CN106158958B - FinFET with source/drain overlay - Google Patents
FinFET with source/drain overlay Download PDFInfo
- Publication number
- CN106158958B CN106158958B CN201510172108.3A CN201510172108A CN106158958B CN 106158958 B CN106158958 B CN 106158958B CN 201510172108 A CN201510172108 A CN 201510172108A CN 106158958 B CN106158958 B CN 106158958B
- Authority
- CN
- China
- Prior art keywords
- fin
- semiconductor
- width
- silicon
- germanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 144
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 119
- 229910052710 silicon Inorganic materials 0.000 claims description 79
- 239000010703 silicon Substances 0.000 claims description 79
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 78
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 70
- 229910052732 germanium Inorganic materials 0.000 claims description 69
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical group [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 37
- 230000005669 field effect Effects 0.000 claims description 23
- 230000003647 oxidation Effects 0.000 claims description 18
- 238000007254 oxidation reaction Methods 0.000 claims description 18
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 6
- HIVGXUNKSAJJDN-UHFFFAOYSA-N [Si].[P] Chemical compound [Si].[P] HIVGXUNKSAJJDN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims 2
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 31
- 238000002955 isolation Methods 0.000 description 18
- 239000003989 dielectric material Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 5
- 238000000407 epitaxy Methods 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- CHYRFIXHTWWYOX-UHFFFAOYSA-N [B].[Si].[Ge] Chemical group [B].[Si].[Ge] CHYRFIXHTWWYOX-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000005360 phosphosilicate glass Substances 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910017920 NH3OH Inorganic materials 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- OQNXPQOQCWVVHP-UHFFFAOYSA-N [Si].O=[Ge] Chemical compound [Si].O=[Ge] OQNXPQOQCWVVHP-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- VGRFVJMYCCLWPQ-UHFFFAOYSA-N germanium Chemical compound [Ge].[Ge] VGRFVJMYCCLWPQ-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical group [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/791—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
- H10D30/797—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions being in source or drain regions, e.g. SiGe source or drain
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/113—Isolations within a component, i.e. internal isolations
- H10D62/115—Dielectric isolations, e.g. air gaps
- H10D62/116—Dielectric isolations, e.g. air gaps adjoining the input or output regions of field-effect devices, e.g. adjoining source or drain regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/13—Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
- H10D62/149—Source or drain regions of field-effect devices
- H10D62/151—Source or drain regions of field-effect devices of IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
- H10D62/822—Heterojunctions comprising only Group IV materials heterojunctions, e.g. Si/Ge heterojunctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/017—Manufacturing their source or drain regions, e.g. silicided source or drain regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0193—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices the components including FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
- H10D84/853—Complementary IGFETs, e.g. CMOS comprising FinFETs
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
优先权声明和交叉引用Priority Statements and Cross-References
本申请与2014年8月5日提交的标题为“Nonplanar Device and Strain-Generating Channel Dielectric”的以下共同受让的美国专利申请第14/451,503号相关,其全部内容结合于此作为参考。This application is related to the following commonly assigned US Patent Application Serial No. 14/451,503, filed August 5, 2014, entitled "Nonplanar Device and Strain-Generating Channel Dielectric," the entire contents of which are incorporated herein by reference.
技术领域technical field
本发明涉及集成电路器件,更具体地,涉及具有源极/漏极覆盖层的FinFET。The present invention relates to integrated circuit devices, and more particularly, to FinFETs with source/drain capping layers.
背景技术Background technique
IC材料和设计中的技术进步已经产生了数代的IC,其中每代IC都具有比上一代IC更小和更复杂的电路。功能密度(即,每一芯片面积上互连器件的数量)通常已经增加而几何尺寸(即,使用制造工艺可以制造的最小部件(或线))却已减小。这种按比例缩小工艺通常通过提高生产效率和降低相关成本而提供益处。Technological advances in IC materials and design have produced generations of ICs, each with smaller and more complex circuits than the previous generation. Functional density (ie, the number of interconnected devices per chip area) has generally increased while geometry size (ie, the smallest feature (or line) that can be fabricated using a fabrication process) has decreased. This scale-down process generally provides benefits by increasing production efficiency and reducing associated costs.
这种按比例缩小也增大了加工和制造IC的复杂度,并且为了继续实现这些进步,也需要IC加工和制造中的进一步发展。例如,已经引入诸如鳍式场效应晶体管(FinFET)的三维晶体管以代替平面晶体管。虽然现有的FinFET器件及其制造方法通常已经能够满足它们的预期目的,但是它们不是在所有方面都已完全令人满意。期望该领域中的改进。This scaling down also increases the complexity of processing and manufacturing ICs, and further developments in IC processing and manufacturing are also required in order to continue to achieve these advances. For example, three-dimensional transistors such as fin field effect transistors (FinFETs) have been introduced to replace planar transistors. While existing FinFET devices and methods of making them have generally served their intended purpose, they have not been fully satisfactory in all respects. Improvements in this area are expected.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中存在的问题,本发明提供了一种器件,包括:半导体衬底;隔离区,延伸至所述半导体衬底内;半导体鳍,位于所述隔离区的相对部分之间,其中,所述半导体鳍位于所述隔离区的顶面上方;栅极堆叠件,与所述半导体鳍重叠;以及源极/漏极区,位于所述栅极堆叠件的侧部上并且连接至所述半导体鳍,其中,所述源极/漏极区包括:内部,比所述半导体鳍薄,其中,所述半导体鳍和所述源极/漏极区的所述内部具有相同的IV族半导体的组分;和外部,位于所述内部外侧。In order to solve the problems existing in the prior art, the present invention provides a device, comprising: a semiconductor substrate; an isolation region extending into the semiconductor substrate; a semiconductor fin located between opposite parts of the isolation region, wherein the semiconductor fins are located above the top surfaces of the isolation regions; a gate stack overlaps the semiconductor fins; and source/drain regions are located on sides of the gate stack and connected to The semiconductor fin, wherein the source/drain region includes an interior thinner than the semiconductor fin, wherein the interior of the semiconductor fin and the source/drain region have the same Group IV a component of a semiconductor; and an exterior, located outside the interior.
在上述器件中,其中,所述内部的顶面低于所述半导体鳍的顶面。In the above device, wherein a top surface of the interior is lower than a top surface of the semiconductor fin.
在上述器件中,其中,所述源极/漏极区的所述内部的第一宽度为所述半导体鳍的第二宽度的约50%至约70%,其中,在与包括所述源极/漏极区的鳍式场效应晶体管(FinFET)的源极至漏极方向垂直的方向上测量所述第一宽度和所述第二宽度。In the above device, wherein the first width of the interior of the source/drain region is about 50% to about 70% of the second width of the semiconductor fin, wherein the source/drain region includes the source The first width and the second width are measured in a direction perpendicular to the source-to-drain direction of the fin field effect transistor (FinFET) in the /drain region.
在上述器件中,其中,所述栅极堆叠件和所述源极/漏极区包括在n型鳍式场效应晶体管(FinFET)中,并且所述内部包括硅且不含锗,并且其中,所述外部包括硅磷。In the above device, wherein the gate stack and the source/drain regions are included in an n-type fin field effect transistor (FinFET), and the interior includes silicon and is free of germanium, and wherein, The outer portion includes silicon phosphorus.
在上述器件中,其中,所述栅极堆叠件和所述源极/漏极区包括在n型鳍式场效应晶体管(FinFET)中,并且所述内部包括硅且不含锗,并且其中,所述外部包括硅磷,其中,所述器件还包括:两个SiGeOx区,其中,所述SiGeOx区的内部与所述半导体鳍重叠。In the above device, wherein the gate stack and the source/drain regions are included in an n-type fin field effect transistor (FinFET), and the interior includes silicon and is free of germanium, and wherein, The outer portion includes silicon phosphorus, wherein the device further includes: two SiGeOx regions, wherein the inner portion of the SiGeOx regions overlaps the semiconductor fin.
在上述器件中,其中,所述栅极堆叠件和所述源极/漏极区包括在n型鳍式场效应晶体管(FinFET)中,并且所述内部包括硅且不含锗,并且其中,所述外部包括硅磷,其中,所述器件还包括:两个SiGeOx区,其中,所述SiGeOx区的内部与所述半导体鳍重叠,其中,所述器件还包括:硅锗区,位于所述两个SiGeOx区之间。In the above device, wherein the gate stack and the source/drain regions are included in an n-type fin field effect transistor (FinFET), and the interior includes silicon and is free of germanium, and wherein, The outer portion includes silicon phosphorus, wherein the device further includes: two SiGeO x regions, wherein the inner portion of the SiGeO x region overlaps the semiconductor fin, wherein the device further includes: a silicon germanium region located in between the two SiGeO x regions.
在上述器件中,其中,所述栅极堆叠件和所述源极/漏极区包括在p型鳍式场效应晶体管(FinFET)中,并且所述内部包括具有第一锗百分比的硅锗,并且所述外部包括具有大于所述第一锗百分比的第二锗百分比的硅锗。In the above device, wherein the gate stack and the source/drain regions are included in a p-type fin field effect transistor (FinFET), and the interior includes silicon germanium having a first germanium percentage, And the outer portion includes silicon germanium having a second germanium percentage greater than the first germanium percentage.
在上述器件中,其中,所述栅极堆叠件和所述源极/漏极区包括在p型鳍式场效应晶体管(FinFET)中,并且所述内部包括具有第一锗百分比的硅锗,并且所述外部包括具有大于所述第一锗百分比的第二锗百分比的硅锗,其中,所述器件还包括:硅层,位于所述源极/漏极区的所述内部下面;以及附加硅锗层,位于所述硅层下面并且位于所述半导体衬底上面。In the above device, wherein the gate stack and the source/drain regions are included in a p-type fin field effect transistor (FinFET), and the interior includes silicon germanium having a first germanium percentage, and the outer portion includes silicon germanium having a second germanium percentage greater than the first germanium percentage, wherein the device further includes: a silicon layer underlying the inner portion of the source/drain regions; and an additional A silicon germanium layer under the silicon layer and over the semiconductor substrate.
根据本发明的另一实施例,提供了一种器件,包括:硅衬底;隔离区,延伸至所述硅衬底内;以及p型鳍式场效应晶体管(FinFET),包括:硅锗鳍,所述硅锗鳍包括中间部分和位于所述中间部分的相对两侧上的端部,其中,所述中间部分的顶面高于所述端部的顶面,并且其中,所述硅锗鳍具有第一锗百分比;栅极堆叠件,与所述硅锗鳍的所述中间部分重叠;和源极/漏极区,包括作为内部的所述硅锗鳍的所述端部中的一个以及位于所述内部外侧的硅锗区,其中,所述硅锗区具有高于所述第一锗百分比的第二锗百分比。According to another embodiment of the present invention, there is provided a device comprising: a silicon substrate; an isolation region extending into the silicon substrate; and a p-type fin field effect transistor (FinFET) comprising: a silicon germanium fin , the silicon germanium fin includes a middle portion and ends on opposite sides of the middle portion, wherein a top surface of the middle portion is higher than a top surface of the end portion, and wherein the silicon germanium a fin having a first germanium percentage; a gate stack overlapping the middle portion of the silicon germanium fin; and a source/drain region including as interior one of the ends of the silicon germanium fin and a silicon germanium region on the inner outer side, wherein the silicon germanium region has a second germanium percentage higher than the first germanium percentage.
在上述器件中,其中,所述源极/漏极区还包括位于所述硅锗区外侧的附加硅锗区,其中,所述附加硅锗区具有高于所述第二锗百分比的第三锗百分比。In the above device, wherein the source/drain regions further comprise additional silicon germanium regions outside the silicon germanium regions, wherein the additional silicon germanium regions have a third germanium percentage higher than the second germanium Germanium percentage.
在上述器件中,其中,所述硅锗鳍延伸至低于所述隔离区的顶面的水平面,并且所述器件还包括:硅层,位于所述硅锗鳍下面;附加硅锗层,位于所述硅层下面;以及硅条,位于所述附加硅锗层下面,其中,所述硅条连续地连接至所述硅衬底。In the above device, wherein the silicon germanium fin extends to a level lower than the top surface of the isolation region, and the device further comprises: a silicon layer located under the silicon germanium fin; an additional silicon germanium layer located on the under the silicon layer; and a silicon strip under the additional silicon germanium layer, wherein the silicon strip is continuously connected to the silicon substrate.
在上述器件中,其中,所述硅锗鳍的所述端部比所述硅锗鳍的所述中间部分薄。In the above device, wherein the end portions of the silicon germanium fins are thinner than the middle portions of the silicon germanium fins.
在上述器件中,其中,所述硅锗鳍的所述端部比所述硅锗鳍的所述中间部分薄,其中,所述硅锗鳍的所述端部的第一宽度小于所述硅锗鳍的所述中间部分的第二宽度,其中,在与包括所述源极/漏极区的鳍式场效应晶体管(FinFET)的源极至漏极方向垂直的方向上测量所述第一宽度和所述第二宽度。In the above device, wherein the ends of the silicon germanium fins are thinner than the middle portions of the silicon germanium fins, wherein the ends of the silicon germanium fins have a first width that is smaller than the silicon germanium fins a second width of the middle portion of a germanium fin, wherein the first is measured in a direction perpendicular to a source-to-drain direction of a fin field effect transistor (FinFET) including the source/drain regions width and the second width.
在上述器件中,其中,所述硅锗鳍的所述端部比所述硅锗鳍的所述中间部分薄,其中,所述硅锗鳍的所述端部的第一宽度小于所述硅锗鳍的所述中间部分的第二宽度,其中,在与包括所述源极/漏极区的鳍式场效应晶体管(FinFET)的源极至漏极方向垂直的方向上测量所述第一宽度和所述第二宽度,其中,所述第一宽度介于所述第二宽度的约50%和约70%之间。In the above device, wherein the ends of the silicon germanium fins are thinner than the middle portions of the silicon germanium fins, wherein the ends of the silicon germanium fins have a first width that is smaller than the silicon germanium fins a second width of the middle portion of a germanium fin, wherein the first is measured in a direction perpendicular to a source-to-drain direction of a fin field effect transistor (FinFET) including the source/drain regions a width and the second width, wherein the first width is between about 50% and about 70% of the second width.
根据本发明的又一实施例,提供了一种方法,包括:使半导体条的相对两侧上的隔离区凹进以形成半导体鳍,其中,所述半导体鳍位于所述隔离区的顶面上方;在所述半导体鳍的中间部分的顶面和侧壁上形成栅极堆叠件;减薄所述半导体鳍的端部;以及实施外延以在所述半导体鳍的减薄的端部上生长半导体区,其中,所述半导体鳍的所述减薄的端部和所述半导体区组合形成鳍式场效应晶体管(FinFET)的源极/漏极区。According to yet another embodiment of the present invention, there is provided a method comprising recessing isolation regions on opposite sides of a semiconductor strip to form semiconductor fins, wherein the semiconductor fins are located over top surfaces of the isolation regions ; forming gate stacks on top surfaces and sidewalls of intermediate portions of the semiconductor fins; thinning the ends of the semiconductor fins; and performing epitaxy to grow semiconductor on the thinned ends of the semiconductor fins region, wherein the thinned end of the semiconductor fin and the semiconductor region combine to form source/drain regions of a fin field effect transistor (FinFET).
在上述方法中,其中,在形成所述栅极堆叠件之后实施所述减薄。In the above method, wherein the thinning is performed after forming the gate stack.
在上述方法中,其中,所述FinFET是n型FinFET,并且所述半导体鳍是不含锗的硅鳍,并且其中,所述外延包括生长硅磷区。In the above method, wherein the FinFET is an n-type FinFET and the semiconductor fin is a germanium-free silicon fin, and wherein the epitaxy includes growing a silicon phosphorous region.
在上述方法中,其中,所述半导体条包括与硅锗条重叠的硅条,并且所述方法还包括:对所述硅锗条的外部实施氧化,其中,在所述氧化中,所述硅锗条的内部中的锗浓缩。In the above method, wherein the semiconductor strip includes a silicon strip overlapping a silicon germanium strip, and the method further comprises: oxidizing the outside of the silicon germanium strip, wherein in the oxidation, the silicon The germanium is concentrated in the interior of the germanium bar.
在上述方法中,其中,所述FinFET是p型FinFET,并且所述半导体鳍包括具有第一锗百分比的硅锗鳍,并且其中,所述外延包括生长具有高于所述第一锗百分比的第二锗百分比的硅锗硼区。In the above method, wherein the FinFET is a p-type FinFET and the semiconductor fin includes a silicon germanium fin having a first germanium percentage, and wherein the epitaxy includes growing a second germanium fin having a higher germanium percentage than the first germanium percentage Two germanium percent silicon germanium boron regions.
在上述方法中,其中,所述FinFET是p型FinFET,并且所述半导体鳍包括具有第一锗百分比的硅锗鳍,并且其中,所述外延包括生长具有高于所述第一锗百分比的第二锗百分比的硅锗硼区,其中,还包括,在使所述隔离区凹进之前:蚀刻所述隔离区之间的硅条的顶部以形成凹槽;以及在所述凹槽中生长硅锗条,从所述硅条的底部生长所述硅锗条,其中,所述硅锗条具有所述第一锗百分比。In the above method, wherein the FinFET is a p-type FinFET and the semiconductor fin includes a silicon germanium fin having a first germanium percentage, and wherein the epitaxy includes growing a second germanium fin having a higher germanium percentage than the first germanium percentage A two germanium percent silicon germanium boron region, further comprising, prior to recessing the isolation regions: etching the tops of the silicon strips between the isolation regions to form recesses; and growing silicon in the recesses A germanium strip, the silicon germanium strip being grown from the bottom of the silicon strip, wherein the silicon germanium strip has the first germanium percentage.
附图说明Description of drawings
当结合附图进行阅读时,从以下详细描述可最佳理解本发明的各方面。应该注意,根据工业中的标准实践,各个部件未按比例绘制。实际上,为了清楚的讨论,各个部件的尺寸可以任意地增大或减小。Aspects of the invention are best understood from the following detailed description when read in conjunction with the accompanying drawings. It should be noted that in accordance with standard practice in the industry, the various components are not drawn to scale. In fact, the dimensions of the various components may be arbitrarily increased or decreased for clarity of discussion.
图1至图4A、图5至图10A以及图11至图12A是在示例性鳍式场效应晶体管(FinFET)的制造中的中间阶段的立体图,而图4B、图10B和图12B至图12C是在示例性鳍式场效应晶体管(FinFET)的制造中的中间阶段的截面图。1-4A, 5-10A, and 11-12A are perspective views at intermediate stages in the fabrication of exemplary fin field effect transistors (FinFETs), while FIGS. 4B, 10B, and 12B-12C is a cross-sectional view at an intermediate stage in the fabrication of an exemplary Fin Field Effect Transistor (FinFET).
具体实施方式Detailed ways
以下公开内容提供了许多用于实现本发明的不同特征的不同实施例或实例。下面描述了组件和布置的具体实例以简化本发明。当然,这些仅仅是实例,而不旨在限制本发明。例如,在以下描述中,在第二部件上方或者上形成第一部件可以包括第一部件和第二部件直接接触形成的实施例,并且也可以包括在第一部件和第二部件之间可以形成额外的部件,从而使得第一部件和第二部件可以不直接接触的实施例。此外,本发明可在各个实例中重复参考标号和/或字符。该重复是为了简单和清楚的目的,并且其本身不指示所讨论的各个实施例和/或配置之间的关系。The following disclosure provides many different embodiments or examples for implementing different features of the invention. Specific examples of components and arrangements are described below to simplify the present disclosure. Of course, these are only examples and are not intended to limit the invention. For example, in the following description, forming a first part over or on a second part may include embodiments in which the first part and the second part are formed in direct contact, and may also include an embodiment that may be formed between the first part and the second part Additional parts so that the first part and the second part may not be in direct contact with one embodiment. Furthermore, the present disclosure may repeat reference numerals and/or characters in various instances. This repetition is for the purpose of simplicity and clarity, and does not in itself indicate a relationship between the various embodiments and/or configurations discussed.
而且,为便于描述,在此可以使用诸如“在…之下”、“在…下方”、“下部”、“在…之上”、“上部”等的空间相对术语,以描述如图所示的一个元件或部件与另一个(或另一些)元件或部件的关系。除了图中所示的方位外,空间相对术语旨在包括器件在使用或操作中的不同方位。装置可以以其他方式定向(旋转90度或在其他方位上),而本文使用的空间相对描述符可以同样地作相应的解释。Also, for ease of description, spatially relative terms such as "below," "below," "lower," "above," "upper," etc. may be used herein to describe what is shown in the figures. The relationship of one element or part to another (or other) elements or parts. In addition to the orientation shown in the figures, spatially relative terms are intended to encompass different orientations of the device in use or operation. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
在论述示出的实施例之前,将大体上讨论本发明的特征和方面。通常地,本发明涉及但不限于包括P型金属氧化物半导体(PMOS)FinFET器件和N型金属氧化物半导体(NMOS)FinFET器件的互补金属氧化物半导体(CMOS)器件。根据各个示例性实施例提供了形成CMOS器件的方法。示出并且讨论了形成示例性FinFET的中间阶段,包括实施例的变化。贯穿各个视图和说明性实施例,相同的参考标号用于表示相同的元件。Before discussing the illustrated embodiments, features and aspects of the invention will be discussed in general. In general, but not limited to, the present invention relates to complementary metal oxide semiconductor (CMOS) devices including P-type metal oxide semiconductor (PMOS) FinFET devices and N-type metal oxide semiconductor (NMOS) FinFET devices. Methods of forming CMOS devices are provided in accordance with various exemplary embodiments. Intermediate stages of forming exemplary FinFETs are shown and discussed, including variations of embodiments. The same reference numerals are used to refer to the same elements throughout the various views and illustrative embodiments.
图1示出了包括衬底20以及位于衬底20上方的半导体层22和24的晶圆10。根据一些实施例,衬底20包括晶体硅并且可以不含锗。在一些实施例中,晶圆10是块状的单晶半导体晶圆。在其他实施例中,晶圆10包括如本领域已知的绝缘体上硅(SOI)晶圆。半导体层22包括硅锗(SiGe)。根据本发明的一些实施例,半导体层22中的锗百分比介于约30%和约80%的范围内。半导体层22的厚度可以介于约20nm和约90nm的范围内。根据一些实施例,半导体层24可以是不含锗的硅层。在可选实施例中,半导体层24可以包括硅磷(SiP)。FIG. 1 shows a wafer 10 including a substrate 20 and semiconductor layers 22 and 24 overlying the substrate 20 . According to some embodiments, substrate 20 includes crystalline silicon and may be free of germanium. In some embodiments, wafer 10 is a bulk monocrystalline semiconductor wafer. In other embodiments, wafer 10 comprises a silicon-on-insulator (SOI) wafer as known in the art. The semiconductor layer 22 includes silicon germanium (SiGe). According to some embodiments of the present invention, the percentage of germanium in semiconductor layer 22 is in the range of about 30% and about 80%. The thickness of the semiconductor layer 22 may be in the range of about 20 nm and about 90 nm. According to some embodiments, semiconductor layer 24 may be a germanium-free silicon layer. In alternative embodiments, the semiconductor layer 24 may include silicon phosphorus (SiP).
晶圆10包括说明性的区域100和200。区域100是n型FinFET区域,其中将形成n型FinFET。区域200是p型FinFET区域,其中将形成p型FinFET。虽然贯穿本发明中的图将区域100和200示出为彼此分隔开,但是区域100和200是同一晶圆10的部分并且可以位于同一芯片中。例如,区域100和200中示出的衬底20是同一连续的衬底的部分,并且半导体层22和24也是同一连续的层的部分。Wafer 10 includes illustrative regions 100 and 200 . Region 100 is an n-type FinFET region in which n-type FinFETs will be formed. Region 200 is a p-type FinFET region in which p-type FinFETs will be formed. Although the figures throughout this disclosure show regions 100 and 200 as being separated from each other, regions 100 and 200 are part of the same wafer 10 and may be located in the same chip. For example, substrate 20 shown in regions 100 and 200 is part of the same continuous substrate, and semiconductor layers 22 and 24 are also part of the same continuous layer.
参照图2,层22和24经受图案化工艺以形成延伸至晶圆10内的多个沟槽26。沟槽26将半导体衬底20以及半导体层22和24的一些未图案化的部分限定为分别位于区域100和200中的多个半导体条128和228。半导体条128包括图案化的衬底20的部分120、图案化的半导体层22的部分122和图案化的半导体层24的部分124。半导体条228包括图案化的衬底20的部分220、图案化的半导体层22的部分222和图案化的半导体层24的部分224。根据一些实施例,半导体条128和228具有介于约4nm和约10nm之间的相应的宽度。贯穿说明书,条120、220、124和224称为硅条,而条122和222称为SiGe条。Referring to FIG. 2 , layers 22 and 24 are subjected to a patterning process to form a plurality of trenches 26 extending into wafer 10 . Trenches 26 define semiconductor substrate 20 and some unpatterned portions of semiconductor layers 22 and 24 as a plurality of semiconductor strips 128 and 228 located in regions 100 and 200, respectively. The semiconductor strips 128 include portions 120 of the patterned substrate 20 , portions 122 of the patterned semiconductor layer 22 , and portions 124 of the patterned semiconductor layer 24 . The semiconductor strip 228 includes a portion 220 of the patterned substrate 20 , a portion 222 of the patterned semiconductor layer 22 , and a portion 224 of the patterned semiconductor layer 24 . According to some embodiments, semiconductor strips 128 and 228 have respective widths of between about 4 nm and about 10 nm. Throughout the specification, strips 120, 220, 124, and 224 are referred to as silicon strips, while strips 122 and 222 are referred to as SiGe strips.
图3示出了硬掩模30的形成以及随后的氧化工艺。如图3所示,硬掩模30形成在半导体条128和228的顶面和侧壁上并且覆盖半导体衬底20的暴露的顶面(即,沟槽26的相应底部)。此外,硬掩模30形成在n型FinFET区域100和p型FinFET区域200中。接下来,实施图案化工艺以从半导体条128的中间部分去除硬掩模30的部分。半导体条128的相对端部上的硬掩模30的部分保持完整。此外,未图案化p型FinFET区域200中的硬掩模30的部分。如图3所示,区域200中的整个鳍228均被覆盖,但是区域100中的鳍128的中间部分未被覆盖。FIG. 3 shows the formation of hard mask 30 and the subsequent oxidation process. As shown in FIG. 3 , hard mask 30 is formed on the top surfaces and sidewalls of semiconductor strips 128 and 228 and covers the exposed top surfaces of semiconductor substrate 20 (ie, the respective bottoms of trenches 26 ). Further, a hard mask 30 is formed in the n-type FinFET region 100 and the p-type FinFET region 200 . Next, a patterning process is performed to remove portions of the hard mask 30 from the middle portions of the semiconductor strips 128 . Portions of hardmask 30 on opposite ends of semiconductor strips 128 remain intact. Additionally, portions of hard mask 30 in p-type FinFET region 200 are not patterned. As shown in FIG. 3 , the entire fin 228 in the area 200 is covered, but the middle portion of the fin 128 in the area 100 is uncovered.
硬掩模30形成为共形层,该共形层具有厚度彼此相对接近的水平部分和垂直部分。根据一些实施例,硬掩模30包括氮化硅、碳化硅、氮氧化硅、氮化钛、氮化钽或者相对于半导体条128和228以及相对于氧化硅具有高蚀刻选择性的其他材料。The hard mask 30 is formed as a conformal layer having horizontal portions and vertical portions whose thicknesses are relatively close to each other. According to some embodiments, hard mask 30 includes silicon nitride, silicon carbide, silicon oxynitride, titanium nitride, tantalum nitride, or other materials with high etch selectivity relative to semiconductor strips 128 and 228 and relative to silicon oxide.
接下来,实施氧化,从而使得氧化未由硬掩模30覆盖的SiGe条122(图2)的中间部分以形成氧化硅锗(SiGeOx)区132。SiGe条222以及更具体地SiGe条122的端部受到硬掩模30的保护,并且因此不被氧化。在氧化之后,去除硬掩模30,并且图4A中示出了产生的结构,图4A示出,SiGeOx区132位于半导体条128的中间。Next, oxidation is performed such that the middle portions of SiGe strips 122 ( FIG. 2 ) not covered by hard mask 30 are oxidized to form silicon germanium oxide (SiGeO x ) regions 132 . The ends of the SiGe strips 222 and, more particularly, the SiGe strips 122 are protected by the hard mask 30 and are therefore not oxidized. After oxidation, hard mask 30 is removed and the resulting structure is shown in FIG. 4A , which shows SiGeO x region 132 in the middle of semiconductor strip 128 .
图4B示出了条128中的一个的截面图,其中,从图4A中的包含线4B-4B的垂直面获得该截面图。为了清楚的目的,示出了单个半导体条128。如图4B所示,SiGe条122的内部保持未被氧化。也可以部分地氧化未由硬掩模30(图3)覆盖的硅条120和124的中间部分。然而,SiGe条122的中间部分的氧化速率比硅条120和124的氧化高得多(有时高30倍)。因此在硅条120和124的表面上产生的氧化物(未示出)非常薄(其可以具有小于约的厚度),并且因此在本文中未示出。例如,可以通过炉氧化来实施氧化,例如,通过将晶圆10暴露于具有介于约400℃和约600℃之间的氧化温度的氧气环境中。氧化工艺的持续时间可以介于约20分钟和约40分钟的范围内。氧化工艺的持续时间取决于温度。较低的温度需要较长的氧化持续时间,反之亦然。可选地,可以使用低温下(例如,介于约20℃和80℃)的化学氧化方法来实施氧化,例如,将过氧化氢(H2O2)溶液用作氧化剂。产生的SiGeOx区132可以包括形成在剩余的SiGe条122的相对两侧上的两个部分。根据一些实施例,SiGeOx区132具有介于约3nm和约10nm之间的相应的厚度。Figure 4B shows a cross-sectional view of one of the strips 128, where the cross-sectional view is taken from the vertical plane containing the line 4B-4B in Figure 4A. A single semiconductor strip 128 is shown for clarity. As shown in Figure 4B, the interior of the SiGe strips 122 remains unoxidized. The middle portions of silicon strips 120 and 124 that are not covered by hardmask 30 (FIG. 3) may also be partially oxidized. However, the oxidation rate of the middle portion of SiGe strip 122 is much higher (sometimes 30 times higher) than that of silicon strips 120 and 124 . The resulting oxide (not shown) on the surfaces of the silicon strips 120 and 124 is therefore very thin (which may have less than about approx. thickness), and are therefore not shown here. Oxidation may be performed, for example, by furnace oxidation, eg, by exposing wafer 10 to an oxygen atmosphere having an oxidation temperature between about 400°C and about 600°C. The duration of the oxidation process may range from about 20 minutes to about 40 minutes. The duration of the oxidation process depends on the temperature. Lower temperatures require longer durations of oxidation and vice versa. Alternatively, the oxidation can be carried out using chemical oxidation methods at low temperatures (eg, between about 20°C and 80°C), eg, using a hydrogen peroxide (H2O2 ) solution as the oxidant. The resulting SiGeO x region 132 may include two portions formed on opposite sides of the remaining SiGe strips 122 . According to some embodiments, SiGeO x region 132 has a corresponding thickness of between about 3 nm and about 10 nm.
虽然预期受到任何特定的以下理论的约束,但是认为,在氧化工艺期间,SiGe条122中的锗原子趋于从SiGeOx区132向内迁移并且朝向相应的SiGe条122的中心(内部)迁移,从而导致SiGe条122的内部的锗浓缩。结果,SiGe条122的剩余的部分(即,未氧化部分)的锗浓度高于SiGe条222(图4A)中的相应的锗浓度。While expected to be bound by any particular theory below, it is believed that during the oxidation process, germanium atoms in the SiGe strips 122 tend to migrate inward from the SiGeOx regions 132 and towards the center (interior) of the corresponding SiGe strip 122, This results in the concentration of germanium in the interior of the SiGe strips 122 . As a result, the remaining portion (ie, the unoxidized portion) of SiGe strip 122 has a higher germanium concentration than the corresponding germanium concentration in SiGe strip 222 (FIG. 4A).
由于氧化工艺,SiGeOx区132的体积扩展为大于生成SiGeOx区132的SiGe条122的部分的体积。因此,材料的膨胀导致生成横向拉伸应变以驱使源极/漏极区154(图12A)彼此分离。也生成垂直应变以向上推硅条124,其中硅条124将用于形成产生的n型FinFET的沟道。因此,SiGe条122的氧化有利地使得在产生的n型FinFET中生成期望的应变。相反,掩蔽区域200中的SiGe条222以防止在产生的p型FinFET中形成不期望的应变。Due to the oxidation process, the volume of the SiGeOx regions 132 expands to be larger than the volume of the portion of the SiGe strips 122 from which the SiGeOx regions 132 are generated. Thus, the expansion of the material results in the creation of lateral tensile strain to drive the source/drain regions 154 (FIG. 12A) apart from each other. Vertical strain is also generated to push up the silicon strips 124 that will be used to form the channel of the resulting n-type FinFET. Thus, oxidation of the SiGe strips 122 advantageously results in the creation of the desired strain in the resulting n-type FinFET. Instead, the SiGe strips 222 in the region 200 are masked to prevent undesired strain from forming in the resulting p-type FinFET.
参照图5,在半导体条128和228的顶面和侧壁上分别形成介电衬垫134和234。此外,介电衬垫134和234延伸至SiGeOx区132(图4A)的侧壁上并且与SiGeOx区132的侧壁接触。根据本发明的一些实施例,介电衬垫134和234由氮化硅、氧化铝(Al2O3)、氮氧化硅、碳化硅、它们的组合或它们的多层形成。在一些实施例中,例如,可以使用相同的工艺和材料在区域100和200中同时形成介电衬垫134和234。介电衬垫134和234形成为共形层,该共形层具有厚度彼此相等或基本接近(例如,厚度差小于约20%)的垂直部分和水平部分。介电衬垫134和234的厚度可以介于约2nm和约6nm的范围内。5, dielectric pads 134 and 234 are formed on the top surfaces and sidewalls of semiconductor strips 128 and 228, respectively. In addition, dielectric liners 134 and 234 extend onto and contact the sidewalls of SiGeOx region 132 (FIG. 4A ) . According to some embodiments of the present invention, dielectric liners 134 and 234 are formed of silicon nitride, aluminum oxide (Al 2 O 3 ), silicon oxynitride, silicon carbide, combinations thereof, or multiple layers thereof. In some embodiments, for example, dielectric liners 134 and 234 may be formed simultaneously in regions 100 and 200 using the same process and materials. Dielectric liners 134 and 234 are formed as conformal layers having vertical and horizontal portions having thicknesses that are equal to or substantially close to each other (eg, with a thickness difference of less than about 20%). The thickness of the dielectric liners 134 and 234 may be in the range of about 2 nm and about 6 nm.
接下来,在区域100和200中的沟槽26中形成隔离区。产生的隔离区136和236在图6中示出并且在整个说明书中也称为浅沟槽隔离(STI)区136和236。在STI区136和236的形成中,首先用介电材料填充沟槽26(图5)。例如,可以使用选自旋涂、可流动化学汽相沉积(FCVD)等的方法形成介电材料。介电材料可以包括如本领域已知的高度可流动材料。根据可选实施例,使用诸如高密度等离子体化学汽相沉积(HDPCVD)和高高宽比工艺(HARP)的沉积方法来沉积介电材料。Next, isolation regions are formed in trenches 26 in regions 100 and 200 . The resulting isolation regions 136 and 236 are shown in FIG. 6 and are also referred to as shallow trench isolation (STI) regions 136 and 236 throughout the specification. In the formation of STI regions 136 and 236, trench 26 is first filled with a dielectric material (FIG. 5). For example, the dielectric material may be formed using a method selected from spin coating, flowable chemical vapor deposition (FCVD), and the like. Dielectric materials may include highly flowable materials as known in the art. According to an alternative embodiment, the dielectric material is deposited using deposition methods such as High Density Plasma Chemical Vapor Deposition (HDPCVD) and High Aspect Ratio Process (HARP).
在一些实施例中,然后可以对晶圆10实施退火步骤,由此使介电材料固化。例如,退火可以包括使用原位蒸汽生成(ISSG)的蒸汽退火,其中氢气(H2)和氧气(O2)的组合气体用于生成蒸汽。In some embodiments, an annealing step may then be performed on wafer 10, thereby curing the dielectric material. For example, the annealing may include steam annealing using in-situ steam generation (ISSG), wherein a combined gas of hydrogen ( H2 ) and oxygen ( O2 ) is used to generate the steam.
在形成介电材料之后,实施化学机械抛光(CMP)以去除位于介电衬垫134和234的顶面部分上方的介电材料的过量部分,并且因此形成STI区136和236。根据本发明的一些实施例,介电衬垫134和234的顶面部分用作CMP停止层。介电材料的剩余部分形成STI区136和236。例如,STI区136和236可以包括氧化硅,但是也可以使用其他介电材料。STI区136和236的顶面可以彼此基本平齐并且与介电衬垫134和234的顶面平齐。After the dielectric material is formed, chemical mechanical polishing (CMP) is performed to remove excess portions of the dielectric material over the top surface portions of the dielectric pads 134 and 234 , and thus form the STI regions 136 and 236 . According to some embodiments of the present invention, the top surface portions of dielectric liners 134 and 234 serve as CMP stop layers. The remainder of the dielectric material forms STI regions 136 and 236 . For example, STI regions 136 and 236 may comprise silicon oxide, although other dielectric materials may also be used. The top surfaces of STI regions 136 and 236 may be substantially flush with each other and with the top surfaces of dielectric liners 134 and 234 .
还参照图6,形成并且图案化硬掩模138。在示出的实施例中,由硬掩模138覆盖n型FinFET区域100中的结构,并且使得p型FinFET区域200中的结构暴露。在图6和随后的图中,为了示出另外的隐藏的部件,从图中省略诸如STI区136和236的前面的部件的一些部分,从而使得可以示出另外的部件。将理解,这些部件的省略部分仍然存在。根据本发明的一些实施例,硬掩模138由氮化硅、氧化硅或其他合适的材料形成。此外,在一些实施例中,硬掩模138可以由与介电衬垫134和234的材料不同的材料形成,从而使得可以在不蚀刻硬掩模138的情况下蚀刻介电衬垫134和234,反之亦然。Referring also to FIG. 6, a hard mask 138 is formed and patterned. In the illustrated embodiment, the structures in the n-type FinFET region 100 are covered by the hard mask 138 and the structures in the p-type FinFET region 200 are exposed. In FIG. 6 and subsequent figures, in order to show additional hidden components, some portions of preceding components, such as STI regions 136 and 236, are omitted from the figures so that additional components may be shown. It will be understood that omitted portions of these components still exist. According to some embodiments of the present invention, hard mask 138 is formed of silicon nitride, silicon oxide, or other suitable material. Furthermore, in some embodiments, hard mask 138 may be formed of a different material than that of dielectric liners 134 and 234 , such that dielectric liners 134 and 234 may be etched without etching hard mask 138 ,vice versa.
图7示出了硅条224的凹进,因此在区域200中形成凹槽240。作为实例,可以使用诸如氢氧化钾(KOH)或四甲基氢氧化铵(TMAH)的湿蚀刻来实施蚀刻。根据本发明的一些实施例,在暴露SiGe条222之前停止蚀刻。因此,在蚀刻之后,硅条224的底部仍然覆盖SiGe条222。应该理解,虽然剩余的硅条224示出为具有平坦的顶面,但是在可选实施例中,该顶面也可以形成V形。根据其他实施例,在蚀刻之后,去除硅条224,并且暴露SiGe条222。硬掩模138确保在该工艺期间不蚀刻条128。FIG. 7 shows the indentation of the silicon strips 224 , thus forming grooves 240 in the region 200 . As an example, the etching may be performed using wet etching such as potassium hydroxide (KOH) or tetramethylammonium hydroxide (TMAH). According to some embodiments of the present invention, the etching is stopped before the SiGe strips 222 are exposed. Therefore, the bottoms of the silicon strips 224 still cover the SiGe strips 222 after etching. It should be understood that while the remaining silicon strips 224 are shown as having a flat top surface, in alternative embodiments, the top surface may also form a V-shape. According to other embodiments, after the etching, the silicon strips 224 are removed, and the SiGe strips 222 are exposed. Hardmask 138 ensures that strips 128 are not etched during this process.
接下来,如图8所示,在凹槽240(图7)中外延生长SiGe条242。因此,取决于实施例,SiGe条242生长在硅条224或SiGe条222上方并且与硅条224或SiGe条222接触。根据本发明的一些实施例,SiGe条242具有介于约30%和约50%的范围内的第一锗(原子)百分比。SiGe可以外延生长至与STI区236的顶面齐平,或者可以生长至高于STI区236的顶面的水平面,并且然后CMP工艺用于平坦化SiGe的顶面与STI区236的顶面。外延生长的SiGe材料的剩余部分形成SiGe条242。Next, as shown in FIG. 8, SiGe strips 242 are epitaxially grown in the grooves 240 (FIG. 7). Thus, SiGe strips 242 are grown over and in contact with silicon strips 224 or SiGe strips 222, depending on the embodiment. According to some embodiments of the present invention, the SiGe strips 242 have a first germanium (atomic) percentage in a range between about 30% and about 50%. SiGe can be epitaxially grown to be flush with the top surface of STI region 236 , or can be grown to a level higher than the top surface of STI region 236 , and then a CMP process is used to planarize the top surface of SiGe and the top surface of STI region 236 . The remainder of the epitaxially grown SiGe material forms SiGe strips 242 .
接下来,去除硬掩模138,随后使STI区136和236凹进。图9中示出了产生的结构。在区域100中,硅条124具有高于剩余的STI区136的顶面的顶部,其中硅条124的顶部此后称为半导体鳍(硅鳍)144。根据本发明的一些实施例,剩余的STI区136的顶面与由图9中的介电衬垫134覆盖的SiGeOx区132(图4A和图4B)的顶端齐平或高于SiGeOx区132的顶端。Next, hard mask 138 is removed, and STI regions 136 and 236 are subsequently recessed. The resulting structure is shown in FIG. 9 . In region 100 , silicon strips 124 have tops that are higher than the top surfaces of remaining STI regions 136 , where the tops of silicon strips 124 are hereinafter referred to as semiconductor fins (silicon fins) 144 . According to some embodiments of the invention, the top surfaces of the remaining STI regions 136 are flush with or higher than the top of the SiGeOx regions 132 (FIGS. 4A and 4B) covered by the dielectric liner 134 in FIG. 9. Top of 132.
在使STI区136凹进的同时,也使STI区236凹进。SiGe条242具有高于剩余的STI区236的顶面的顶部,其中SiGe条242的顶部此后称为半导体鳍(SiGe鳍)244。根据一些实施例,半导体鳍144和244具有介于约20nm和约40nm之间的高度。剩余的STI区236的顶面可以与剩余的硅条224(如果存在)的顶端齐平或高于剩余的硅条224的顶端,或者如果硅条224在先前步骤中被完全去除,则剩余的STI区236的顶面可以与SiGe条222的顶面齐平或高于SiGe条222的顶面。At the same time that STI region 136 is recessed, STI region 236 is also recessed. The SiGe strips 242 have tops that are higher than the top surfaces of the remaining STI regions 236 , where the tops of the SiGe strips 242 are hereinafter referred to as semiconductor fins (SiGe fins) 244 . According to some embodiments, semiconductor fins 144 and 244 have a height of between about 20 nm and about 40 nm. The top surfaces of the remaining STI regions 236 may be flush with or higher than the tops of the remaining silicon strips 224 (if present), or the remaining silicon strips 224 if the silicon strips 224 were completely removed in the previous step. The top surfaces of the STI regions 236 may be flush with or higher than the top surfaces of the SiGe strips 222 .
如图9所示,暴露介电衬垫134和234的一些部分。然后去除介电衬垫134和234的这些部分。接下来,如图10A所示,形成伪栅极堆叠件146和246以分别覆盖半导体鳍144和244(图9)的中间部分。未覆盖半导体鳍144和244的端部。根据一些实施例,栅极堆叠件146包括伪栅极148以及掩模层150和/或152,并且栅极堆叠件246包括伪栅极248以及掩模层250和/或252。根据一些实施例,伪栅极148和248可以由多晶硅形成,但是可以使用其他材料。在一些示例性实施例中,掩模层150和250由氮化硅形成,并且掩模层152和252由氧化硅形成。虽然在图9中未示出,但是可以在伪栅极148和248下面形成诸如氧化硅层的伪栅极电介质。伪栅极148和248分别形成在半导体鳍144和244(图9)的顶面和侧壁上。此外,栅极堆叠件146和246可以分别包括栅极间隔件153和253,栅极间隔件153和253分别形成在伪栅极148和248的侧壁上。As shown in FIG. 9, portions of dielectric liners 134 and 234 are exposed. These portions of dielectric liners 134 and 234 are then removed. Next, as shown in FIG. 10A , dummy gate stacks 146 and 246 are formed to cover intermediate portions of semiconductor fins 144 and 244 ( FIG. 9 ), respectively. The ends of semiconductor fins 144 and 244 are not covered. According to some embodiments, gate stack 146 includes dummy gate 148 and mask layers 150 and/or 152 , and gate stack 246 includes dummy gate 248 and mask layers 250 and/or 252 . According to some embodiments, dummy gates 148 and 248 may be formed of polysilicon, although other materials may be used. In some exemplary embodiments, mask layers 150 and 250 are formed of silicon nitride, and mask layers 152 and 252 are formed of silicon oxide. Although not shown in FIG. 9 , a dummy gate dielectric, such as a silicon oxide layer, may be formed under dummy gates 148 and 248 . Dummy gates 148 and 248 are formed on the top surfaces and sidewalls of semiconductor fins 144 and 244 (FIG. 9), respectively. In addition, the gate stacks 146 and 246 may include gate spacers 153 and 253, respectively, which are formed on sidewalls of the dummy gates 148 and 248, respectively.
图10A也示出了区域100中的源极和漏极区(此后称为源极/漏极区)154的形成以及区域200中的源极/漏极区254的形成。源极/漏极区154包括作为中心部分的硅条124以及位于硅条124的外部的外延区156。源极/漏极区254包括作为中心部分的SiGe条242以及位于SiGe条242的外部的外延区256。参照图10B讨论了源极/漏极区154和254的形成。FIG. 10A also shows the formation of source and drain regions (hereafter referred to as source/drain regions) 154 in region 100 and the formation of source/drain regions 254 in region 200 . The source/drain regions 154 include silicon strips 124 as central portions and epitaxial regions 156 located outside the silicon strips 124 . Source/drain regions 254 include SiGe strips 242 as central portions and epitaxial regions 256 located outside of SiGe strips 242 . The formation of source/drain regions 154 and 254 is discussed with reference to FIG. 10B.
图10B包括源极/漏极区154和254的截面图,其中,从图10A中的包含线10BN-10BN的垂直面获得源极/漏极区154的截面图,并且从图10A中的包含线10BP-10BP的垂直面获得源极/漏极区254的截面图。10B includes cross-sectional views of source/drain regions 154 and 254, wherein the cross-sectional view of source/drain region 154 is obtained from the vertical plane containing lines 10BN-10BN in FIG. The vertical plane of lines 10BP-10BP takes a cross-sectional view of source/drain regions 254 .
在源极/漏极区154的形成中,首先减薄半导体鳍144,在一些实施例中,半导体鳍144包括硅条124。例如,该减薄可以包括湿蚀刻,并且蚀刻剂可以包括HF、过氧化氢(H2O2)和醋酸(CH3COOH)的溶液。虚线158示出了在减薄之前的硅条124的边缘和顶面的位置。由于减薄,减薄的硅条124(鳍144)的宽度从减薄之前的原始宽度W2减小至减薄之后的宽度W1。根据一些实施例,宽度W1介于宽度W2的约50%和约70%之间,但是宽度W1可以更大或更小。可以从硅条124的中间高度测量宽度W1和W2。如图10B所示,在STI区136的顶面之上的1/2高度H处测量宽度W1和W2。也如图10B所示,原始半导体鳍144的虚线侧壁从STI区136的侧壁延伸。然而,朝着硅条124的中心线160使减薄的硅条124的侧壁124A凹进。由于减薄,也降低了硅条124的顶面。In the formation of the source/drain regions 154 , the semiconductor fins 144 , which in some embodiments include silicon strips 124 , are first thinned. For example, the thinning may include wet etching, and the etchant may include a solution of HF, hydrogen peroxide (H2O2), and acetic acid ( CH3COOH ). Dashed line 158 shows the location of the edge and top surface of silicon strip 124 prior to thinning. Due to the thinning, the width of the thinned silicon strips 124 (fins 144 ) is reduced from the original width W2 before thinning to the width W1 after thinning. According to some embodiments, width W1 is between about 50% and about 70% of width W2, although width W1 may be larger or smaller. The widths W1 and W2 can be measured from the middle height of the silicon strip 124 . As shown in FIG. 10B , widths W1 and W2 are measured at 1/2 height H above the top surface of STI region 136 . As also shown in FIG. 10B , the dashed sidewalls of the original semiconductor fins 144 extend from the sidewalls of the STI regions 136 . However, the sidewalls 124A of the thinned silicon strips 124 are recessed toward the centerlines 160 of the silicon strips 124 . Due to the thinning, the top surface of the silicon strips 124 is also lowered.
从减薄的硅条124外延生长n型外延区156。根据一些实施例,n型外延区156包括SiP,其中,当生长n型外延区156时,可以原位掺杂磷。也可以使用除了磷之外的其他n型杂质(诸如砷)。由于n型外延区156的晶格常数小于下面的SiGe条122的晶格常数,通过源极/漏极区154在相应的n型FinFET的沟道区中生成拉伸应变。有利地,通过在外延生长工艺之前减薄半导体条124,产生的n型外延区156的轮廓更像椭圆形而不是金刚石形。根据一些示例性实施例,产生的源极/漏极区154中的磷的浓度介于约5E20/cm3和约2E21/cm3的范围内。此外,当在图1和图2中示出的步骤中形成硅条124时,硅条124可以不掺杂磷。然而,在图10A和图10B中示出的步骤之后的热工艺中,磷扩散至减薄的硅条124内。位于SiP区156和减薄的硅条124之间的界面处的磷浓度可能或可能不存在显著下降。而且,可以生成掺杂浓度的梯度,其中,邻接SiP区156的硅条124的外部比硅条124的内部具有更高的n型杂质(磷)浓度。n型掺杂浓度可以从减薄的硅条124的内部区至外部区逐渐并且连续地增大。An n-type epitaxial region 156 is epitaxially grown from the thinned silicon strips 124 . According to some embodiments, n-type epitaxial region 156 includes SiP, wherein phosphorous may be doped in-situ when n-type epitaxial region 156 is grown. Other n-type impurities (such as arsenic) other than phosphorus can also be used. Since the lattice constant of the n-type epitaxial region 156 is smaller than the lattice constant of the underlying SiGe strips 122, tensile strain is generated in the channel region of the corresponding n-type FinFET through the source/drain regions 154. Advantageously, by thinning the semiconductor strips 124 prior to the epitaxial growth process, the resulting n-type epitaxial regions 156 are contoured more like ellipses than diamonds. According to some exemplary embodiments, the concentration of phosphorus in the resulting source/drain regions 154 is in the range of about 5E20/cm 3 and about 2E21/cm 3 . Furthermore, when the silicon strips 124 are formed in the steps shown in FIGS. 1 and 2 , the silicon strips 124 may not be doped with phosphorus. However, in the thermal process following the steps shown in FIGS. 10A and 10B , the phosphorus diffuses into the thinned silicon strips 124 . There may or may not be a significant drop in phosphorus concentration at the interface between SiP region 156 and thinned silicon strip 124 . Also, a gradient of doping concentration can be created, wherein the outer portions of the silicon strips 124 adjoining the SiP regions 156 have a higher concentration of n-type impurities (phosphorus) than the inner portions of the silicon strips 124 . The n-type doping concentration may gradually and continuously increase from the inner region to the outer region of the thinned silicon strip 124 .
也如图10B所示,在源极/漏极区254的形成中,首先减薄半导体鳍244,在一些实施例中,半导体鳍244包括SiGe条242。在一些实施例中,该减薄可以包括湿蚀刻,并且蚀刻剂可以包括包含NH3OH和H2O2的溶液。在可选实施例中,例如,蚀刻剂包括HF、过氧化氢(H2O2)和醋酸(CH3COOH)。虚线258示出了在减薄之前的SiGe条242的边缘和顶面的位置。由于减薄,减薄的半导体鳍244的宽度从减薄之前的原始宽度W2’减小至宽度W1’。根据一些实施例,宽度W1’介于宽度W2’的约50%和约70%之间,但是宽度W1’可以更大或更小。可以从SiGe条242的中间高度测量宽度W1’和W2’。如图10B所示,原始半导体鳍244的虚线侧壁258从STI区236的侧壁延伸。然而,使减薄的SiGe条242的侧壁242A朝着SiGe条242的中心线260凹进。由于减薄,也降低了减薄的SiGe条242的顶面。As also shown in FIG. 10B , in the formation of the source/drain regions 254 , the semiconductor fins 244 , which in some embodiments include SiGe strips 242 , are first thinned. In some embodiments, the thinning may include wet etching, and the etchant may include a solution comprising NH3OH and H2O2 . In alternative embodiments, for example, the etchant includes HF, hydrogen peroxide (H 2 O 2 ), and acetic acid (CH 3 COOH). Dashed line 258 shows the location of the edge and top surface of SiGe strip 242 prior to thinning. Due to the thinning, the width of the thinned semiconductor fin 244 is reduced from the original width W2' before thinning to the width W1'. According to some embodiments, width W1' is between about 50% and about 70% of width W2', although width W1' may be larger or smaller. The widths W1 ′ and W2 ′ can be measured from the middle height of the SiGe strip 242 . As shown in FIG. 10B , the dashed sidewalls 258 of the original semiconductor fins 244 extend from the sidewalls of the STI regions 236 . However, the sidewalls 242A of the thinned SiGe strips 242 are recessed toward the centerline 260 of the SiGe strips 242 . Due to the thinning, the top surface of the thinned SiGe strips 242 is also lowered.
从减薄的SiGe条242外延生长p型外延区256。根据一些实施例,p型外延区256包括SiGeB,其中,当生长p型外延区256时,可以原位掺杂硼。也可以使用除了硼之外的其他p型杂质(诸如铟)。由于p型外延区256的晶格常数大于下面的Si条224和/或SiGe条222的晶格常数,通过源极/漏极区254在相应的p型FinFET的沟道区中生成压缩应变。根据一些示例性实施例,产生的源极/漏极区254中的p型杂质(诸如硼)的浓度介于约5E20/cm3和约2E21/cm3的范围内。此外,当外延生长SiGe条242时,可以不用p型杂质(诸如硼)掺杂SiGe条242。然而,在图10A和图10B中的步骤之后的热工艺中,硼扩散至减薄的SiGe条242内。而且,可以形成掺杂浓度的梯度,其中,邻接SiGeB区256的SiGe条242的外部比内部具有更高的p型杂质浓度。p型掺杂浓度可以从减薄的SiGe条242的内部区至外部区逐渐地增大。A p-type epitaxial region 256 is epitaxially grown from the thinned SiGe strip 242 . According to some embodiments, p-type epitaxial region 256 includes SiGeB, wherein boron may be doped in situ when p-type epitaxial region 256 is grown. Other p-type impurities other than boron (such as indium) can also be used. Since the lattice constant of the p-type epitaxial region 256 is greater than the lattice constant of the underlying Si stripes 224 and/or SiGe strips 222, compressive strain is generated in the channel region of the corresponding p-type FinFET through the source/drain regions 254. According to some exemplary embodiments, the concentration of p-type impurities, such as boron, in the resulting source/drain regions 254 is in the range of about 5E20/ cm3 and about 2E21/ cm3 . Furthermore, when the SiGe strips 242 are epitaxially grown, the SiGe strips 242 may not be doped with p-type impurities, such as boron. However, in the thermal process following the steps in FIGS. 10A and 10B , the boron diffuses into the thinned SiGe strips 242 . Also, a gradient of doping concentration can be formed, wherein the outer portion of SiGe strip 242 adjacent to SiGeB region 256 has a higher p-type impurity concentration than the inner portion. The p-type doping concentration may gradually increase from the inner region to the outer region of the thinned SiGe strip 242 .
SiGeB区256可以是具有比SiGe条242的第一锗百分比高的高锗百分比的均质区。SiGeB区256的锗百分比可以介于约70%和约100%(这是指没有硅的锗)的范围内。根据可选实施例,SiGeB区256包括具有比SiGe条242的第一锗百分比高的第二锗百分比的SiGeB区256A。第二锗百分比可以介于约60%和约80%的范围内。在SiGeB区256A外部形成SiGeB区256B,SiGeB区256B具有比SiGeB区256A的第二锗百分比高的第三锗百分比。根据一些实施例,第三锗百分比可以介于约80%和约100%的范围内。SiGeB区256、256A和256B可以具有梯度锗百分比,其中外部比内部具有越来越高的锗百分比。The SiGeB region 256 may be a homogeneous region with a high germanium percentage that is higher than the first germanium percentage of the SiGe strips 242 . The germanium percentage of SiGeB region 256 may range from about 70% to about 100% (this refers to germanium without silicon). According to an alternative embodiment, SiGeB regions 256 include SiGeB regions 256A having a second germanium percentage higher than the first germanium percentage of SiGe strips 242 . The second germanium percentage may be in the range of about 60% and about 80%. SiGeB region 256B is formed outside SiGeB region 256A, SiGeB region 256B having a third germanium percentage higher than the second germanium percentage of SiGeB region 256A. According to some embodiments, the third germanium percentage may be in the range of about 80% and about 100%. SiGeB regions 256, 256A, and 256B may have gradient germanium percentages, with the outer portion having an increasingly higher germanium percentage than the inner portion.
图11示出了在形成层间电介质(ILD)62之后的结构的立体图。ILD 62包括诸如氧化硅、磷硅酸盐玻璃(PSG)、硼硅酸盐玻璃(BSG)、硼掺杂的磷硅酸盐玻璃(BPSG)等的介电材料。可以实施CMP以使ILD 62的顶面与伪栅极堆叠件146和246(图10A)的顶面齐平。接下来,如图11所示,通过蚀刻步骤去除伪栅极堆叠件146和246,从而使得在ILD 62中形成凹槽164和264。凹槽164和264分别位于区域100和200中。因此,半导体鳍144和244的中间部分分别暴露于凹槽164和264。FIG. 11 shows a perspective view of the structure after forming an interlayer dielectric (ILD) 62 . The ILD 62 includes a dielectric material such as silicon oxide, phosphosilicate glass (PSG), borosilicate glass (BSG), boron-doped phosphosilicate glass (BPSG), and the like. CMP may be performed to make the top surface of ILD 62 flush with the top surface of dummy gate stacks 146 and 246 (FIG. 10A). Next, as shown in FIG. 11 , the dummy gate stacks 146 and 246 are removed by an etching step such that recesses 164 and 264 are formed in the ILD 62 . Grooves 164 and 264 are located in regions 100 and 200, respectively. Accordingly, middle portions of semiconductor fins 144 and 244 are exposed to recesses 164 and 264, respectively.
图12A和图12B示出了替代栅极165和265的形成,替代栅极165和265包括栅极电介质166和266以及栅电极168和268。由此形成FinFET 170和270。图12A示出了立体图。图12B示出了从与FinFET 170和270的源极至漏极方向垂直的平面获得的截面图。如图12B所示,硅条124包括与替代栅极堆叠件165重叠的部分124-1(其为鳍144的部分)以及用作源极/漏极区154的内部的减薄的部分124-2。例如,部分124-1和124-2具有诸如硅的相同的IV族半导体元素的组分。此外,减薄的部分124-2的顶面低于未减薄的部分124-1的顶面。FIGS. 12A and 12B illustrate the formation of replacement gates 165 and 265 , which include gate dielectrics 166 and 266 and gate electrodes 168 and 268 . FinFETs 170 and 270 are thus formed. Figure 12A shows a perspective view. FIG. 12B shows a cross-sectional view taken from a plane perpendicular to the source-to-drain direction of FinFETs 170 and 270 . As shown in FIG. 12B , the silicon strip 124 includes a portion 124 - 1 that overlaps the replacement gate stack 165 (which is part of the fin 144 ) and a thinned portion 124 - that serves as the interior of the source/drain regions 154 2. For example, portions 124-1 and 124-2 have the same composition of group IV semiconductor elements such as silicon. Furthermore, the top surface of the thinned portion 124-2 is lower than the top surface of the non-thinned portion 124-1.
SiGe条242包括与替代栅极堆叠件265重叠的部分242-1以及用作源极/漏极区254的内部的减薄的部分242-2。例如,部分242-1和242-2具有诸如硅和锗的相同的IV族半导体元素的组分,其中部分242-1中的锗百分比和硅百分比等于部分242-2中的相应的锗百分比和硅百分比。贯穿说明书,当两个区域称为具有相同的IV族半导体元素的组分时,这两个区域具有相同的硅百分比和相同的锗百分比。此外,减薄的部分242-2的顶面低于未减薄的部分242-1的顶面。图12B中也示出了硅化物区172和272以及源极/漏极接触插塞174和274。The SiGe strip 242 includes a portion 242 - 1 that overlaps the replacement gate stack 265 and a thinned portion 242 - 2 that serves as the interior of the source/drain regions 254 . For example, portions 242-1 and 242-2 have the same composition of Group IV semiconductor elements such as silicon and germanium, wherein the germanium percentage and silicon percentage in portion 242-1 are equal to the corresponding germanium percentages and the corresponding germanium percentages in portion 242-2. Silicon percentage. Throughout the specification, when two regions are referred to as having the same composition of Group IV semiconductor elements, the two regions have the same silicon percentage and the same germanium percentage. Furthermore, the top surface of the thinned portion 242-2 is lower than the top surface of the non-thinned portion 242-1. Silicide regions 172 and 272 and source/drain contact plugs 174 and 274 are also shown in Figure 12B.
图12C示出了FinFET 170和270的截面图,其中,横切替代栅极165和265并且在垂直于源极至漏极方向的方向上获得该截面图。如图12C所示,SiGeOx区132具有与硅条124重叠的一些部分。12C shows a cross-sectional view of FinFETs 170 and 270, where the cross-sectional view is taken across replacement gates 165 and 265 and in a direction perpendicular to the source-to-drain direction. As shown in FIG. 12C , SiGeO x regions 132 have portions that overlap with silicon strips 124 .
本发明的实施例具有一些有利特征。源极/漏极区的形成包括减薄、但不完全去除半导体鳍的原始部分,以及然后在减薄的半导体鳍上外延生长外延区。这具有保持沟道区中的应变的有利特征。作为比较,如果在重新生长源极/漏极区之后完全去除半导体鳍的原始部分,则可以使应变松弛。另一方面,如果在生长外延区之前不减薄原始半导体鳍,则源极/漏极区的相应的n型或p型掺杂剂不能在整个源极/漏极区中有效地扩散。Embodiments of the present invention have several advantageous features. The formation of the source/drain regions includes thinning, but not completely removing, the original portion of the semiconductor fin, and then epitaxially growing an epitaxial region on the thinned semiconductor fin. This has the advantageous feature of maintaining strain in the channel region. In comparison, if the original portion of the semiconductor fin is completely removed after regrowing the source/drain regions, the strain can be relaxed. On the other hand, if the original semiconductor fins are not thinned before growing the epitaxial regions, the corresponding n-type or p-type dopants of the source/drain regions cannot diffuse effectively throughout the source/drain regions.
根据本发明的一些实施例,一种器件包括半导体衬底以及延伸至半导体衬底内的隔离区。半导体鳍位于隔离区的相对部分之间,其中,半导体鳍位于隔离区的顶面上方。栅极堆叠件与半导体鳍重叠。源极/漏极区位于栅极堆叠件的侧部上并且连接至半导体鳍。源极/漏极区包括比半导体鳍薄的内部以及位于内部外侧的外部。半导体鳍和源极/漏极区的内部具有相同的IV族半导体的组分。According to some embodiments of the present invention, a device includes a semiconductor substrate and an isolation region extending into the semiconductor substrate. The semiconductor fins are located between opposing portions of the isolation regions, wherein the semiconductor fins are located above the top surfaces of the isolation regions. The gate stack overlaps the semiconductor fins. Source/drain regions are on the sides of the gate stack and are connected to the semiconductor fins. The source/drain regions include an inner portion thinner than the semiconductor fin and an outer portion located outside the inner portion. The interior of the semiconductor fins and the source/drain regions have the same composition of the group IV semiconductor.
根据本发明的可选实施例,一种器件包括硅衬底、延伸至硅衬底内的隔离区以及p型FinFET。p型FinFET包括硅锗鳍,硅锗鳍包括中间部分和位于中间部分的相对两侧上的端部。中间部分的顶面高于端部的顶面。硅锗鳍具有第一锗百分比。p型FinFET还包括与硅锗鳍的中间部分重叠的栅极堆叠件以及源极/漏极区。源极/漏极区包括作为内部的硅锗鳍的端部的一个以及位于内部外侧的硅锗区。硅锗区具有高于第一锗百分比的第二锗百分比。According to an alternative embodiment of the present invention, a device includes a silicon substrate, an isolation region extending into the silicon substrate, and a p-type FinFET. The p-type FinFET includes a silicon germanium fin including a middle portion and end portions on opposite sides of the middle portion. The top surface of the middle part is higher than the top surface of the end parts. The silicon germanium fin has a first germanium percentage. The p-type FinFET also includes a gate stack and source/drain regions overlapping the middle portion of the silicon germanium fin. The source/drain regions include one of the ends of the inner silicon germanium fin and a silicon germanium region on the outer side of the inner. The silicon germanium region has a second germanium percentage that is higher than the first germanium percentage.
根据本发明的又可选实施例,一种方法包括:使半导体条的相对两侧上的隔离区凹进以形成半导体鳍,其中,半导体鳍位于隔离区的顶面上方;在半导体鳍的中间部分的顶面和侧壁上形成栅极堆叠件;减薄半导体鳍的端部;以及实施外延以在半导体鳍的减薄的端部上生长半导体区。半导体鳍的减薄的端部和半导体区组合形成FinFET的源极/漏极区。取决于FinFET的类型,半导体区包括硅磷或硅锗硼。According to yet another alternative embodiment of the present invention, a method includes recessing isolation regions on opposite sides of a semiconductor strip to form semiconductor fins, wherein the semiconductor fins are located over top surfaces of the isolation regions; in the middle of the semiconductor fins forming gate stacks on portions of the top surface and sidewalls; thinning the ends of the semiconductor fins; and performing epitaxy to grow semiconductor regions on the thinned ends of the semiconductor fins. The thinned ends of the semiconductor fins and the semiconductor regions combine to form the source/drain regions of the FinFET. Depending on the type of FinFET, the semiconductor region includes silicon phosphorus or silicon germanium boron.
上面概述了若干实施例的特征,使得本领域技术人员可以更好地理解本发明的方面。本领域技术人员应该理解,他们可以容易地使用本发明作为基础来设计或修改用于实施与本文所介绍实施例相同的目的和/或实现相同优势的其他工艺和结构。本领域技术人员也应该意识到,这种等同构造并不背离本发明的精神和范围,并且在不背离本发明的精神和范围的情况下,本文中他们可以做出多种变化、替换以及改变。The features of several embodiments have been outlined above so that those skilled in the art may better understand aspects of the invention. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments described herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present invention, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present invention .
Claims (19)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/527,660 | 2014-10-29 | ||
US14/527,660 US9941406B2 (en) | 2014-08-05 | 2014-10-29 | FinFETs with source/drain cladding |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106158958A CN106158958A (en) | 2016-11-23 |
CN106158958B true CN106158958B (en) | 2019-07-19 |
Family
ID=55753500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510172108.3A Active CN106158958B (en) | 2014-10-29 | 2015-04-13 | FinFET with source/drain overlay |
Country Status (5)
Country | Link |
---|---|
US (4) | US9941406B2 (en) |
KR (1) | KR101745771B1 (en) |
CN (1) | CN106158958B (en) |
DE (1) | DE102014119642B4 (en) |
TW (1) | TWI604607B (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9847333B2 (en) * | 2015-03-09 | 2017-12-19 | Globalfoundries Inc. | Reducing risk of punch-through in FinFET semiconductor structure |
KR102330757B1 (en) * | 2015-03-30 | 2021-11-25 | 삼성전자주식회사 | Semiconductor devices and methods of manufacturing the same |
CN106252392B (en) * | 2015-06-09 | 2020-08-18 | 联华电子股份有限公司 | Semiconductor element and manufacturing method thereof |
US9548361B1 (en) * | 2015-06-30 | 2017-01-17 | Stmicroelectronics, Inc. | Method of using a sacrificial gate structure to make a metal gate FinFET transistor |
US9922978B2 (en) | 2015-08-21 | 2018-03-20 | Taiwan Semiconductor Manufacturing Co., Ltd | Semiconductor structure with recessed source/drain structure and method for forming the same |
US9679899B2 (en) | 2015-08-24 | 2017-06-13 | Stmicroelectronics, Inc. | Co-integration of tensile silicon and compressive silicon germanium |
US9786782B2 (en) * | 2015-10-23 | 2017-10-10 | International Business Machines Corporation | Source/drain FinFET channel stressor structure |
US10796924B2 (en) * | 2016-02-18 | 2020-10-06 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and manufacturing method thereof by forming thin uniform silicide on epitaxial source/drain structure |
KR102414182B1 (en) * | 2017-06-29 | 2022-06-28 | 삼성전자주식회사 | Semiconductor device |
US10276718B2 (en) | 2017-08-31 | 2019-04-30 | Taiwan Semiconductor Manufacturing Co., Ltd. | FinFET having a relaxation prevention anchor |
DE112017007835T5 (en) | 2017-09-26 | 2020-05-07 | Intel Corporation | FORMATION OF CRYSTALLINE SOURCE / DRAIN CONTACTS ON SEMICONDUCTOR DEVICES |
US10510894B2 (en) * | 2017-11-30 | 2019-12-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Isolation structure having different distances to adjacent FinFET devices |
US11094597B2 (en) * | 2018-09-28 | 2021-08-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Structure and formation method of semiconductor device with fin structures |
US11362199B2 (en) | 2018-11-30 | 2022-06-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method |
DE102019111297B4 (en) | 2018-11-30 | 2023-01-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and method |
KR102713891B1 (en) | 2019-06-10 | 2024-10-04 | 삼성전자주식회사 | Semiconductor device |
KR20210033102A (en) | 2019-09-17 | 2021-03-26 | 삼성전자주식회사 | Semiconductor device |
KR102715509B1 (en) | 2019-11-08 | 2024-10-11 | 삼성전자주식회사 | Active pattern structure and semiconductor device including the same |
US12136651B2 (en) | 2020-02-19 | 2024-11-05 | Taiwan Semiconductor Manufacturing Co., Ltd. | Silicon-germanium Fins and methods of processing the same in field-effect transistors |
US11652105B2 (en) | 2020-07-22 | 2023-05-16 | Taiwan Semiconductor Manufacturing Co., Ltd. | Epitaxy regions with large landing areas for contact plugs |
US20220359653A1 (en) * | 2021-05-05 | 2022-11-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Source/drain regions of semiconductor device and method of forming the same |
US20220399336A1 (en) * | 2021-06-15 | 2022-12-15 | Intel Corporation | Fin cut in neighboring gate and source or drain regions for advanced integrated circuit structure fabrication |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103928518A (en) * | 2013-01-14 | 2014-07-16 | 台湾积体电路制造股份有限公司 | FinFET device and its manufacturing method |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6800910B2 (en) | 2002-09-30 | 2004-10-05 | Advanced Micro Devices, Inc. | FinFET device incorporating strained silicon in the channel region |
US6882025B2 (en) | 2003-04-25 | 2005-04-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained-channel transistor and methods of manufacture |
KR100487566B1 (en) | 2003-07-23 | 2005-05-03 | 삼성전자주식회사 | Fin field effect transistors and methods of formiing the same |
KR100521384B1 (en) * | 2003-11-17 | 2005-10-12 | 삼성전자주식회사 | Method for fabricating a finfet in a semiconductor device |
KR100550343B1 (en) * | 2003-11-21 | 2006-02-08 | 삼성전자주식회사 | Method for manufacturing a semiconductor device comprising a multi-channel MOS transistor |
US7564081B2 (en) | 2005-11-30 | 2009-07-21 | International Business Machines Corporation | finFET structure with multiply stressed gate electrode |
US7485520B2 (en) | 2007-07-05 | 2009-02-03 | International Business Machines Corporation | Method of manufacturing a body-contacted finfet |
JP2009032955A (en) * | 2007-07-27 | 2009-02-12 | Toshiba Corp | Semiconductor device and method for manufacturing the same |
JP5285947B2 (en) * | 2008-04-11 | 2013-09-11 | 株式会社東芝 | Semiconductor device and manufacturing method thereof |
US8048723B2 (en) * | 2008-12-05 | 2011-11-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Germanium FinFETs having dielectric punch-through stoppers |
JP2010103142A (en) * | 2008-10-21 | 2010-05-06 | Toshiba Corp | Method for fabricating semiconductor device |
US8263462B2 (en) * | 2008-12-31 | 2012-09-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Dielectric punch-through stoppers for forming FinFETs having dual fin heights |
US8298925B2 (en) * | 2010-11-08 | 2012-10-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mechanisms for forming ultra shallow junction |
US8362575B2 (en) * | 2009-09-29 | 2013-01-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Controlling the shape of source/drain regions in FinFETs |
US8460172B2 (en) * | 2010-07-29 | 2013-06-11 | Medtronic, Inc. | Tissue stabilizing device and methods including a self-expandable head-link assembly |
US8551829B2 (en) | 2010-11-10 | 2013-10-08 | United Microelectronics Corp. | Method for manufacturing multi-gate transistor device |
US8492235B2 (en) * | 2010-12-29 | 2013-07-23 | Globalfoundries Singapore Pte. Ltd. | FinFET with stressors |
US20120265319A1 (en) | 2011-04-13 | 2012-10-18 | Total Joint Orthopedics | Total hip arthroplasty |
KR101850703B1 (en) | 2011-05-17 | 2018-04-23 | 삼성전자 주식회사 | Semiconductor device and method for fabricating the device |
US8455307B2 (en) * | 2011-05-19 | 2013-06-04 | GlobalFoundries, Inc. | FINFET integrated circuits and methods for their fabrication |
JP2013183085A (en) * | 2012-03-02 | 2013-09-12 | Toshiba Corp | Method for manufacturing semiconductor device |
US8853037B2 (en) * | 2012-03-14 | 2014-10-07 | GlobalFoundries, Inc. | Methods for fabricating integrated circuits |
US9368388B2 (en) | 2012-04-13 | 2016-06-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Apparatus for FinFETs |
US9041116B2 (en) * | 2012-05-23 | 2015-05-26 | International Business Machines Corporation | Structure and method to modulate threshold voltage for high-K metal gate field effect transistors (FETs) |
US8796695B2 (en) | 2012-06-22 | 2014-08-05 | United Microelectronics Corp. | Multi-gate field-effect transistor and process thereof |
US9583398B2 (en) | 2012-06-29 | 2017-02-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit having FinFETS with different fin profiles |
US10535735B2 (en) * | 2012-06-29 | 2020-01-14 | Intel Corporation | Contact resistance reduced P-MOS transistors employing Ge-rich contact layer |
US9006065B2 (en) * | 2012-10-09 | 2015-04-14 | Advanced Ion Beam Technology, Inc. | Plasma doping a non-planar semiconductor device |
US9012287B2 (en) | 2012-11-14 | 2015-04-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Cell layout for SRAM FinFET transistors |
US8815691B2 (en) * | 2012-12-21 | 2014-08-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of fabricating a gate all around device |
US9306069B2 (en) | 2013-09-11 | 2016-04-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Isolation structure of fin field effect transistor |
US9318606B2 (en) | 2013-01-14 | 2016-04-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET device and method of fabricating same |
US8901607B2 (en) | 2013-01-14 | 2014-12-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and fabricating the same |
US9006786B2 (en) | 2013-07-03 | 2015-04-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fin structure of semiconductor device |
US9735255B2 (en) * | 2013-01-18 | 2017-08-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for fabricating a finFET device including a stem region of a fin element |
KR102038486B1 (en) * | 2013-04-09 | 2019-10-30 | 삼성전자 주식회사 | Semiconductor device and method for fabricating the same |
EP3050089A4 (en) * | 2013-09-27 | 2017-05-03 | Intel Corporation | Non-planar semiconductor devices having multi-layered compliant substrates |
US9196522B2 (en) | 2013-10-16 | 2015-11-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET with buried insulator layer and method for forming |
US9159833B2 (en) | 2013-11-26 | 2015-10-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fin structure of semiconductor device |
US9099570B2 (en) * | 2013-12-05 | 2015-08-04 | Stmicroelectronics, Inc. | Method for the formation of dielectric isolated fin structures for use, for example, in FinFET devices |
US9660080B2 (en) * | 2014-02-28 | 2017-05-23 | Stmicroelectronics, Inc. | Multi-layer strained channel FinFET |
CN105336587B (en) * | 2014-06-17 | 2018-05-15 | 中芯国际集成电路制造(北京)有限公司 | Semiconductor devices and its manufacture method |
US9209185B2 (en) * | 2014-04-16 | 2015-12-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and structure for FinFET device |
US9178067B1 (en) | 2014-04-25 | 2015-11-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for FinFET device |
US9502565B2 (en) | 2014-06-27 | 2016-11-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Channel strain control for nonplanar compound semiconductor devices |
US9306067B2 (en) * | 2014-08-05 | 2016-04-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Nonplanar device and strain-generating channel dielectric |
US9570360B2 (en) * | 2014-08-27 | 2017-02-14 | International Business Machines Corporation | Dual channel material for finFET for high performance CMOS |
US9583598B2 (en) * | 2014-10-03 | 2017-02-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | FETs and methods of forming FETs |
US10720527B2 (en) * | 2018-01-03 | 2020-07-21 | International Business Machines Corporation | Transistor having an oxide-isolated strained channel fin on a bulk substrate |
-
2014
- 2014-10-29 US US14/527,660 patent/US9941406B2/en active Active
- 2014-12-27 DE DE102014119642.2A patent/DE102014119642B4/en active Active
-
2015
- 2015-02-02 KR KR1020150016018A patent/KR101745771B1/en active IP Right Grant
- 2015-04-13 CN CN201510172108.3A patent/CN106158958B/en active Active
- 2015-08-12 TW TW104126209A patent/TWI604607B/en active
-
2017
- 2017-09-08 US US15/699,226 patent/US10269964B2/en active Active
-
2019
- 2019-04-05 US US16/376,563 patent/US10707349B2/en active Active
-
2020
- 2020-06-23 US US16/909,079 patent/US10868186B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103928518A (en) * | 2013-01-14 | 2014-07-16 | 台湾积体电路制造股份有限公司 | FinFET device and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
DE102014119642A1 (en) | 2016-05-04 |
CN106158958A (en) | 2016-11-23 |
KR20160051512A (en) | 2016-05-11 |
US9941406B2 (en) | 2018-04-10 |
US10707349B2 (en) | 2020-07-07 |
US20180012989A1 (en) | 2018-01-11 |
TW201616649A (en) | 2016-05-01 |
TWI604607B (en) | 2017-11-01 |
US10868186B2 (en) | 2020-12-15 |
US20190237572A1 (en) | 2019-08-01 |
DE102014119642B4 (en) | 2018-01-11 |
US10269964B2 (en) | 2019-04-23 |
US20200321461A1 (en) | 2020-10-08 |
KR101745771B1 (en) | 2017-06-12 |
US20160126343A1 (en) | 2016-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106158958B (en) | FinFET with source/drain overlay | |
US20210391420A1 (en) | Fin recess last process for finfet fabrication | |
US11855089B2 (en) | Method and structure for FinFET devices | |
CN105895693B (en) | FinFET with wrap around silicide and method of forming the same | |
US8927362B2 (en) | CMOS device and method of forming the same | |
CN106098555B (en) | FET and method of forming FET | |
CN104124273B (en) | There is MOS device of strained buffer layer and forming method thereof | |
US11171003B2 (en) | Doping through diffusion and epitaxy profile shaping | |
CN104241134B (en) | Non-Planar Transistors with Replacement Fins and Methods of Forming the Same | |
CN107230638B (en) | Two-step dummy gate formation | |
CN105428394B (en) | Structure of fin member and method of manufacturing the same | |
CN106935542A (en) | Semiconductor device and method for manufacturing the same | |
TWI864940B (en) | Semiconductor device | |
CN114300416A (en) | Semiconductor device and method of manufacturing the same | |
TWI778507B (en) | Semiconductor device and method for forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |