[go: up one dir, main page]

CN106158660A - Groove-shaped VDMOS manufacture method - Google Patents

Groove-shaped VDMOS manufacture method Download PDF

Info

Publication number
CN106158660A
CN106158660A CN201510205791.6A CN201510205791A CN106158660A CN 106158660 A CN106158660 A CN 106158660A CN 201510205791 A CN201510205791 A CN 201510205791A CN 106158660 A CN106158660 A CN 106158660A
Authority
CN
China
Prior art keywords
trench
type
layer
groove
hard mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510205791.6A
Other languages
Chinese (zh)
Inventor
闻正锋
邱海亮
马万里
赵文魁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University Founder Group Co Ltd
Shenzhen Founder Microelectronics Co Ltd
Original Assignee
Peking University Founder Group Co Ltd
Shenzhen Founder Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University Founder Group Co Ltd, Shenzhen Founder Microelectronics Co Ltd filed Critical Peking University Founder Group Co Ltd
Priority to CN201510205791.6A priority Critical patent/CN106158660A/en
Publication of CN106158660A publication Critical patent/CN106158660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供了一种沟槽型VDMOS制造方法。该方法包括:在N型外延层上沉积硬掩膜层;对硬掩膜层中的中间区域进行光刻、刻蚀,形成第一沟槽窗口区;对第一沟槽窗口区的下侧区域进行刻蚀,在N型外延层中形成第一沟槽;在硬掩膜层上表面,第一沟槽窗口区及第一沟槽中生长P型外延;采用化学机械抛光工艺去除硬掩膜层上表面的P型外延,硬掩膜层及第一沟槽窗口区中的P型外延,以使第一沟槽中形成P型离子区;在N型外延层中P型离子区两侧的部分区域分别形成第二沟槽;在N型外延层的上表面及第二沟槽内表面形成栅氧化层;在第二沟槽中的栅氧化层上沉积多晶硅层;形成沟槽型VDMOS的体区,源区,介电层及金属层。

The invention provides a trench type VDMOS manufacturing method. The method includes: depositing a hard mask layer on the N-type epitaxial layer; performing photolithography and etching on the middle area of the hard mask layer to form a first trench window area; The area is etched to form the first groove in the N-type epitaxial layer; the P-type epitaxy is grown on the upper surface of the hard mask layer, the window area of the first groove and the first groove; the hard mask is removed by chemical mechanical polishing process The P-type epitaxy on the upper surface of the film layer, the P-type epitaxy in the hard mask layer and the first trench window area, so that the P-type ion region is formed in the first trench; in the N-type epitaxial layer, the P-type ion region is two A second trench is formed in part of the side regions; a gate oxide layer is formed on the upper surface of the N-type epitaxial layer and the inner surface of the second trench; a polysilicon layer is deposited on the gate oxide layer in the second trench; a trench type Body region, source region, dielectric layer and metal layer of VDMOS.

Description

沟槽型VDMOS制造方法Trench VDMOS Manufacturing Method

技术领域technical field

本发明实施例涉及半导体器件制造技术领域,尤其涉及一种沟槽型VDMOS制造方法。Embodiments of the present invention relate to the technical field of semiconductor device manufacturing, and in particular, to a method for manufacturing a trench-type VDMOS.

背景技术Background technique

沟槽型垂直双扩散金属氧化物半导体晶体管(简称:沟槽型VDMOS)是通过源离子和体离子注入后形成纵向扩散距离差形成沟道,并广泛应用于开关电源和同步整流领域。相比平面型VDMOS,沟槽型VDMOS由于消除了JFET区,所以其内阻非常小。但是由于沟槽型VDMOS中沟槽底部的拐角处曲率半径小,使沟槽型VDMOS的击穿电压较低。Trench-type vertical double-diffused metal-oxide-semiconductor transistors (referred to as: trench-type VDMOS) are channeled by forming a vertical diffusion distance difference after source ion and bulk ion implantation, and are widely used in the field of switching power supply and synchronous rectification. Compared with the planar VDMOS, the internal resistance of the trench VDMOS is very small because the JFET area is eliminated. However, due to the small radius of curvature at the corner of the bottom of the trench in the trench VDMOS, the breakdown voltage of the trench VDMOS is relatively low.

现有技术中,为了提高沟槽型VDMOS的击穿电压,主要采取在金属接触孔的区域注入P型离子的方法。如图1所示,在金属接触孔的区域注入P型离子后,P型离子注入区15分担了部分第二沟槽7底部的场强,使第二沟槽7底部的场强减弱,进而提高了击穿电压。其中,P型离子注入区15的底部越接近第二沟槽7底部,分担的场强越多。最佳情况下,如图2所示,P型离子注入区15的底部与第二沟槽7的底部在同一水平面时,第二沟槽7的底部的场强最弱,击穿电压达到最高。In the prior art, in order to increase the breakdown voltage of the trench-type VDMOS, a method of implanting P-type ions into the region of the metal contact hole is mainly adopted. As shown in Figure 1, after implanting P-type ions in the region of the metal contact hole, the P-type ion implantation region 15 shares part of the field strength at the bottom of the second trench 7, weakening the field strength at the bottom of the second trench 7, and then Improved breakdown voltage. Wherein, the closer the bottom of the P-type ion implantation region 15 is to the bottom of the second trench 7 , the more the field strength is shared. In the best case, as shown in FIG. 2, when the bottom of the P-type ion implantation region 15 is at the same level as the bottom of the second trench 7, the field strength at the bottom of the second trench 7 is the weakest, and the breakdown voltage reaches the highest .

但该种在金属接触孔的区域注入P型离子提高击穿电压的方法,在P型离子注入区15的底部推向第二沟槽7的底部的深度的同时,P型离子注入区15也在横向扩散,从而改变了沟道区的离子浓度,使VDMOS的阈值电压发生变化,进而使沟槽型VDMOS不能正常工作。However, in this method of implanting P-type ions in the region of the metal contact hole to increase the breakdown voltage, when the bottom of the P-type ion-implantation region 15 is pushed to the depth of the bottom of the second trench 7, the P-type ion-implantation region 15 is also pushed to the bottom of the second trench 7. Diffusion in the lateral direction changes the ion concentration in the channel region and changes the threshold voltage of the VDMOS, thereby making the trench VDMOS unable to work normally.

为了防止这种情况的发生,如图3所示,将两个第二沟槽7的间距拉大,但这使沟槽型VDMOS元胞密度降低,减弱了沟槽型VDMOS的驱动能力。In order to prevent this from happening, as shown in FIG. 3 , the distance between the two second trenches 7 is increased, but this reduces the cell density of the trench VDMOS and weakens the driving capability of the trench VDMOS.

发明内容Contents of the invention

本发明实施例提供一种沟槽型VDMOS制造方法,有效提高了沟槽型VDMOS的击穿电压,同时使P型离子区不再横向扩散,保证了沟槽型VDMOS的阈值电压不变,使沉积多晶硅层的沟槽之间的间距不变,进而维持了元胞密度,保证了沟槽型VDMOS的驱动能力。The embodiment of the present invention provides a trench-type VDMOS manufacturing method, which effectively improves the breakdown voltage of the trench-type VDMOS, and at the same time prevents the P-type ion region from laterally diffusing, ensuring that the threshold voltage of the trench-type VDMOS remains unchanged, so that The distance between the trenches for depositing the polysilicon layer remains unchanged, thereby maintaining the cell density and ensuring the driving capability of the trench VDMOS.

本发明实施例提供一种沟槽型VDMOS制造方法,包括:An embodiment of the present invention provides a trench-type VDMOS manufacturing method, including:

在所述N型外延层上沉积硬掩膜层;depositing a hard mask layer on the N-type epitaxial layer;

对所述硬掩膜层中的中间区域进行光刻、刻蚀,形成第一沟槽窗口区;performing photolithography and etching on the middle region in the hard mask layer to form a first trench window region;

对所述第一沟槽窗口区的下侧区域进行刻蚀,在所述N型外延层中形成第一沟槽;Etching the lower side region of the window region of the first trench to form a first trench in the N-type epitaxial layer;

在所述硬掩膜层上表面,所述第一沟槽窗口区及所述第一沟槽中生长P型外延;growing P-type epitaxy on the upper surface of the hard mask layer, the first trench window region, and the first trench;

采用化学机械抛光工艺去除所述硬掩膜层上表面的P型外延,所述硬掩膜层及所述第一沟槽窗口区中的P型外延,以使所述第一沟槽中形成P型离子区;The P-type epitaxy on the upper surface of the hard mask layer is removed by a chemical mechanical polishing process, and the P-type epitaxy in the hard mask layer and the window area of the first trench is removed, so that the P-type epitaxy in the first trench is formed P-type ion region;

在所述N型外延层中P型离子区两侧的部分区域分别形成第二沟槽;Forming second trenches in partial regions on both sides of the P-type ion region in the N-type epitaxial layer;

在所述N型外延层的上表面及所述第二沟槽内表面形成栅氧化层;forming a gate oxide layer on the upper surface of the N-type epitaxial layer and the inner surface of the second trench;

在所述第二沟槽中的栅氧化层上沉积多晶硅层;depositing a polysilicon layer on the gate oxide layer in the second trench;

形成所述沟槽型VDMOS的体区,源区,介电层及金属层。Forming the body region, source region, dielectric layer and metal layer of the trench type VDMOS.

进一步地,如上所述的方法,所述在所述N型外延层中P型离子区两侧的部分区域分别形成第二沟槽具体包括:Further, in the above-mentioned method, forming the second trenches in the partial regions on both sides of the P-type ion region in the N-type epitaxial layer respectively includes:

在所述N型外延层上沉积硬掩膜层;depositing a hard mask layer on the N-type epitaxial layer;

对所述硬掩膜层中的所述P型离子区两侧的部分区域进行光刻、刻蚀,形成第二沟槽窗口区;performing photolithography and etching on partial regions on both sides of the P-type ion region in the hard mask layer to form a second trench window region;

对所述第二沟槽窗口区的下侧区域进行刻蚀,在所述N型外延层中形成第二沟槽。Etching the lower side region of the window region of the second trench to form a second trench in the N-type epitaxial layer.

进一步地,如上所述的方法,所述第一沟槽与所述第二沟槽的深度相同。Further, in the above method, the depth of the first groove is the same as that of the second groove.

进一步地,如上所述的方法,所述在所述N型外延层中形成第二沟槽后,还包括:Further, in the method as described above, after forming the second trench in the N-type epitaxial layer, it further includes:

对所述第二沟槽的底角进行圆滑处理;rounding the bottom corner of the second groove;

去除所述硬掩膜层。The hard mask layer is removed.

进一步地,如上所述的方法,所述P型离子区中的P型外延的掺杂离子为硼离子,所述P型外延的掺杂浓度为1E19-1E20原子数/立方厘米。Further, in the above-mentioned method, the dopant ions of the P-type epitaxy in the P-type ion region are boron ions, and the doping concentration of the P-type epitaxy is 1E19-1E20 atoms/cm3.

进一步地,如上所述的方法,所述在所述第二沟槽中的栅氧化层上沉积多晶硅层之后,还包括:Further, in the method as described above, after depositing the polysilicon layer on the gate oxide layer in the second trench, it further includes:

对所述多晶硅层进行回刻处理,以使所述多晶硅层的上表面、所述P型离子区的上表面与所述N型外延层的上表面在同一平面上。The polysilicon layer is etched back so that the upper surface of the polysilicon layer, the upper surface of the P-type ion region and the upper surface of the N-type epitaxial layer are on the same plane.

进一步地,如上所述的方法,所述多晶硅层的厚度为6000-12000埃,所述栅氧化层的厚度为400-1000埃。Further, in the above method, the polysilicon layer has a thickness of 6000-12000 angstroms, and the gate oxide layer has a thickness of 400-1000 angstroms.

本发明实施例提供一种沟槽型VDMOS制造方法,通过在N型外延层上沉积硬掩膜层;对硬掩膜层中的中间区域进行光刻、刻蚀,形成第一沟槽窗口区;对第一沟槽窗口区的下侧区域进行刻蚀,在N型外延层中形成第一沟槽;在硬掩膜层上表面,第一沟槽窗口区及第一沟槽中生长P型外延;采用化学机械抛光工艺去除硬掩膜层上表面的P型外延,硬掩膜层及第一沟槽窗口区中的P型外延,以使第一沟槽中形成P型离子区;在N型外延层中P型离子区两侧的部分区域分别形成第二沟槽;在N型外延层的上表面及第二沟槽内表面形成栅氧化层;在第二沟槽中的栅氧化层上沉积多晶硅层;形成沟槽型VDMOS的体区,源区,介电层及金属层。有效提高了沟槽型VDMOS的击穿电压,同时使P型离子区不再横向扩散,保证了沟槽型VDMOS的阈值电压不变,使沉积多晶硅层的沟槽之间的间距不变,进而维持了元胞密度,保证了沟槽型VDMOS的驱动能力。An embodiment of the present invention provides a trench-type VDMOS manufacturing method, by depositing a hard mask layer on the N-type epitaxial layer; performing photolithography and etching on the middle region of the hard mask layer to form the first trench window region ; The lower region of the first trench window area is etched to form a first trench in the N-type epitaxial layer; on the upper surface of the hard mask layer, grow P in the first trench window area and the first trench Type epitaxy; using a chemical mechanical polishing process to remove the P-type epitaxy on the upper surface of the hard mask layer, the P-type epitaxy in the hard mask layer and the window area of the first trench, so that a P-type ion region is formed in the first trench; Partial regions on both sides of the P-type ion region in the N-type epitaxial layer form second trenches; a gate oxide layer is formed on the upper surface of the N-type epitaxial layer and the inner surface of the second trench; the gate in the second trench Deposit a polysilicon layer on the oxide layer; form the body region, source region, dielectric layer and metal layer of the trench VDMOS. The breakdown voltage of trench VDMOS is effectively improved, and at the same time, the P-type ion region is no longer diffused laterally, which ensures that the threshold voltage of trench VDMOS remains unchanged, and the distance between the trenches where the polysilicon layer is deposited remains unchanged. The cell density is maintained and the driving capability of the trench VDMOS is guaranteed.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings on the premise of not paying creative efforts.

图1为现有技术中沟槽型VDMOS的第一结构示意图;FIG. 1 is a schematic diagram of a first structure of a trench VDMOS in the prior art;

图2为现有技术中沟槽型VDMOS的第二结构示意图;2 is a schematic diagram of a second structure of a trench VDMOS in the prior art;

图3为现有技术中沟槽型VDMOS的第三结构示意图;3 is a schematic diagram of a third structure of a trench VDMOS in the prior art;

图4为本发明沟槽型VDMOS制造方法实施例一的流程图;FIG. 4 is a flow chart of Embodiment 1 of the trench VDMOS manufacturing method of the present invention;

图5为本发明实施例一提供的沟槽型VDMOS制造方法中在N型外延层上沉积硬掩膜层后的结构示意图;5 is a schematic structural diagram after depositing a hard mask layer on the N-type epitaxial layer in the trench-type VDMOS manufacturing method provided by Embodiment 1 of the present invention;

图6为本发明实施例一提供的沟槽型VDMOS制造方法中对硬掩膜层中的中间区域进行光刻、刻蚀,形成第一沟槽窗口区后的结构示意图;6 is a schematic diagram of the structure of the first trench window region after photolithography and etching are performed on the middle region of the hard mask layer in the trench-type VDMOS manufacturing method provided by Embodiment 1 of the present invention;

图7为本发明实施例一提供的沟槽型VDMOS制造方法中对第一沟槽窗口区的下侧区域进行刻蚀,在N型外延层中形成第一沟槽后的结构示意图;FIG. 7 is a schematic structural diagram after etching the lower region of the first trench window region and forming the first trench in the N-type epitaxial layer in the trench-type VDMOS manufacturing method provided by Embodiment 1 of the present invention;

图8为本发明实施例一提供的沟槽型VDMOS制造方法中在硬掩膜层上表面,第一沟槽窗口区及第一沟槽中生长P型外延后的结构示意图;8 is a schematic diagram of the structure after growing P-type epitaxy on the upper surface of the hard mask layer, the first trench window region, and the first trench in the trench-type VDMOS manufacturing method provided by Embodiment 1 of the present invention;

图9为本发明实施例一提供的沟槽型VDMOS制造方法中采用化学机械抛光工艺去除硬掩膜层上表面的P型外延,硬掩膜层及第一沟槽窗口区中的P型外延,以使第一沟槽中形成P型离子区后的结构示意图;9 shows the P-type epitaxy on the upper surface of the hard mask layer removed by chemical mechanical polishing process in the trench VDMOS manufacturing method provided by Embodiment 1 of the present invention, and the P-type epitaxy in the hard mask layer and the window region of the first trench. , so that the structure schematic diagram after forming the P-type ion region in the first trench;

图10为本发明实施例一提供的沟槽型VDMOS制造方法中在N型外延层中P型离子区两侧的部分区域分别形成第二沟槽后的结构示意图;FIG. 10 is a schematic structural diagram of forming second trenches in parts of the N-type epitaxial layer on both sides of the P-type ion region in the trench-type VDMOS manufacturing method provided by Embodiment 1 of the present invention;

图11为本发明实施例一提供的沟槽型VDMOS制造方法中在N型外延层的上表面及第二沟槽内表面形成栅氧化层后的结构示意图;11 is a schematic structural view of a gate oxide layer formed on the upper surface of the N-type epitaxial layer and the inner surface of the second trench in the trench-type VDMOS manufacturing method provided by Embodiment 1 of the present invention;

图12为本发明实施例一提供的沟槽型VDMOS制造方法中在第二沟槽中的栅氧化层上沉积多晶硅层后的结构示意图;12 is a schematic structural diagram after depositing a polysilicon layer on the gate oxide layer in the second trench in the trench-type VDMOS manufacturing method provided by Embodiment 1 of the present invention;

图13为本发明实施例一提供的沟槽型VDMOS制造方法中形成沟槽型VDMOS的体区,源区,介电层及金属层的流程图;13 is a flow chart of forming a body region, a source region, a dielectric layer and a metal layer of a trench-type VDMOS in the trench-type VDMOS manufacturing method provided by Embodiment 1 of the present invention;

图14为本发明实施例一提供的沟槽型VDMOS制造方法中在沟槽型VDMOS的N型外延层中形成体区后的结构示意图;FIG. 14 is a schematic structural view after forming a body region in the N-type epitaxial layer of the trench-type VDMOS in the trench-type VDMOS manufacturing method provided by Embodiment 1 of the present invention;

图15为本发明实施例一提供的沟槽型VDMOS制造方法中在体区中第二沟槽的两侧区域形成源区后的结构示意图;15 is a schematic structural diagram after forming source regions in regions on both sides of the second trench in the body region in the trench-type VDMOS manufacturing method provided by Embodiment 1 of the present invention;

图16为本发明实施例一提供的沟槽型VDMOS制造方法中在源区的上方的栅氧化层上沉积介电层并去除栅氧化层后的结构示意图;16 is a schematic structural diagram after depositing a dielectric layer on the gate oxide layer above the source region and removing the gate oxide layer in the trench-type VDMOS manufacturing method provided by Embodiment 1 of the present invention;

图17为本发明实施例一提供的沟槽型VDMOS制造方法中沉积沟槽型VDMOS的金属层后的结构示意图;17 is a schematic structural diagram after depositing a metal layer of a trench-type VDMOS in the trench-type VDMOS manufacturing method provided by Embodiment 1 of the present invention;

图18为本发明沟槽型VDMOS制造方法实施例二的第一流程图;FIG. 18 is the first flow chart of Embodiment 2 of the trench VDMOS manufacturing method of the present invention;

图19为本发明沟槽型VDMOS制造方法实施例二的第二流程图。FIG. 19 is a second flow chart of Embodiment 2 of the trench VDMOS manufacturing method of the present invention.

附图标记:Reference signs:

1-N型衬底 2-N型外延层 3-硬掩膜层1-N-type substrate 2-N-type epitaxial layer 3-hard mask layer

4-第一沟槽窗口区 5-第一沟槽 6-P型外延4-First trench window area 5-First trench 6-P-type epitaxy

7-第二沟槽 8-栅氧化层 9-多晶硅层7-Second trench 8-Gate oxide layer 9-Polysilicon layer

10-体区 11-源区 12-介电层10-body region 11-source region 12-dielectric layer

13-正面金属层 14-背面金属层 15-P型离子注入区13-Front metal layer 14-Back metal layer 15-P-type ion implantation area

具体实施方式detailed description

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

实施例一Embodiment one

图4为本发明沟槽型VDMOS制造方法实施例一的流程图,如图4所示,本实施例提供的沟槽型VDMOS制造方法包括:FIG. 4 is a flow chart of Embodiment 1 of the trench VDMOS manufacturing method of the present invention. As shown in FIG. 4 , the trench VDMOS manufacturing method provided in this embodiment includes:

步骤101,在N型外延层2上沉积硬掩膜层3。Step 101 , depositing a hard mask layer 3 on the N-type epitaxial layer 2 .

本实施例中,N型外延层2生长于N型衬底1上。其中,N型衬底1为重掺杂N型衬底,N型外延层2为轻掺杂N型外延层。具体的N型衬底1的掺杂浓度以及N型外延层2的掺杂浓度与现有技术中的掺杂浓度相同,在此不再一一赘述。In this embodiment, the N-type epitaxial layer 2 is grown on the N-type substrate 1 . Wherein, the N-type substrate 1 is a heavily doped N-type substrate, and the N-type epitaxial layer 2 is a lightly doped N-type epitaxial layer. The specific doping concentration of the N-type substrate 1 and the doping concentration of the N-type epitaxial layer 2 are the same as those in the prior art, and will not be repeated here.

本实施例中,N型外延层2上沉积的硬掩膜层3可以为二氧化硅层。沉积的工艺可以为低压化学气相沉积。沉积的硬掩膜层的厚度可以为4000-7000埃。其中,图5为本发明实施例一提供的沟槽型VDMOS制造方法中在N型外延层上沉积硬掩膜层后的结构示意图。In this embodiment, the hard mask layer 3 deposited on the N-type epitaxial layer 2 may be a silicon dioxide layer. The deposition process may be low pressure chemical vapor deposition. The deposited hard mask layer may have a thickness of 4000-7000 Angstroms. 5 is a schematic structural diagram after depositing a hard mask layer on the N-type epitaxial layer in the trench-type VDMOS manufacturing method provided in Embodiment 1 of the present invention.

步骤102,对硬掩膜层3中的中间区域进行光刻、刻蚀,形成第一沟槽窗口区4。Step 102 , performing photolithography and etching on the middle region of the hard mask layer 3 to form the first trench window region 4 .

本实施例中,采用光刻、刻蚀工艺,刻蚀掉中间区域的硬掩膜层3,形成了第一沟槽窗口区4。其中第一沟槽5为用于形成P型离子区的沟槽。第一沟槽窗口区4为用于进行刻蚀后形成的第一沟槽的窗口区。图6为本发明实施例一提供的沟槽型VDMOS制造方法中对硬掩膜层中的中间区域进行光刻、刻蚀,形成第一沟槽窗口区后的结构示意图,如图6所示,第一沟槽窗口区4的截面为矩形。In this embodiment, the hard mask layer 3 in the middle area is etched away by photolithography and etching techniques to form the first trench window area 4 . Wherein the first trench 5 is a trench for forming a P-type ion region. The first trench window area 4 is a window area for the first trench formed after etching. FIG. 6 is a schematic diagram of the structure after photolithography and etching are performed on the middle region of the hard mask layer in the trench-type VDMOS manufacturing method provided by Embodiment 1 of the present invention to form the first trench window region, as shown in FIG. 6 , the cross section of the first trench window region 4 is rectangular.

可选地,本实施例中刻蚀工艺可采用干法刻蚀工艺。Optionally, the etching process in this embodiment may adopt a dry etching process.

步骤103,对第一沟槽窗口区4的下侧区域进行刻蚀,在N型外延层中形成第一沟槽5。Step 103 , etching the lower side region of the first trench window region 4 to form a first trench 5 in the N-type epitaxial layer.

本实施例中,可采用干法刻蚀工艺,对第一沟槽窗口区4下侧区域进行刻蚀,在N型外延层2中形成第一沟槽5。其中,第一沟槽5的截面形状为矩形,第一沟槽4的深度小于N型外延层2的厚度。其中,图7为本发明实施例一提供的沟槽型VDMOS制造方法中对第一沟槽窗口区的下侧区域进行刻蚀,在N型外延层中形成第一沟槽后的结构示意图。如图7所示,第一沟槽5位于第一沟槽窗口区4的正下方,第一沟槽5的侧面与第一沟槽窗口区4的侧面位于同一平面上。In this embodiment, a dry etching process may be used to etch the lower side region of the first trench window region 4 to form the first trench 5 in the N-type epitaxial layer 2 . Wherein, the cross-sectional shape of the first trench 5 is rectangular, and the depth of the first trench 4 is smaller than the thickness of the N-type epitaxial layer 2 . Wherein, FIG. 7 is a structural diagram after etching the lower region of the window region of the first trench and forming the first trench in the N-type epitaxial layer in the trench VDMOS manufacturing method provided by Embodiment 1 of the present invention. As shown in FIG. 7 , the first trench 5 is located directly below the first trench window area 4 , and the side surfaces of the first trench 5 and the side surfaces of the first trench window area 4 are located on the same plane.

步骤104,在硬掩膜层3上表面,第一沟槽窗口区4及第一沟槽5中生长P型外延6。Step 104 , growing P-type epitaxy 6 on the upper surface of the hard mask layer 3 , in the first trench window region 4 and the first trench 5 .

本实施例中,采用外延生长工艺在硬掩膜层3上表面,第一沟槽窗口区4及第一沟槽5中生长P型外延6。其中,P型外延6中的掺杂离子可以为硼离子。其中,图8为本发明实施例一提供的沟槽型VDMOS制造方法中在硬掩膜层上表面,第一沟槽窗口区及第一沟槽中生长P型外延后的结构示意图,如图8所示,本实施例中,P型外延6填充了第一沟槽窗口区4和第一沟槽5。In this embodiment, a P-type epitaxy 6 is grown on the upper surface of the hard mask layer 3 , the first trench window region 4 and the first trench 5 by using an epitaxial growth process. Wherein, the dopant ions in the P-type epitaxy 6 may be boron ions. Among them, FIG. 8 is a schematic diagram of the structure after growing P-type epitaxy on the upper surface of the hard mask layer, the first trench window region and the first trench in the trench-type VDMOS manufacturing method provided by Embodiment 1 of the present invention, as shown in FIG. As shown in FIG. 8 , in this embodiment, the P-type epitaxy 6 fills the first trench window region 4 and the first trench 5 .

步骤105,采用化学机械抛光工艺去除硬掩膜层3上表面的P型外延6,硬掩膜层3及第一沟槽窗口区4中的P型外延6,以使第一沟槽5中形成P型离子区。Step 105, using a chemical mechanical polishing process to remove the P-type epitaxy 6 on the upper surface of the hard mask layer 3, the P-type epitaxy 6 in the hard mask layer 3 and the first trench window region 4, so that the first trench 5 A P-type ion region is formed.

本实施例中,化学机械抛光工艺(Chemical Mechanical Polishing,简称CMP)是通过化学和机械力获得平滑表面的加工过程,本实施例中,采用化学抛光工艺去除硬掩膜层3上表面的P型外延6,硬掩膜层3及第一沟槽窗口区4中的P型外延6,以使第一沟槽5中形成P型离子区,大大提高了抛光精度和抛光速度,提高了抛光的质量,降低了生产成本。In this embodiment, the chemical mechanical polishing process (Chemical Mechanical Polishing, referred to as CMP) is a process of obtaining a smooth surface by chemical and mechanical force. Epitaxy 6, the P-type epitaxy 6 in the hard mask layer 3 and the first trench window region 4, so that the P-type ion region is formed in the first trench 5, greatly improving the polishing accuracy and polishing speed, and improving the polishing efficiency. quality and reduced production costs.

本实施例中,第一沟槽5和P型外延6构成了P型离子区。其中,图9为本发明实施例一提供的沟槽型VDMOS制造方法中采用化学机械抛光工艺去除硬掩膜层上表面的P型外延,硬掩膜层及第一沟槽窗口区中的P型外延,以使第一沟槽中形成P型离子区后的结构示意图。In this embodiment, the first trench 5 and the P-type epitaxy 6 constitute a P-type ion region. Among them, FIG. 9 shows the P-type epitaxy on the upper surface of the hard mask layer removed by chemical mechanical polishing process in the trench VDMOS manufacturing method provided by Embodiment 1 of the present invention, and the P-type epitaxy in the hard mask layer and the first trench window area. Type epitaxy, so that the structure diagram of the P-type ion region is formed in the first trench.

步骤106,在N型外延层2中P型离子区两侧的部分区域分别形成第二沟槽7。Step 106 , forming second trenches 7 in parts of the N-type epitaxial layer 2 on both sides of the P-type ion region.

本实施例中,在N型外延层2中P型离子区两侧的部分区域分别形成第二沟槽7时所采用的工艺可以为光刻、刻蚀工艺,也可以为其他工艺,本实施例对此不做限定。In this embodiment, the process used when forming the second trenches 7 in parts of the N-type epitaxial layer 2 on both sides of the P-type ion region can be photolithography, etching, or other processes. Examples are not limited to this.

本实施例中,第二沟槽7为用于沉淀多晶硅层的沟槽。其中,图10为本发明实施例一提供的沟槽型VDMOS制造方法中在N型外延层中P型离子区两侧的部分区域分别形成第二沟槽后的结构示意图,如图10所示,第二沟槽7的截面形状为矩形,第二沟槽7的深度小于N型外延层2的厚度。P型离子区分别与第二沟槽7之间具有间距。In this embodiment, the second trench 7 is a trench for depositing a polysilicon layer. Among them, FIG. 10 is a schematic structural diagram of forming second trenches in parts of the N-type epitaxial layer on both sides of the P-type ion region in the trench-type VDMOS manufacturing method provided in Embodiment 1 of the present invention, as shown in FIG. 10 , the cross-sectional shape of the second trench 7 is rectangular, and the depth of the second trench 7 is smaller than the thickness of the N-type epitaxial layer 2 . There is a distance between the P-type ion regions and the second trenches 7 respectively.

步骤107,在N型外延层2的上表面及第二沟槽7内表面形成栅氧化层8。Step 107 , forming a gate oxide layer 8 on the upper surface of the N-type epitaxial layer 2 and the inner surface of the second trench 7 .

本实施例中,N型外延层2的上表面为除去第二沟槽7的N型外延层2的上表面。本实施例中的栅氧化层8的厚度可以为400-1000埃。其中,图11为本发明实施例一提供的沟槽型VDMOS制造方法中在N型外延层的上表面及第二沟槽内表面形成栅氧化层后的结构示意图。In this embodiment, the upper surface of the N-type epitaxial layer 2 is the upper surface of the N-type epitaxial layer 2 without the second trench 7 . The gate oxide layer 8 in this embodiment may have a thickness of 400-1000 angstroms. Wherein, FIG. 11 is a schematic structural diagram after forming a gate oxide layer on the upper surface of the N-type epitaxial layer and the inner surface of the second trench in the trench VDMOS manufacturing method provided in Embodiment 1 of the present invention.

步骤108,在第二沟槽7中的栅氧化层8上沉积多晶硅层9。Step 108 , depositing a polysilicon layer 9 on the gate oxide layer 8 in the second trench 7 .

本实施例中,在第二沟槽7中的栅氧化层8上沉积的多晶硅层9的厚度为6000~12000埃。其中,图12为本发明实施例一提供的沟槽型VDMOS制造方法中在第二沟槽中的栅氧化层上沉积多晶硅层后的结构示意图。In this embodiment, the polysilicon layer 9 deposited on the gate oxide layer 8 in the second trench 7 has a thickness of 6000-12000 angstroms. Wherein, FIG. 12 is a schematic structural diagram after depositing a polysilicon layer on the gate oxide layer in the second trench in the trench-type VDMOS manufacturing method provided in Embodiment 1 of the present invention.

步骤109,形成沟槽型VDMOS的体区10,源区11,介电层12及金属层。Step 109 , forming the body region 10 , the source region 11 , the dielectric layer 12 and the metal layer of the trench VDMOS.

其中,金属层包括正面金属层13和背面金属层14。Wherein, the metal layer includes a front metal layer 13 and a back metal layer 14 .

本实施例中,图13为本发明实施例一提供的沟槽型VDMOS制造方法中形成沟槽型VDMOS的体区,源区,介电层及金属层的流程图,如图13所示,步骤109具体可分为以下四个步骤执行。In this embodiment, FIG. 13 is a flow chart of forming a body region, a source region, a dielectric layer and a metal layer of a trench-type VDMOS in the trench-type VDMOS manufacturing method provided in Embodiment 1 of the present invention, as shown in FIG. 13 , Step 109 can be specifically divided into the following four steps for execution.

步骤109a,在沟槽型VDMOS的N型外延层2中形成体区10。Step 109a, forming a body region 10 in the N-type epitaxial layer 2 of the trench VDMOS.

具体地,在形成沟槽型VDMOS的体区10时,采用P型离子注入工艺,形成体区10,其中注入的P型离子可以为硼离子,剂量可以为1.0E13-1.0E15个/平方厘米,能量可以为60-120KEV,然后进行高温驱入,温度可以为900-1150度,驱入时间可以为40~100分钟。Specifically, when forming the body region 10 of the trench-type VDMOS, a P-type ion implantation process is used to form the body region 10, wherein the implanted P-type ions can be boron ions, and the dose can be 1.0E13-1.0E15 per square centimeter , the energy can be 60-120KEV, and then high-temperature driving can be carried out, the temperature can be 900-1150 degrees, and the driving time can be 40-100 minutes.

本实施例中,图14为本发明实施例一提供的沟槽型VDMOS制造方法中在沟槽型VDMOS的N型外延层中形成体区后的结构示意图,如图14所示,沟槽型VDMOS的体区10在N型外延层2中形成,体区10的厚度小于N型外延层2的厚度。In this embodiment, FIG. 14 is a schematic diagram of the structure after the body region is formed in the N-type epitaxial layer of the trench-type VDMOS in the trench-type VDMOS manufacturing method provided in Embodiment 1 of the present invention. As shown in FIG. 14 , the trench-type VDMOS The body region 10 of VDMOS is formed in the N-type epitaxial layer 2 , and the thickness of the body region 10 is smaller than the thickness of the N-type epitaxial layer 2 .

步骤109b,在体区10中第二沟槽7的两侧区域形成源区11。Step 109 b , forming source regions 11 in regions on both sides of the second trench 7 in the body region 10 .

本实施例中,通过光刻工艺定义出源区11的区域,并采用离子注入工艺,注入N型离子。其中注入的N型离子可以为砷或磷。注入的剂量可以为1.0E15-1.0E16个/平方厘米,能量可以为50-120KEV。然后进行离子激活,离子激活的温度可以为800~1000度,离子激活的时间可以为20-60分钟。In this embodiment, the region of the source region 11 is defined by a photolithography process, and N-type ions are implanted by using an ion implantation process. The implanted N-type ions may be arsenic or phosphorus. The injected dose can be 1.0E15-1.0E16 per square centimeter, and the energy can be 50-120KEV. Then carry out ion activation, the temperature of ion activation can be 800-1000 degrees, and the time of ion activation can be 20-60 minutes.

本实施例中,图15为本发明实施例一提供的沟槽型VDMOS制造方法中在体区中第二沟槽的两侧区域形成源区后的结构示意图。如图15所示,源区11形成在体区10中第二沟槽7的两侧区域。In this embodiment, FIG. 15 is a schematic structural diagram after forming source regions in regions on both sides of the second trench in the body region in the trench-type VDMOS manufacturing method provided in Embodiment 1 of the present invention. As shown in FIG. 15 , source regions 11 are formed in regions on both sides of the second trench 7 in the body region 10 .

步骤109c,在源区11的上方的栅氧化层8上沉积介电层12。Step 109c, depositing a dielectric layer 12 on the gate oxide layer 8 above the source region 11 .

本实施例中,介电层12可以为二氧化硅层或者掺杂硼和磷的二氧化硅层。In this embodiment, the dielectric layer 12 may be a silicon dioxide layer or a silicon dioxide layer doped with boron and phosphorus.

本实施例中,图16为本发明实施例一提供的沟槽型VDMOS制造方法中在源区的上方的栅氧化层上沉积介电层并去除栅氧化层后的结构示意图。如图16所示,在源区11的上方的栅氧化层8上沉积介电层12后,进行孔层光刻和刻蚀工艺,具体的孔层光刻和刻蚀工艺为现有技术,在此不再一一赘述。In this embodiment, FIG. 16 is a schematic structural diagram after depositing a dielectric layer on the gate oxide layer above the source region and removing the gate oxide layer in the trench VDMOS manufacturing method provided in Embodiment 1 of the present invention. As shown in FIG. 16, after depositing the dielectric layer 12 on the gate oxide layer 8 above the source region 11, the photolithography and etching process of the hole layer is performed. The specific photolithography and etching process of the hole layer is the prior art. No more details here.

步骤109d,沉积沟槽型VDMOS的金属层。Step 109d, depositing a metal layer of trench type VDMOS.

本实施例中,金属层包括:正面金属层13和背面金属层14。其中,正面金属层13可以为铝硅铜合金,形成源极金属层,厚度可以为2-4微米,背面金属层14可以为钛镍银复合层,形成漏极金属层。其中,图17为本发明实施例一提供的沟槽型VDMOS制造方法中沉积沟槽型VDMOS的金属层后的结构示意图。In this embodiment, the metal layer includes: a front metal layer 13 and a back metal layer 14 . Wherein, the front metal layer 13 can be an aluminum-silicon-copper alloy to form a source metal layer with a thickness of 2-4 microns, and the back metal layer 14 can be a titanium-nickel-silver composite layer to form a drain metal layer. Wherein, FIG. 17 is a schematic diagram of the structure after depositing the metal layer of the trench VDMOS in the trench VDMOS manufacturing method provided in Embodiment 1 of the present invention.

本实施例提供的沟槽型VDMOS制造方法,通过在N型外延层上沉积硬掩膜层;对硬掩膜层中的中间区域进行光刻、刻蚀,形成第一沟槽窗口区;对第一沟槽窗口区的下侧区域进行刻蚀,在N型外延层中形成第一沟槽;在硬掩膜层上表面,第一沟槽窗口区及第一沟槽中生长P型外延;采用化学机械抛光工艺去除硬掩膜层上表面的P型外延,硬掩膜层及第一沟槽窗口区中的P型外延,以使第一沟槽中形成P型离子区;在N型外延层中P型离子区两侧的部分区域分别形成第二沟槽;在N型外延层的上表面及第二沟槽内表面形成栅氧化层;在第二沟槽中的栅氧化层上沉积多晶硅层;形成沟槽型VDMOS的体区,源区,介电层及金属层。有效提高了沟槽型VDMOS的击穿电压,同时由于采用了化学机械抛光工艺去除硬掩膜层上表面的P型外延,硬掩膜层及第一沟槽窗口区中的P型外延,以使第一沟槽中形成P型离子区,使P型离子区不再横向扩散,保证了沟槽型VDMOS的阈值电压不变,并且保持第一沟槽和第二沟槽之间的间距,使沉积多晶硅层的沟槽之间的间距不变,进而维持了元胞密度,保证了沟槽型VDMOS的驱动能力。In the trench VDMOS manufacturing method provided in this embodiment, a hard mask layer is deposited on the N-type epitaxial layer; photolithography and etching are performed on the middle region of the hard mask layer to form a first trench window region; The lower area of the first trench window area is etched to form a first trench in the N-type epitaxial layer; on the upper surface of the hard mask layer, the first trench window area and the first trench grow P-type epitaxy ; The P-type epitaxy on the upper surface of the hard mask layer is removed by a chemical mechanical polishing process, and the P-type epitaxy in the hard mask layer and the window area of the first trench is used to form a P-type ion region in the first trench; Partial regions on both sides of the P-type ion region in the N-type epitaxial layer respectively form a second trench; a gate oxide layer is formed on the upper surface of the N-type epitaxial layer and the inner surface of the second trench; the gate oxide layer in the second trench Deposit a polysilicon layer on it; form the body region, source region, dielectric layer and metal layer of the trench VDMOS. The breakdown voltage of the trench type VDMOS is effectively improved, and at the same time, due to the use of a chemical mechanical polishing process to remove the P-type epitaxy on the upper surface of the hard mask layer, the P-type epitaxy in the hard mask layer and the first trench window area, and Forming a P-type ion region in the first trench, so that the P-type ion region no longer diffuses laterally, ensures that the threshold voltage of the trench-type VDMOS remains unchanged, and maintains the distance between the first trench and the second trench, The distance between the trenches for depositing the polysilicon layer is kept constant, thereby maintaining the cell density and ensuring the driving capability of the trench VDMOS.

实施例二Embodiment two

图18为本发明沟槽型VDMOS制造方法实施例二的第一流程图,如图18所示,本实施例提供的沟槽型VDMOS制造方法包括:FIG. 18 is the first flow chart of Embodiment 2 of the trench-type VDMOS manufacturing method of the present invention. As shown in FIG. 18 , the trench-type VDMOS manufacturing method provided in this embodiment includes:

步骤201,在N型外延层2上沉积硬掩膜层3。Step 201 , depositing a hard mask layer 3 on the N-type epitaxial layer 2 .

步骤202,对硬掩膜层3中的中间区域进行光刻、刻蚀,形成第一沟槽窗口区4。Step 202 , performing photolithography and etching on the middle region of the hard mask layer 3 to form the first trench window region 4 .

步骤203,对第一沟槽窗口区4的下侧区域进行刻蚀,在N型外延层中形成第一沟槽5。Step 203 , etching the lower side region of the first trench window region 4 to form a first trench 5 in the N-type epitaxial layer.

步骤204,在硬掩膜层3上表面,第一沟槽窗口区4及第一沟槽5中生长P型外延6。Step 204 , growing P-type epitaxy 6 on the upper surface of the hard mask layer 3 , in the first trench window region 4 and the first trench 5 .

步骤205,采用化学机械抛光工艺去除硬掩膜层3上表面的P型外延6,硬掩膜层3及第一沟槽窗口区4中的P型外延6,以使第一沟槽5中形成P型离子区。Step 205, using a chemical mechanical polishing process to remove the P-type epitaxy 6 on the upper surface of the hard mask layer 3, the P-type epitaxy 6 in the hard mask layer 3 and the first trench window region 4, so that the first trench 5 A P-type ion region is formed.

优选地,本实施例中的P型离子区中的P型外延6的掺杂离子为硼离子,P型外延的掺杂浓度为1E19-1E20原子数/立方厘米。Preferably, the doping ions of the P-type epitaxy 6 in the P-type ion region in this embodiment are boron ions, and the doping concentration of the P-type epitaxy is 1E19-1E20 atoms/cm3.

本实施例中,步骤201-步骤205与本发明步骤101-步骤105相同,在此不再一一赘述。In this embodiment, steps 201 to 205 are the same as steps 101 to 105 in the present invention, and will not be repeated here.

步骤206,在N型外延层2中P型离子区两侧的部分区域分别形成第二沟槽7。Step 206 , forming second trenches 7 in parts of the N-type epitaxial layer 2 on both sides of the P-type ion region.

进一步地,本实施例中的步骤206可以分为以下三个步骤执行。图19为本发明沟槽型VDMOS制造方法实施例二的第二流程图,如图19所示,步骤206包括:Further, step 206 in this embodiment may be divided into the following three steps for execution. FIG. 19 is the second flow chart of Embodiment 2 of the trench VDMOS manufacturing method of the present invention. As shown in FIG. 19, step 206 includes:

步骤206a,在N型外延层2上沉积硬掩膜层3。Step 206 a , depositing a hard mask layer 3 on the N-type epitaxial layer 2 .

本实施例中,步骤206a与步骤201的工艺相同,在此不再一一赘述。In this embodiment, the process of step 206 a is the same as that of step 201 , which will not be repeated here.

步骤206b,对硬掩膜层3中的P型离子区两侧的部分区域进行光刻、刻蚀,形成第二沟槽窗口区。In step 206b, photolithography and etching are carried out on partial regions on both sides of the P-type ion region in the hard mask layer 3 to form a second trench window region.

本实施例中,采用光刻、刻蚀工艺,刻蚀掉硬掩膜层3中位于P型离子区两侧的部分区域的硬掩膜层3,形成了第二沟槽窗口区。其中第二沟槽7为用于沉积多晶硅层的沟槽,第二沟槽窗口区为用于进行刻蚀后形成的第二沟槽的窗口区。In this embodiment, photolithography and etching are used to etch away part of the hard mask layer 3 located on both sides of the P-type ion region in the hard mask layer 3 to form the second trench window region. The second trench 7 is a trench for depositing a polysilicon layer, and the window area of the second trench is a window area for the second trench formed after etching.

可选地,本实施例中刻蚀工艺可采用干法刻蚀工艺。Optionally, the etching process in this embodiment may adopt a dry etching process.

本实施例中,第二沟槽7位于第二沟槽窗口区的正下方,第二沟槽7的侧面与第二沟槽窗口区的侧面位于同一平面上。In this embodiment, the second trench 7 is located directly below the window area of the second trench, and the side surfaces of the second trench 7 and the window area of the second trench are located on the same plane.

步骤206c,对第二沟槽窗口区的下侧区域进行刻蚀,在N型外延层中2中形成第二沟槽7。Step 206c, etching the lower side region of the window region of the second trench to form a second trench 7 in the N-type epitaxial layer 2 .

本实施例中,可采用干法刻蚀工艺,对第二沟槽窗口区的下侧区域进行刻蚀,在N型外延层中2中形成第二沟槽7。其中,第二沟槽7的截面形状为矩形,第二沟槽7的深度小于N型外延层2的厚度。In this embodiment, a dry etching process may be used to etch the lower region of the window region of the second trench to form the second trench 7 in the N-type epitaxial layer 2 . Wherein, the cross-sectional shape of the second trench 7 is rectangular, and the depth of the second trench 7 is smaller than the thickness of the N-type epitaxial layer 2 .

优选地,本实施例中,第一沟槽5与第二沟槽7的深度相同。Preferably, in this embodiment, the first groove 5 and the second groove 7 have the same depth.

本实施例中,在形成P型离子区后,P型离子区可以分担第二沟槽7底部的场强,从而提高击穿电压,第一沟槽5的底部越接近第二沟槽7的底部,分担的场强越多,当第一沟槽5与第二沟槽7的深度相同,即第一沟槽的底部与第二沟槽的底部位于同一水平面时,第二沟槽底部的场强最弱,击穿电压达到最高。In this embodiment, after the P-type ion region is formed, the P-type ion region can share the field strength at the bottom of the second trench 7, thereby increasing the breakdown voltage. The closer the bottom of the first trench 5 is to the bottom of the second trench 7 bottom, the more shared field intensity, when the depth of the first groove 5 and the second groove 7 are the same, that is, when the bottom of the first groove and the bottom of the second groove are at the same level, the second groove bottom The field strength is the weakest and the breakdown voltage reaches the highest.

步骤207,对第二沟槽7的底角进行圆滑处理。Step 207 , rounding the bottom corner of the second groove 7 .

本实施例中,由于第二沟槽7的底角为直角,曲率半径小,致使击穿电压较低,所以对第二沟槽7的底角进行圆滑处理后,使第二沟槽7的底角的曲率增大,进一步提高了该沟槽型VDMOS的击穿电压。In this embodiment, since the bottom angle of the second trench 7 is a right angle and the radius of curvature is small, the breakdown voltage is low, so after the bottom corner of the second trench 7 is rounded, the second trench 7 The increased curvature of the bottom corner further increases the breakdown voltage of the trench VDMOS.

本实施例中,在对第二沟槽7的底角进行圆滑处理后,采用现有技术中的方法去除硬掩膜层3。In this embodiment, after the bottom corner of the second trench 7 is rounded, the hard mask layer 3 is removed by a method in the prior art.

步骤208,在N型外延层2的上表面及第二沟槽7内表面形成栅氧化层8。Step 208 , forming a gate oxide layer 8 on the upper surface of the N-type epitaxial layer 2 and the inner surface of the second trench 7 .

步骤209,在第二沟槽7中的栅氧化层8上沉积多晶硅层9。Step 209 , depositing a polysilicon layer 9 on the gate oxide layer 8 in the second trench 7 .

本实施例中,步骤208-步骤209与本发明沟槽型VDMOS制造方法实施例一中的步骤107-步骤108相同,在此不再一一赘述。In this embodiment, steps 208 to 209 are the same as steps 107 to 108 in Embodiment 1 of the trench VDMOS manufacturing method of the present invention, and will not be repeated here.

步骤210,对多晶硅层9进行回刻处理。In step 210, the polysilicon layer 9 is etched back.

本实施例中,对多晶硅层9进行回刻处理后,使多晶硅层9的上表面、P型离子区的上表面与N型外延层2的上表面在同一平面上。In this embodiment, after the polysilicon layer 9 is etched back, the upper surface of the polysilicon layer 9 , the upper surface of the P-type ion region and the upper surface of the N-type epitaxial layer 2 are on the same plane.

步骤211,形成沟槽型VDMOS的体区10,源区11,介电层12及金属层。Step 211 , forming the body region 10 , the source region 11 , the dielectric layer 12 and the metal layer of the trench VDMOS.

本实施例中,步骤211与本发明沟槽型VDMOS制造方法实施例一中的步骤109相同,在此不再一一赘述。In this embodiment, step 211 is the same as step 109 in Embodiment 1 of the trench-type VDMOS manufacturing method of the present invention, and will not be repeated here.

本实施例中提供的沟槽型VDMOS制造方法,第一沟槽的深度与第二沟槽的深度相同,并且对第二沟槽的底角进行圆滑处理,能进一步提高沟槽型VDMOS的击穿电压。In the trench-type VDMOS manufacturing method provided in this embodiment, the depth of the first trench is the same as that of the second trench, and the bottom corner of the second trench is rounded, which can further improve the impact of the trench-type VDMOS. wear voltage.

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.

Claims (7)

1. a groove-shaped VDMOS manufacture method, it is characterised in that including:
Described N-type epitaxy layer deposits hard mask layer;
Zone line in described hard mask layer is carried out photoetching, etching, forms the first trench openings district;
The underside area in described first trench openings district is performed etching, is formed in described N-type epitaxy layer First groove;
P is grown in described hard mask layer upper surface, described first trench openings district and described first groove Type extension;
Use CMP process to remove the p-type extension of described hard mask layer upper surface, described firmly cover P-type extension in film floor and described first trench openings district so that in described first groove formed p-type from Sub-district;
The second groove is formed respectively in the subregion of both sides, described N-type epitaxy layer ZhongPXing ion district;
Upper surface and described second grooved inner surface in described N-type epitaxy layer form gate oxide;
Deposit polycrystalline silicon layer on gate oxide in described second groove;
Form the body district of described groove-shaped VDMOS, source region, dielectric layer and metal level.
Method the most according to claim 1, it is characterised in that described in described N-type epitaxy layer The subregion of both sides, ZhongPXing ion district forms the second groove respectively and specifically includes:
Described N-type epitaxy layer deposits hard mask layer;
The subregion of the both sides, described p-type ion district in described hard mask layer is carried out photoetching, etching, Form the second trench openings district;
The underside area in described second trench openings district is performed etching, is formed in described N-type epitaxy layer Second groove.
Method the most according to claim 2, it is characterised in that described first groove and described the The degree of depth of two grooves is identical.
Method the most according to claim 3, it is characterised in that described in described N-type epitaxy layer After middle formation the second groove, also include:
The base angle of described second groove is carried out round and smooth process;
Remove described hard mask layer.
5. according to the method described in claim 3 or 4, it is characterised in that in described p-type ion district The dopant ion of p-type extension is boron ion, and the doping content of described p-type extension is 1E19-1E20 atom Number/cubic centimetre.
Method the most according to claim 5, it is characterised in that described in described second groove Gate oxide on after deposit polycrystalline silicon layer, also include:
Carry out back described polysilicon layer processing quarter, so that the upper surface of described polysilicon layer, described P The upper surface in type ion district is with the upper surface of described N-type epitaxy layer at grade.
Method the most according to claim 6, it is characterised in that the thickness of described polysilicon layer is 6000-12000 angstrom, the thickness of described gate oxide is 400-1000 angstrom.
CN201510205791.6A 2015-04-27 2015-04-27 Groove-shaped VDMOS manufacture method Pending CN106158660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510205791.6A CN106158660A (en) 2015-04-27 2015-04-27 Groove-shaped VDMOS manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510205791.6A CN106158660A (en) 2015-04-27 2015-04-27 Groove-shaped VDMOS manufacture method

Publications (1)

Publication Number Publication Date
CN106158660A true CN106158660A (en) 2016-11-23

Family

ID=57347424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510205791.6A Pending CN106158660A (en) 2015-04-27 2015-04-27 Groove-shaped VDMOS manufacture method

Country Status (1)

Country Link
CN (1) CN106158660A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037073A (en) * 2018-08-02 2018-12-18 深圳市诚朗科技有限公司 A kind of transistor and preparation method thereof
CN109037074A (en) * 2018-08-02 2018-12-18 深圳市诚朗科技有限公司 A kind of production method of transistor
CN109065603A (en) * 2018-08-02 2018-12-21 深圳市福来过科技有限公司 A kind of transistor and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222735A (en) * 1995-02-17 1996-08-30 Fuji Electric Co Ltd Vertical trench MISFET and manufacturing method thereof
KR20000016383A (en) * 1996-06-06 2000-03-25 크리 리서치, 인코포레이티드 Carbonized silicon metal-oxide-semiconductor field effect transistor
EP1359624A2 (en) * 2002-04-30 2003-11-05 NEC Electronics Corporation Vertical type MOSFET and manufacturing method thereof
CN101120439A (en) * 2004-09-08 2008-02-06 皇家飞利浦电子股份有限公司 Semiconductor device and manufacturing method thereof
CN103123898A (en) * 2011-11-21 2013-05-29 上海华虹Nec电子有限公司 Manufacturing method for super junction double diffusion metal-oxide semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222735A (en) * 1995-02-17 1996-08-30 Fuji Electric Co Ltd Vertical trench MISFET and manufacturing method thereof
KR20000016383A (en) * 1996-06-06 2000-03-25 크리 리서치, 인코포레이티드 Carbonized silicon metal-oxide-semiconductor field effect transistor
EP1359624A2 (en) * 2002-04-30 2003-11-05 NEC Electronics Corporation Vertical type MOSFET and manufacturing method thereof
CN101120439A (en) * 2004-09-08 2008-02-06 皇家飞利浦电子股份有限公司 Semiconductor device and manufacturing method thereof
CN103123898A (en) * 2011-11-21 2013-05-29 上海华虹Nec电子有限公司 Manufacturing method for super junction double diffusion metal-oxide semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037073A (en) * 2018-08-02 2018-12-18 深圳市诚朗科技有限公司 A kind of transistor and preparation method thereof
CN109037074A (en) * 2018-08-02 2018-12-18 深圳市诚朗科技有限公司 A kind of production method of transistor
CN109065603A (en) * 2018-08-02 2018-12-21 深圳市福来过科技有限公司 A kind of transistor and preparation method thereof

Similar Documents

Publication Publication Date Title
US9818860B2 (en) Silicon carbide semiconductor device and method for producing the same
US10763351B2 (en) Vertical trench DMOSFET having integrated implants forming enhancement diodes in parallel with the body diode
CN1227722C (en) Method of Fabricating Trench Gate DMOS Transistors
JP5217257B2 (en) Semiconductor device and manufacturing method thereof
CN107026205A (en) The manufacture method of manufacturing silicon carbide semiconductor device and manufacturing silicon carbide semiconductor device
US20080076222A1 (en) Method for producing an integrated circuit with a trench transistor structure
CN112103186B (en) A process method for improving cell density of trench MOSFET and structure of trench MOSFET
JP2006245082A (en) Semiconductor device
US9236468B2 (en) Semiconductor transistor device and method for manufacturing same
US20140145258A1 (en) Semiconductor device with reduced miller capacitance and fabrication method thereof
JP2008053397A (en) Semiconductor device and manufacturing method thereof
CN1599045A (en) Method of making a DMOS transistor having a drift region with a trench
CN105590844B (en) The manufacturing method of super-junction structure deep trench
CN108172563A (en) A kind of ditch flute profile device and its manufacturing method with self-aligned contact hole
CN112864246B (en) Superjunction device and manufacturing method thereof
US8088662B2 (en) Fabrication method of trenched metal-oxide-semiconductor device
JP6750300B2 (en) Semiconductor device and method of manufacturing semiconductor device
CN113594255A (en) Groove type MOSFET device and preparation method thereof
CN106158660A (en) Groove-shaped VDMOS manufacture method
CN102157377B (en) Super-junction VDMOS (Vertical Double-diffused Metal Oxide Semiconductor) device and manufacturing method thereof
KR100902585B1 (en) Trench gate type MOS transistor and manufacturing method thereof
CN112103187B (en) Process method for improving cell density of trench MOSFET and trench MOSFET structure
JP4048856B2 (en) Manufacturing method of semiconductor device
US20140124853A1 (en) Semiconductor device with reduced miller capacitance and fabrication method thereof
CN106158661A (en) Trench VDMOS Manufacturing Method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161123