passing The metal conductive pillars 181 lead out the P electrodes; similarly, the pattern 184 corresponds to the metal conductive pillars 182 and is used to lead out the N electrodes 150 through the metal conductive pillars 182 .
但是需要说明的是,图8中的金属层180图案仅仅是一个示例,本发明对所述金属层180形成何种样式的图案不作任何限定。However, it should be noted that the pattern of the metal layer 180 in FIG. 8 is only an example, and the present invention does not make any limitation on what kind of pattern the metal layer 180 forms.
如前文所述,导电保护层160和金属反射层150均具有导电性,因此即使金属层180并没有直接接触N、P电极150b、150a,也不会影响引线与N、P电极150b、150a之间的电连接。As mentioned above, both the conductive protection layer 160 and the metal reflective layer 150 have conductivity, so even if the metal layer 180 does not directly contact the N, P electrodes 150b, 150a, it will not affect the connection between the lead wire and the N, P electrodes 150b, 150a. electrical connection between.
在本实施例中,可以形成铬、铝、钛、铂、金、镍中一种或多种的组合的金属层180。其中,铬的厚度在20~50埃的范围内,铝的厚度在750~3000埃的范围内,钛的厚度在200~1000埃的范围内,铂的厚度在200~1000埃的范围内;金的厚度在2000~5000埃的范围内;镍的厚度在200~1000埃的范围内。In this embodiment, the metal layer 180 may be a combination of one or more of chromium, aluminum, titanium, platinum, gold, and nickel. Wherein, the thickness of chromium is in the range of 20-50 angstroms, the thickness of aluminum is in the range of 750-3000 angstroms, the thickness of titanium is in the range of 200-1000 angstroms, and the thickness of platinum is in the range of 200-1000 angstroms; The thickness of gold is in the range of 2000-5000 angstroms; the thickness of nickel is in the range of 200-1000 angstroms.
在这之后,请参考图9,在所述绝缘介质层170以及金属层180上形成钝化层190,钝化层190用于将170表面的金属层180的图案183、184绝缘隔离。After that, please refer to FIG. 9 , a passivation layer 190 is formed on the insulating dielectric layer 170 and the metal layer 180 , and the passivation layer 190 is used to insulate and isolate the patterns 183 and 184 of the metal layer 180 on the surface of the 170 .
在本实施例中,所述钝化层190可以采用SiO2、SiN或者SiON作为材料。In this embodiment, the passivation layer 190 may use SiO 2 , SiN or SiON as a material.
在本实施例中,可以形成厚度范围在5000~20000埃的钝化层190,但是上述的厚度范围仅仅是一个实施例,本发明对此并不作任何限定。In this embodiment, the passivation layer 190 can be formed with a thickness ranging from 5000 to 20000 angstroms, but the above-mentioned thickness range is only an example, and the present invention does not make any limitation thereto.
在这之后,继续参考图10,刻蚀所述钝化层190以露出金属导电柱181、182,以便于后续将分别与金属导电柱181、182连接的P电极150a、N电极150b引出。After that, referring to FIG. 10 , the passivation layer 190 is etched to expose the metal conductive pillars 181 , 182 , so as to subsequently lead out the P electrodes 150 a , N electrodes 150 b connected to the metal conductive pillars 181 , 182 .
请结合参考图11,形成分别对应于所述金属导电柱181、182的引出电极210、220,由于所述金属导电柱181与所述P电极150a电连接,因此所述引出电极210用于将P电极150a的引出以便后续的封装等步骤进行;同理,金属导电柱182与N电极150b电连接,因此用于作为引出电极220用于将N电极150b引出。Please refer to FIG. 11 to form lead-out electrodes 210, 220 respectively corresponding to the metal conductive pillars 181, 182. Since the metal conductive pillar 181 is electrically connected to the P electrode 150a, the lead-out electrodes 210 are used to The lead-out of the P-electrode 150a is carried out for subsequent steps such as packaging; similarly, the metal conductive pillar 182 is electrically connected to the N-electrode 150b, and thus is used as the lead-out electrode 220 for leading out the N-electrode 150b.
所述引出电极210、220之间应具有间距以防止发生短路,在本实施例中,所述间距大小d应不小于100微米。There should be a distance between the extraction electrodes 210 and 220 to prevent short circuit. In this embodiment, the distance d should not be less than 100 microns.
在本实施例中,可以采用铬、铝、钛、铂、金或者锡中的一种或多种作为所述引出电极210、220的材料。In this embodiment, one or more of chromium, aluminum, titanium, platinum, gold or tin can be used as the material of the extraction electrodes 210 and 220 .
具体的,在本实施例中,可以使铬的厚度在20~50埃的范围内,铝的厚度在750~3000埃的范围内,钛的厚度在200~1000埃的范围内,铂的厚度在200~1000埃的范围内;金的厚度在2000~5000埃的范围内;锡的厚度在200~1000埃的范围内。Specifically, in this embodiment, the thickness of chromium can be in the range of 20-50 angstroms, the thickness of aluminum can be in the range of 750-3000 angstroms, the thickness of titanium can be in the range of 200-1000 angstroms, and the thickness of platinum can be In the range of 200-1000 angstroms; the thickness of gold is in the range of 2000-5000 angstroms; the thickness of tin is in the range of 200-1000 angstroms.
此外,请参考图11,本发明还提供一种LED芯片,其特征在于,包括:In addition, referring to FIG. 11, the present invention also provides an LED chip, which is characterized in that it includes:
衬底100;本实施例中的衬底100为蓝宝石(Al2O3)衬底。但是本发明对所述衬底100的材料并不限定,其材料也可以是例如尖晶石(MgAl2O4)、SiC、ZnS、ZnO或GaAs等其他衬底。Substrate 100; the substrate 100 in this embodiment is a sapphire (Al 2 O 3 ) substrate. However, the present invention does not limit the material of the substrate 100 , and the material may also be other substrates such as spinel (MgAl 2 O 4 ), SiC, ZnS, ZnO or GaAs.
位于所述衬底100上的形成N型氮化镓层110;forming an N-type gallium nitride layer 110 on the substrate 100;
位于所述N型氮化镓层110上的多量子阱层120;a multi-quantum well layer 120 located on the N-type gallium nitride layer 110;
位于所述多量子阱层120上的P型氮化镓层130,在本实施例中,所述P型氮化镓层130可以是由依次形成于多量子阱层120上的掺Mg的In-GaN、掺Mg的P-GaN以及掺Mg的Al-GaN构成,所述多量子阱层120可以是由InGaN层和GaN层交替堆叠构成的量子阱结构,所述N型氮化镓层110可以是由掺Si的GaN层构成。The P-type gallium nitride layer 130 located on the multiple quantum well layer 120, in this embodiment, the P-type gallium nitride layer 130 may be formed of Mg-doped In on the multiple quantum well layer 120 sequentially. -GaN, Mg-doped P-GaN and Mg-doped Al-GaN, the multi-quantum well layer 120 may be a quantum well structure formed by alternating stacking of InGaN layers and GaN layers, and the N-type gallium nitride layer 110 It may be composed of a Si-doped GaN layer.
所述P型氮化镓层130和多量子阱层120中形成有露出N型氮化镓层110的开口131;所述开口131用于形成制作LED芯片的Mesa台面;An opening 131 exposing the N-type gallium nitride layer 110 is formed in the P-type gallium nitride layer 130 and the multiple quantum well layer 120; the opening 131 is used to form a Mesa mesa for making an LED chip;
透明导电层140,包括位于P型氮化镓层130上的第一透明导电层140a以及位于所述开口131中的第二透明导电层140b,所述第一透明导电层140a和第二透明导电层140b之间不接触;所述透明导电层140的功函数大于所述P型氮化镓层130以及N型氮化镓层110的透明导电层的功函数。The transparent conductive layer 140 includes a first transparent conductive layer 140a located on the P-type gallium nitride layer 130 and a second transparent conductive layer 140b located in the opening 131, the first transparent conductive layer 140a and the second transparent conductive layer There is no contact between the layers 140b; the work function of the transparent conductive layer 140 is greater than the work function of the transparent conductive layers of the P-type GaN layer 130 and the N-type GaN layer 110 .
所述透明导电层140的功函数大于P型氮化镓层130以及N型氮化镓层110,并小于所述金属反射层150,也就是说,所述透明导电层140的功函数介于所述P、N型氮化镓层130、110与金属反射层150之间,这样有利于降低N型氮化镓层110、P型氮化镓层与金属反射层150之间的势垒高度,进而有利于减小N型氮化镓层110、P型氮化镓层与金属反射层150之间的欧姆接触,这可以改善LED芯片的工作性能,例如,减小LED芯片的工作电压。The work function of the transparent conductive layer 140 is greater than the P-type gallium nitride layer 130 and the N-type gallium nitride layer 110, and smaller than the metal reflective layer 150, that is, the work function of the transparent conductive layer 140 is between between the P and N-type gallium nitride layers 130, 110 and the metal reflective layer 150, which is conducive to reducing the barrier height between the N-type gallium nitride layer 110, the P-type gallium nitride layer and the metal reflective layer 150 , which in turn helps to reduce the ohmic contact between the N-type GaN layer 110, the P-type GaN layer and the metal reflective layer 150, which can improve the working performance of the LED chip, for example, reduce the working voltage of the LED chip.
此外,所述透明导电层140一般具有相对较小的电阻大小,进而帮助LED芯片工作时的电流在透明导电层140上扩散开来,达到电流扩展的目的,防止电流拥堵现象的发生,增加量子效率,这进一步有利于提升LED芯片的工作性能。此外,透明导电层140不会影响到P电极150a与P型氮化镓层130之间、N电极150b与N型氮化镓层110之间的电连接,且可以使芯片产生的光透过所述透明导电层140直至金属反射层150,然后经金属反射层150反射后从衬底100透出,进而利于增加LED芯片的发光效率。In addition, the transparent conductive layer 140 generally has a relatively small resistance, thereby helping the current of the LED chip to spread on the transparent conductive layer 140 to achieve the purpose of current expansion, prevent the occurrence of current congestion, and increase the quantum Efficiency, which is further conducive to improving the performance of the LED chip. In addition, the transparent conductive layer 140 will not affect the electrical connection between the P electrode 150a and the P-type GaN layer 130, and between the N-electrode 150b and the N-type GaN layer 110, and can transmit the light generated by the chip. The transparent conductive layer 140 extends to the metal reflective layer 150 , and then passes through the substrate 100 after being reflected by the metal reflective layer 150 , which is beneficial to increase the luminous efficiency of the LED chip.
所述第一透明导电层140a和第二透明导电层140b之间不接触,以防止N电极150b和P电极150a后发生短路。There is no contact between the first transparent conductive layer 140a and the second transparent conductive layer 140b, so as to prevent a short circuit between the N electrode 150b and the P electrode 150a.
具体的,在本实施例中,位于所述P型氮化镓层130表面的第一透明导电层140a的面积略小于P型氮化镓层130的面积,这样位于开口131周围的部分P型氮化镓层130便可以露出。同时,第二透明导电层140b仅覆盖所述开口131的内壁而不超过开口131的边缘,这样第一、第二透明导电层140a、140b之间相互不接触。Specifically, in this embodiment, the area of the first transparent conductive layer 140a located on the surface of the P-type GaN layer 130 is slightly smaller than the area of the P-type GaN layer 130, so that the part of the P-type layer located around the opening 131 The GaN layer 130 can be exposed. Meanwhile, the second transparent conductive layer 140b only covers the inner wall of the opening 131 and does not exceed the edge of the opening 131, so that the first and second transparent conductive layers 140a, 140b are not in contact with each other.
在本实施例中,透明导电层140的材料为氧化铟锡(ITO),这种材料的透明导电层140具有较高的透光率,也就是说,其可见光波段内透过率比较高,因此可以基本不挡量子阱发出的光,降低光的损失;并且,本实施例中的P型氮化镓层130中包含掺Mg的In-GaN层,也具有In组分,因此与氧化铟锡的透明导电层140之间可以相互渗透,这样有利于降低透明导电层140的电阻率,进而帮助LED芯片工作时的电流在透明导电层140上扩散开来,达到电流扩展的目的,防止电流拥堵现象的发生,增加量子效率,这进一步有利于提升LED芯片的工作性能。此外,这种材料的功函数大小一般介于所述P、N型氮化镓层130、110与金属反射层150之间,应此能够达到上述的降低P、N型氮化镓层130、110与金属反射层150之间的势垒高度的目的。In this embodiment, the material of the transparent conductive layer 140 is indium tin oxide (ITO), and the transparent conductive layer 140 of this material has a relatively high light transmittance, that is to say, its transmittance in the visible light band is relatively high, Therefore, the light emitted by the quantum well can be basically not blocked, and the loss of light can be reduced; and, the P-type gallium nitride layer 130 in this embodiment includes a Mg-doped In-GaN layer, which also has an In composition, so it is compatible with indium oxide The transparent conductive layers 140 of tin can penetrate each other, which is beneficial to reduce the resistivity of the transparent conductive layer 140, and then help the current of the LED chip to spread on the transparent conductive layer 140 when the LED chip is working, so as to achieve the purpose of current expansion and prevent current The occurrence of the congestion phenomenon increases the quantum efficiency, which is further conducive to improving the working performance of the LED chip. In addition, the work function of this material is generally between the P and N-type gallium nitride layers 130, 110 and the metal reflective layer 150, so that the above-mentioned reduction in the P and N-type gallium nitride layers 130, 110 and the metal reflective layer 150 for the purpose of the barrier height.
此外,本领域技术人员应当了解,透明导电层140具体的功函数大小可以通过调整其形成时的工艺参数进行调整,本发明旨在使形成的透明导电层140的功函数介于N型氮化镓层110与金属反射层150之间(或者P型氮化镓层130与的金属反射层150之间),所以其具体功函数大小应当根据实际情况进行调整,本发明对此不作限定。In addition, those skilled in the art should understand that the specific work function of the transparent conductive layer 140 can be adjusted by adjusting the process parameters during its formation. between the gallium layer 110 and the metal reflective layer 150 (or between the p-type gallium nitride layer 130 and the metal reflective layer 150 ), so its specific work function should be adjusted according to the actual situation, which is not limited in the present invention.
但是本发明对是否必须形成氧化铟锡材料的透明导电层140不作限定,在本发明的其他实施例中,还可以采用其他透明且具有导电性的材料,例如氧化锌,氧化锌和氧化铟锡具有相似的功函数。However, the present invention does not limit whether it is necessary to form the transparent conductive layer 140 of indium tin oxide material. In other embodiments of the present invention, other transparent and conductive materials can also be used, such as zinc oxide, zinc oxide and indium tin oxide. have similar work functions.
在本实施中,所述透明导电层140的厚度范围在50~3000埃之内。在此厚度范围内的透明导电层140不至于过薄而降低导电能力(也就是导致电阻变大),又不至于过厚而导致对光的吸收过多,导致透光率降低。In this implementation, the thickness of the transparent conductive layer 140 is within a range of 50-3000 angstroms. The transparent conductive layer 140 within this thickness range will not be too thin to reduce the conductivity (that is, cause the resistance to increase), and not to be too thick to cause too much absorption of light, resulting in a decrease in light transmittance.
本发明的LED芯片还包括位于第一透明导电层140a以及第二透明导电层140b表面以及侧壁的含银的金属反射层150,其中位于所述第一透明导电层140a上的金属反射层150为P电极150a,位于所述第二透明导电层140b上的金属反射层150为N电极150b,所述P电极150a和N电极150b之间不接触,所述金属反射层的功函数大于所述透明导电层140的功函数。The LED chip of the present invention also includes a silver-containing metal reflective layer 150 located on the surface and sidewalls of the first transparent conductive layer 140a and the second transparent conductive layer 140b, wherein the metal reflective layer 150 located on the first transparent conductive layer 140a is a P electrode 150a, the metal reflective layer 150 on the second transparent conductive layer 140b is an N electrode 150b, there is no contact between the P electrode 150a and the N electrode 150b, and the work function of the metal reflective layer is greater than the Work function of the transparent conductive layer 140 .
如前文所述,所述金属反射层150与P、N型氮化镓层130、110之间隔有第一透明导电层140a以及第二透明导电层140b,因此金属反射层150与P、N型氮化镓层130、110之间的功函数差值能够得到减小,这样金属反射层150与P、N型氮化镓层130、110之间的欧姆接触电阻较小,有利于降低LED芯片的工作电压。As mentioned above, the first transparent conductive layer 140a and the second transparent conductive layer 140b are separated between the metal reflective layer 150 and the P and N type gallium nitride layers 130 and 110, so the metal reflective layer 150 and the P and N type GaN layers The work function difference between the gallium nitride layers 130 and 110 can be reduced, so that the ohmic contact resistance between the metal reflective layer 150 and the P and N-type gallium nitride layers 130 and 110 is small, which is beneficial to reduce the LED chip working voltage.
此外,所述含银的金属反射层150具有较高的光反射率,这样由多量子阱层120发出的光线能够更多的被反射至衬底100并从衬底100透出,这样进一步有利于增加LED芯片的发光效率。In addition, the silver-containing metal reflective layer 150 has a higher light reflectivity, so that more light emitted by the multi-quantum well layer 120 can be reflected to the substrate 100 and transmitted from the substrate 100, which is further effective. It is beneficial to increase the luminous efficiency of the LED chip.
所述金属反射层150形成在所述第一透明导电层140a以及第二透明导电层140b的表面和侧壁,这样有利于比较全面的接收透过所述透明导电层140的光线。The metal reflective layer 150 is formed on the surface and sidewalls of the first transparent conductive layer 140 a and the second transparent conductive layer 140 b, which is beneficial to receive light passing through the transparent conductive layer 140 more comprehensively.
所述P电极150a和N电极150b之间不接触,以防止P电极150a和N电极150b之间短路。There is no contact between the P electrode 150a and the N electrode 150b to prevent a short circuit between the P electrode 150a and the N electrode 150b.
具体的,金属反射层150可以是单层或者叠层结构。Specifically, the metal reflective layer 150 may be a single layer or a stacked structure.
在本实施例中,金属反射层150可以是叠层结构,例如,金属反射层150可以包括透明导电层140上的银层以及银层上的钛化钨层,所述银层以及钛化钨层共同构成所述叠层结构的金属反射层150。In this embodiment, the metal reflective layer 150 can be a laminated structure, for example, the metal reflective layer 150 can include a silver layer on the transparent conductive layer 140 and a titanium tungsten layer on the silver layer, the silver layer and the titanium tungsten layer layers together constitute the metal reflective layer 150 of the stacked structure.
具体的,银层的厚度在750~3000埃的范围内,钛化钨的厚度在100~1000埃的范围内。在此厚度范围内能够使形成的金属反射层150不至于过薄而导致反射率降低,同时也不至于导致金属反射层150过厚而影响整个LED芯片的结构。但是本领域技术人员应当了解,此数值范围仅是一个示例,在实际操作过程中,这些构成金属反射层150的各个材料层的厚度应当根据实际情况进行调整。Specifically, the thickness of the silver layer is in the range of 750-3000 angstroms, and the thickness of the tungsten titanium is in the range of 100-1000 angstroms. Within this thickness range, the metal reflective layer 150 formed will not be too thin to reduce the reflectivity, and at the same time, the metal reflective layer 150 will not be too thick to affect the structure of the entire LED chip. However, those skilled in the art should understand that this numerical range is only an example, and in actual operation, the thicknesses of the various material layers constituting the metal reflective layer 150 should be adjusted according to actual conditions.
此外,本发明对所述叠层结构的金属反射层150是否必须是银层以及钛化钨层不作限定,在本发明的其他实施例中,还可以包括位于所述透明导电层140上的银层、所述银层上的钛化钨层以及钛化钨层上的铂层,所述银层、钛化钨层以及铂层共同构成所述叠层结构的反射层。其中,所述银层的厚度在750~3000埃的范围内,钛化钨的厚度在100~1000埃的范围内,铂层的厚度可以在100~1000埃的范围内。In addition, the present invention does not limit whether the metal reflective layer 150 of the laminated structure must be a silver layer or a titanium tungsten layer. In other embodiments of the present invention, it may also include silver on the transparent conductive layer 140. layer, the titanium tungsten layer on the silver layer, and the platinum layer on the titanium tungsten layer, the silver layer, the titanium tungsten layer and the platinum layer together constitute the reflective layer of the laminated structure. Wherein, the thickness of the silver layer is in the range of 750-3000 angstroms, the thickness of the tungsten titanium is in the range of 100-1000 angstroms, and the thickness of the platinum layer can be in the range of 100-1000 angstroms.
在本实施例中,在所述金属反射层150表面还设有导电保护层160。所述导电保护层160用于对形成的金属反射层150进行保护。In this embodiment, a conductive protective layer 160 is further provided on the surface of the metal reflective layer 150 . The conductive protection layer 160 is used to protect the formed metal reflective layer 150 .
具体的,本实施例中的导电保护层160形成于所述P电极150a的表面以及侧壁,并形成于N电极150b的表面。Specifically, the conductive protection layer 160 in this embodiment is formed on the surface and sidewall of the P electrode 150a, and is formed on the surface of the N electrode 150b.
在本实施例中,所述导电保护层160为叠层结构,具体来说,叠层结构的导电保护层160的材料可以是铬、铂、钛、金、镍中一种或多种的组合。In this embodiment, the conductive protective layer 160 is a laminated structure, specifically, the material of the conductive protective layer 160 of the laminated structure may be one or more combinations of chromium, platinum, titanium, gold, nickel .
例如,导电保护层160可以包括形成于金属反射层150上的铬层、所述铬层上的铂层、所述铂层上的钛层、所述钛层上的金层以及金层上的镍层,其中,铂层和钛层化学性质比较稳定,主要起到保护P电极150a、N电极150b的作用;铬层主要起到粘附作用,也就是说用于增加P电极150a、N电极150b与导电保护层160之间的粘附性;金层和镍层起到保护导电保护层160中其他材料层的作用。For example, the conductive protective layer 160 may include a chromium layer formed on the metal reflective layer 150, a platinum layer on the chromium layer, a titanium layer on the platinum layer, a gold layer on the titanium layer, and a gold layer on the gold layer. The nickel layer, wherein the platinum layer and the titanium layer have relatively stable chemical properties, mainly play the role of protecting the P electrode 150a and the N electrode 150b; Adhesion between 150b and the conductive protection layer 160; the gold layer and the nickel layer play a role in protecting other material layers in the conductive protection layer 160.
在本实施例中,所述铬层的厚度在20~500埃的范围内,所述铂层的厚度在200~1000埃的范围内;所述钛层的厚度在200~1000埃的范围内;所述金层的厚度在2000~5000埃的范围内,所述镍层的厚度在200~2000埃的范围内。这些材料在各自的厚度范围内有利于在足够起到保护作用的同时不至于过厚而影响LED芯片体积。In this embodiment, the thickness of the chromium layer is in the range of 20-500 angstroms, the thickness of the platinum layer is in the range of 200-1000 angstroms; the thickness of the titanium layer is in the range of 200-1000 angstroms ; The thickness of the gold layer is in the range of 2000-5000 angstroms, and the thickness of the nickel layer is in the range of 200-2000 angstroms. The respective thickness ranges of these materials are conducive to sufficient protection while not being too thick to affect the volume of the LED chip.
在本实施例中,在整个叠层结构的导电保护层160中,镍层位于最表层。这样的好处在于镍材料较为稳定,不容易被腐蚀,采用镍作为叠层结构的导电保护层160的表层有利于使导电保护层160不容易受到其他步骤的影响。In this embodiment, in the conductive protection layer 160 of the entire laminated structure, the nickel layer is located on the outermost layer. The advantage of this is that the nickel material is relatively stable and not easy to be corroded. Using nickel as the surface layer of the conductive protection layer 160 in a stacked structure is beneficial to make the conductive protection layer 160 not easily affected by other steps.
但是本发明对所述导电保护层160是否必须为多层结构不作限定,在本发明的其他实施例中,还可以是单层结构,具体的,所述导电保护层160的材料可以是厚度范围在200~5000埃的范围内的钛化钨。在此厚度范围内有利于在足够起到保护作用的同时不至于过厚而影响LED芯片体积。However, the present invention does not limit whether the conductive protective layer 160 must be a multilayer structure. In other embodiments of the present invention, it can also be a single-layer structure. Specifically, the material of the conductive protective layer 160 can be in the thickness range Tungsten titanium in the range of 200 to 5000 Angstroms. The thickness within this range is conducive to sufficient protection while not being too thick to affect the volume of the LED chip.
在本实施例中,导电保护层160上还设有绝缘介质层170,绝缘介质层170用于对已经形成的各个构件进行绝缘保护。In this embodiment, an insulating dielectric layer 170 is further provided on the conductive protection layer 160, and the insulating dielectric layer 170 is used to insulate and protect the formed components.
在本实施例中,所述绝缘介质层170可以采用SiO2、SiN或者SiON材料的绝缘介质层170。这些材料比较是容易获得的绝缘介质材料。In this embodiment, the insulating dielectric layer 170 may be an insulating dielectric layer 170 made of SiO 2 , SiN or SiON. These materials are relatively easy to obtain insulating dielectric materials.
具体的,在本实施例中,绝缘介质层170的厚度范围在5000~20000埃内,在此厚度范围内的绝缘介质层170不至于过薄而难以起到绝缘效果,又不至于过厚而影响整个LED芯片的体积。但是上述的厚度范围仅仅是一个实施例,本发明对此并不作任何限定。Specifically, in this embodiment, the thickness of the insulating dielectric layer 170 is in the range of 5,000 to 20,000 angstroms, and the insulating dielectric layer 170 within this thickness range will not be too thin to have an insulating effect, and will not be too thick to Affect the volume of the entire LED chip. However, the above-mentioned thickness range is only an example, and the present invention does not make any limitation thereto.
在本实施例中,所述绝缘介质层170中以及其表面还形成有金属层180,其中金属层180位于绝缘介质层170中的部分为金属导电柱181、182,金属导电柱181的位置对应于P电极150a,并与P电极150a上方的导电保护层160接触,用于将所述P电极150a引出;金属导电柱182的位置对应于N电极150b,并与N电极150b上方的导电保护层160接触,用于将N电极150b引出。In this embodiment, a metal layer 180 is also formed in the insulating dielectric layer 170 and on its surface, wherein the parts of the metal layer 180 located in the insulating dielectric layer 170 are metal conductive pillars 181 and 182, and the positions of the metal conductive pillars 181 correspond to On the P electrode 150a, and in contact with the conductive protective layer 160 above the P electrode 150a, for drawing the P electrode 150a; the position of the metal conductive column 182 corresponds to the N electrode 150b, and is connected to the conductive protective layer above the N electrode 150b 160 contacts for leading out the N electrode 150b.
金属层180位于所述绝缘介质层170表面的部分包括图案183、184(请参考图8),其中,图案183对应于金属导电柱181,用于通过所述金属导电柱181将P电极150a引出;同理,所述图案184对应于金属导电柱182,用于通过上述金属导电柱182将所述N电极150b引出。The part of the metal layer 180 located on the surface of the insulating medium layer 170 includes patterns 183 and 184 (please refer to FIG. 8 ), wherein the pattern 183 corresponds to the metal conductive pillar 181, and is used to lead the P electrode 150a out through the metal conductive pillar 181. Similarly, the pattern 184 corresponds to the metal conductive pillar 182, and is used to lead out the N electrode 150b through the metal conductive pillar 182.
在本实施例中,所述金属层180可以是由铬、铝、钛、铂、金、镍中一种或多种构成。其中,铬的厚度在20~50埃的范围内,铝的厚度在750~3000埃的范围内,钛的厚度在200~1000埃的范围内,铂的厚度在200~1000埃的范围内;金的厚度在2000~5000埃的范围内;镍的厚度在200~1000埃的范围内。In this embodiment, the metal layer 180 may be composed of one or more of chromium, aluminum, titanium, platinum, gold, and nickel. Wherein, the thickness of chromium is in the range of 20-50 angstroms, the thickness of aluminum is in the range of 750-3000 angstroms, the thickness of titanium is in the range of 200-1000 angstroms, and the thickness of platinum is in the range of 200-1000 angstroms; The thickness of gold is in the range of 2000-5000 angstroms; the thickness of nickel is in the range of 200-1000 angstroms.
在本实施例中,在所述金属层180上还形成有钝化层190,钝化层190用于将170表面的金属层180图案183、184相互隔离。In this embodiment, a passivation layer 190 is further formed on the metal layer 180 , and the passivation layer 190 is used to isolate the patterns 183 and 184 of the metal layer 180 on the surface of the metal layer 170 from each other.
在本实施例中,所述钝化层190可以采用SiO2、SiN或者SiON作为材料。In this embodiment, the passivation layer 190 may use SiO 2 , SiN or SiON as a material.
在本实施例中,所述钝化层190的厚度范围在5000~20000埃内,但是上述的厚度范围仅仅是一个实施例,本发明对此并不作任何限定。In this embodiment, the thickness range of the passivation layer 190 is within 5000˜20000 angstroms, but the above thickness range is only an example, and the present invention does not make any limitation thereto.
所述钝化层190具有图案以露出所述金属导电柱181、182。The passivation layer 190 has a pattern to expose the metal conductive pillars 181 , 182 .
在本实施例中,所述钝化层190上形成有对应于金属导电柱181、182的引出电极210、220,由于所述金属导电柱181与所述P电极150a电连接,因此所述引出电极210用于将P电极150a的引出以便封装;同理,金属导电柱182与N电极150b电连接,因此用于作为引出电极220用于将N电极150b引出。In this embodiment, the lead-out electrodes 210, 220 corresponding to the metal conductive pillars 181, 182 are formed on the passivation layer 190. Since the metal conductive pillars 181 are electrically connected to the P-electrode 150a, the lead-out The electrode 210 is used to lead out the P electrode 150a for packaging; similarly, the metal conductive pillar 182 is electrically connected to the N electrode 150b, so it is used as the lead electrode 220 to lead out the N electrode 150b.
所述引出电极210、220之间应具有间距以防止发生短路,在本实施例中,所述间距大小d应不小于100微米。There should be a distance between the extraction electrodes 210 and 220 to prevent short circuit. In this embodiment, the distance d should not be less than 100 microns.
在本实施例中,所述引出电极210、220的材料可以采用铬、铝、钛、铂、金或者锡中的一种或多种。具体的,铬的厚度在20~50埃的范围内,铝的厚度在750~3000埃的范围内,钛的厚度在200~1000埃的范围内,铂的厚度在200~1000埃的范围内;金的厚度在2000~5000埃的范围内;锡的厚度在200~1000埃的范围内。In this embodiment, the material of the extraction electrodes 210 and 220 may be one or more of chromium, aluminum, titanium, platinum, gold or tin. Specifically, the thickness of chromium is in the range of 20-50 angstroms, the thickness of aluminum is in the range of 750-3000 angstroms, the thickness of titanium is in the range of 200-1000 angstroms, and the thickness of platinum is in the range of 200-1000 angstroms ; The thickness of gold is in the range of 2000-5000 angstroms; the thickness of tin is in the range of 200-1000 angstroms.
此外需要说明的是,本发明的LED芯片可以但不限于采用上述的制作方法得到。In addition, it should be noted that the LED chip of the present invention can be obtained by, but not limited to, the above-mentioned manufacturing method.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510153145.XA CN106159057B (en) | 2015-04-01 | 2015-04-01 | LED chip and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510153145.XA CN106159057B (en) | 2015-04-01 | 2015-04-01 | LED chip and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106159057A CN106159057A (en) | 2016-11-23 |
CN106159057B true CN106159057B (en) | 2018-08-28 |
Family
ID=57337351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510153145.XA Active CN106159057B (en) | 2015-04-01 | 2015-04-01 | LED chip and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106159057B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI676285B (en) * | 2017-05-04 | 2019-11-01 | 國立交通大學 | Electrodeless light-shielding of light-emitting diode display structure and process thereof |
CN108922950B (en) * | 2018-08-03 | 2023-10-20 | 佛山市国星半导体技术有限公司 | High-brightness flip LED chip and manufacturing method thereof |
CN111864027B (en) * | 2019-10-11 | 2022-09-16 | 中国科学院宁波材料技术与工程研究所 | Ultraviolet LED high counter electrode, ultraviolet LED and preparation method thereof |
CN111081832B (en) * | 2019-12-26 | 2021-08-24 | 福建兆元光电有限公司 | A kind of Mini LED chip and manufacturing method |
CN111129256A (en) * | 2019-12-30 | 2020-05-08 | 广东德力光电有限公司 | A kind of flip-chip high-voltage chip based on silver mirror and its manufacturing method |
CN115172561B (en) * | 2021-07-22 | 2025-05-16 | 厦门三安光电有限公司 | Light emitting diode and method for preparing the same |
CN116631889A (en) * | 2023-07-24 | 2023-08-22 | 江西兆驰半导体有限公司 | A method for detecting dead pixels of Micro-LED chips |
US20250169243A1 (en) * | 2023-11-21 | 2025-05-22 | Lumileds Llc | Led with transparent conductive structure |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101154697A (en) * | 2006-09-30 | 2008-04-02 | 香港微晶先进封装技术有限公司 | Light emitting diode chip and manufacturing method thereof |
CN101271949A (en) * | 2004-11-11 | 2008-09-24 | 晶元光电股份有限公司 | Method for manufacturing light emitting diode |
CN101960603A (en) * | 2008-01-08 | 2011-01-26 | 莫克斯特尼克公司 | High performance heterostructure light emitting device and method |
CN102217104A (en) * | 2008-06-16 | 2011-10-12 | Lg伊诺特有限公司 | Kim geun ho [kr]; kim sung kyoon [kr]; choi hee seok |
CN102447016A (en) * | 2010-10-09 | 2012-05-09 | 佛山市奇明光电有限公司 | LED (Light Emitting Diode) structure and manufacturing method thereof |
CN103915463A (en) * | 2013-01-09 | 2014-07-09 | 新世纪光电股份有限公司 | light emitting device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5768759B2 (en) * | 2012-04-27 | 2015-08-26 | 豊田合成株式会社 | Semiconductor light emitting device |
-
2015
- 2015-04-01 CN CN201510153145.XA patent/CN106159057B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101271949A (en) * | 2004-11-11 | 2008-09-24 | 晶元光电股份有限公司 | Method for manufacturing light emitting diode |
CN101154697A (en) * | 2006-09-30 | 2008-04-02 | 香港微晶先进封装技术有限公司 | Light emitting diode chip and manufacturing method thereof |
CN101960603A (en) * | 2008-01-08 | 2011-01-26 | 莫克斯特尼克公司 | High performance heterostructure light emitting device and method |
CN102217104A (en) * | 2008-06-16 | 2011-10-12 | Lg伊诺特有限公司 | Kim geun ho [kr]; kim sung kyoon [kr]; choi hee seok |
CN102447016A (en) * | 2010-10-09 | 2012-05-09 | 佛山市奇明光电有限公司 | LED (Light Emitting Diode) structure and manufacturing method thereof |
CN103915463A (en) * | 2013-01-09 | 2014-07-09 | 新世纪光电股份有限公司 | light emitting device |
Also Published As
Publication number | Publication date |
---|---|
CN106159057A (en) | 2016-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106159057B (en) | LED chip and preparation method thereof | |
KR101072034B1 (en) | Semiconductor light emitting device and fabrication method thereof | |
CN104681702B (en) | Semiconductor light emitting element | |
CN108922950B (en) | High-brightness flip LED chip and manufacturing method thereof | |
CN102751410B (en) | LED (Light Emitting Diode) chip provided with stepped current blocking structure and fabricating method thereof | |
CN102222744B (en) | Luminescent device and light emitting device package | |
TWI446586B (en) | Illuminating device | |
CN106159043B (en) | Flip LED chip and forming method thereof | |
CN104241493A (en) | Light emitting device and light emitting device package | |
CN102386313B (en) | Light emitting device, light emitting device package, and light unit | |
CN109087981B (en) | Leakage-proof LED chip and production method thereof | |
CN208637453U (en) | A high-brightness flip-chip LED chip | |
US8237184B2 (en) | Light-emitting semiconductor device | |
CN103996773A (en) | Flip light-emitting diode structure and manufacturing method thereof | |
CN102163670A (en) | Light emitting device, light emitting device package, and lighting system | |
CN115663079A (en) | Light emitting diode and preparation method thereof | |
CN104993031B (en) | High pressure flip LED chips and its manufacture method | |
KR20120048413A (en) | Light emitting device and light emitting device package | |
CN114038964A (en) | Flip light-emitting chip and preparation method thereof | |
JP2010040937A (en) | Semiconductor light emitting element, light emitting device, illuminating apparatus, and display | |
CN118173684A (en) | Light emitting diode and light emitting device | |
CN117650212A (en) | Light emitting diode and light emitting device | |
CN214313229U (en) | Flip LED chip | |
CN115332410A (en) | led | |
KR102075059B1 (en) | Light emitting device and light emitting device package |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |