CN106153028B - Internal and external discrete double-electrode distributed micro gyroscope and preparation method thereof - Google Patents
Internal and external discrete double-electrode distributed micro gyroscope and preparation method thereof Download PDFInfo
- Publication number
- CN106153028B CN106153028B CN201610633735.7A CN201610633735A CN106153028B CN 106153028 B CN106153028 B CN 106153028B CN 201610633735 A CN201610633735 A CN 201610633735A CN 106153028 B CN106153028 B CN 106153028B
- Authority
- CN
- China
- Prior art keywords
- electrode
- micro
- gyroscope
- electrodes
- internal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title abstract description 7
- 238000001514 detection method Methods 0.000 claims abstract description 35
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000010703 silicon Substances 0.000 claims abstract description 34
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 230000003071 parasitic effect Effects 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims description 95
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 54
- 239000000463 material Substances 0.000 claims description 40
- 239000011521 glass Substances 0.000 claims description 39
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 32
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 16
- 229910052796 boron Inorganic materials 0.000 claims description 16
- 239000000377 silicon dioxide Substances 0.000 claims description 16
- 235000012239 silicon dioxide Nutrition 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 229910052698 phosphorus Inorganic materials 0.000 claims description 12
- 239000011574 phosphorus Substances 0.000 claims description 12
- 239000003292 glue Substances 0.000 claims description 9
- 229910003460 diamond Inorganic materials 0.000 claims description 8
- 239000010432 diamond Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 7
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 4
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 238000004026 adhesive bonding Methods 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000009713 electroplating Methods 0.000 claims description 3
- 238000005498 polishing Methods 0.000 claims description 3
- 239000002210 silicon-based material Substances 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- -1 boron ion Chemical class 0.000 claims 7
- 238000001259 photo etching Methods 0.000 claims 3
- 229920002120 photoresistant polymer Polymers 0.000 claims 2
- 238000005516 engineering process Methods 0.000 abstract description 13
- 238000012545 processing Methods 0.000 abstract description 10
- 238000000926 separation method Methods 0.000 abstract description 4
- 238000011161 development Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- 229920005591 polysilicon Polymers 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 244000000626 Daucus carota Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000005770 birds nest Nutrition 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 235000005765 wild carrot Nutrition 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/567—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
- G01C19/5677—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators
- G01C19/5684—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
Abstract
本发明提出了一种内外分立的双电极分布式微陀螺仪及其制备方法,包括:单晶硅基底、中心固定支撑柱、微型谐振子、外电极、内电极、玻璃基底。所述外电极为多个,均匀分布在微型谐振子的外侧,构成均匀分布式外电极;所述内电极为多个,多个内电极均匀分布在微型谐振子的内侧,构成均匀分布式内电极;本发明结合MEMS体硅加工工艺和表面硅加工工艺进行制作;本发明可提供不同的驱动、检测方式及不同的工作模式,可工作在需要复杂控制的系统中;本发明可利用内电极和外电极分别进行驱动和检测,减小驱动电极和检测电极之间的寄生电容,提高检测精度。
The invention provides a dual-electrode distributed micro-gyroscope with internal and external separation and a preparation method thereof. There are a plurality of the external electrodes, which are evenly distributed on the outside of the micro-resonator to form a uniformly distributed external electrode; there are a plurality of the internal electrodes, and the plurality of internal electrodes are evenly distributed on the inner side of the micro-resonator to form a uniformly distributed internal electrode The present invention combines MEMS bulk silicon processing technology and surface silicon processing technology for fabrication; the present invention can provide different driving, detection modes and different working modes, and can work in systems requiring complex control; the present invention can utilize internal electrodes and The outer electrodes are driven and detected respectively, so as to reduce the parasitic capacitance between the driving electrodes and the detection electrodes and improve the detection accuracy.
Description
技术领域technical field
本发明涉及微机电技术领域的微型陀螺仪,具体地,涉及一种内外分立的双电极分布式微陀螺仪及其制备方法。The invention relates to a micro-gyroscope in the field of micro-electromechanical technology, in particular to a dual-electrode distributed micro-gyroscope with internal and external separation and a preparation method thereof.
背景技术Background technique
陀螺仪是一种能够检测载体角度或角速度的惯性器件,在姿态控制和导航定位等领域有着非常重要的作用。随着国防科技和航空、航天工业的发展,惯性导航系统对于陀螺仪的要求也向低成本、小体积、高精度、多轴检测、高可靠性、能适应各种恶劣环境的方向发展。因此,MEMS微陀螺的重要性不言而喻。特别地,微型半球谐振陀螺仪作为MEMS微陀螺的一个重要研究方向,已经成为该领域的一个研究热点。The gyroscope is an inertial device that can detect the angle or angular velocity of the carrier, and plays a very important role in the fields of attitude control and navigation and positioning. With the development of national defense technology and aviation and aerospace industries, the requirements of inertial navigation systems for gyroscopes are also developing in the direction of low cost, small size, high precision, multi-axis detection, high reliability, and adaptability to various harsh environments. Therefore, the importance of MEMS micro gyroscope is self-evident. In particular, as an important research direction of MEMS micro-gyroscope, micro hemispherical resonant gyroscope has become a research hotspot in this field.
对于微型陀螺仪而言,采用全角度控制技术,具有稳定性高、抗冲击能力强、精度高、误差小等优越特性,在航空航天、惯性导航以及民用消费电子等领域具有广泛的应用前景。目前设计的陀螺仪的电极数量较少,限制了其在复杂控制系统中的应用;并且一般的陀螺仪只有一个面上的一套电极,驱动、检测及控制电极之间存在一定的寄生电容及信号干扰,限制了其检测精度。For miniature gyroscopes, the use of full-angle control technology has the advantages of high stability, strong shock resistance, high precision, and small errors. It has a wide range of application prospects in aerospace, inertial navigation, and civil consumer electronics. The number of electrodes of the currently designed gyroscope is small, which limits its application in complex control systems; and the general gyroscope has only one set of electrodes on one surface, and there is a certain parasitic capacitance between the driving, detection and control electrodes. Signal interference, which limits its detection accuracy.
基于此,迫切需要提出一种新的陀螺仪结构,使其避免或减小上述影响因素,同时扩展其应用范围。Based on this, there is an urgent need to propose a new gyroscope structure, which can avoid or reduce the above-mentioned influencing factors, and at the same time expand its application range.
经检索,公开号为CN104165623A、申请号为201410389616.2的中国发明专利申请,该发明提供了一种内外双电极式微型半球谐振陀螺仪及其制备方法,包括:单晶硅基底、中心固定支撑柱、微型半球谐振子、外电极、外电极金属焊接板、玻璃基底、金属引线、圆形焊线盘、外电极金属连接柱内电极和种子层。该发明可利用内电极和外电极分别进行驱动和检测,减小驱动电极和检测电极之间的寄生电容,提高检测精度;为内电极和外电极提供了金属引线及圆形焊线盘,便于信号施加和信号提取。After searching, the Chinese invention patent application with the publication number of CN104165623A and the application number of 201410389616.2, the invention provides an inner and outer double-electrode miniature hemispherical resonant gyroscope and a preparation method thereof, including: a single crystal silicon substrate, a central fixed support column, Micro hemispherical resonator, external electrode, external electrode metal bonding plate, glass substrate, metal lead wire, circular bonding wire pad, external electrode metal connecting column, inner electrode and seed layer. The invention can use the inner electrode and the outer electrode to drive and detect respectively, reduce the parasitic capacitance between the driving electrode and the detection electrode, and improve the detection accuracy; metal leads and circular bonding pads are provided for the inner electrode and the outer electrode, which is convenient for Signal application and signal extraction.
但是上述专利仅提供了内部分立电极和外部分立电极的微型半球陀螺仪的结构方案,无法为多种微型陀螺仪提供不同的电极分布方案。However, the above-mentioned patent only provides a structural scheme of a micro-hemispherical gyroscope with an inner divided electrode and an outer divided electrode, and cannot provide different electrode distribution schemes for a variety of miniature gyroscopes.
发明内容SUMMARY OF THE INVENTION
针对现有技术中的缺陷,本发明的目的是提供一种内外分立的双电极分布式微陀螺仪及其制备方法,可提供不同的驱动、检测方式及不同的工作模式,可工作在需要复杂控制的系统中,且可以结合MEMS体硅加工工艺和表面硅加工工艺进行制作。In view of the defects in the prior art, the purpose of the present invention is to provide a dual-electrode distributed micro-gyroscope with internal and external separation and a preparation method thereof, which can provide different driving, detection methods and different working modes, and can work when complex control is required. In the system, and can be combined with MEMS bulk silicon processing technology and surface silicon processing technology for fabrication.
根据本发明的一个方面,提供一种内外分立的双电极分布式微陀螺仪,包括:单晶硅基底、中心固定支撑柱、微型谐振子、外电极、内电极、玻璃基底;其中:According to one aspect of the present invention, there is provided a dual-electrode distributed micro-gyroscope with internal and external separation, comprising: a single crystal silicon substrate, a central fixed support column, a micro-resonator, an external electrode, an internal electrode, and a glass substrate; wherein:
所述外电极为多个,多个外电极均匀分布在微型谐振子的外侧,构成均匀分布式外电极,同时所述外电极设置于所述单晶硅基底的表面或者玻璃基底的表面;There are a plurality of the external electrodes, and the plurality of external electrodes are evenly distributed on the outside of the micro-resonator to form uniformly distributed external electrodes, and at the same time, the external electrodes are arranged on the surface of the single crystal silicon substrate or the surface of the glass substrate;
所述内电极为多个,多个内电极均匀分布在微型谐振子的内侧,构成均匀分布式内电极,同时所述内电极设置于所述单晶硅基底的表面或者玻璃基底的表面;There are a plurality of the inner electrodes, and the plurality of inner electrodes are evenly distributed on the inner side of the micro-resonator to form a uniformly distributed inner electrode, and at the same time, the inner electrodes are arranged on the surface of the single crystal silicon substrate or the surface of the glass substrate;
所述中心固定支撑柱的一端与所述单晶硅基底连接,所述中心固定支撑柱的另一端与所述微型谐振子连接;所述单晶硅基底与所述玻璃基底键合;One end of the central fixed support column is connected to the single crystal silicon substrate, and the other end of the central fixed support column is connected to the micro resonator; the single crystal silicon substrate is bonded to the glass substrate;
所述微型谐振子作为所述微陀螺仪的振动体,所述外电极和所述内电极用于所述微陀螺仪的驱动、检测及控制。The micro-resonator is used as the vibrating body of the micro-gyroscope, and the outer electrode and the inner electrode are used for the driving, detection and control of the micro-gyroscope.
本发明所述微陀螺仪工作在角速率模式下时,施加交流驱动信号,在所述微型谐振子上施加直流偏置信号,均匀分布式外电极通过静电力使所述微型谐振子工作在所需的驱动模态下,驱动模态的振动幅值和频率保持不变;当垂直于单晶硅基底方向存在外加角速度时,检测模态的振动幅值会发生变化,该振动幅值的大小与外加角速度的大小成正比,同时引起均匀分布式外电极与所述微型谐振子之间的电容发生变化;通过采集均匀分布式外电极上的信号变化计算检测模态振动幅值的大小,进而计算外加角速度的大小。When the micro-gyroscope of the present invention works in the angular rate mode, an AC drive signal is applied, a DC bias signal is applied to the micro-resonator, and the uniformly distributed external electrodes make the micro-resonator work at all locations through electrostatic force. In the required driving mode, the vibration amplitude and frequency of the driving mode remain unchanged; when there is an applied angular velocity perpendicular to the direction of the monocrystalline silicon substrate, the vibration amplitude of the detection mode will change, and the magnitude of the vibration amplitude will change. It is proportional to the magnitude of the applied angular velocity, and at the same time causes the capacitance between the uniformly distributed external electrodes and the micro-resonator to change; by collecting the signal changes on the uniformly distributed external electrodes to calculate and detect the magnitude of the modal vibration amplitude, and then Calculate the magnitude of the applied angular velocity.
进一步的,本发明所述微陀螺仪采集均匀分布式内电极上的信号变化计算检测模态振动幅值的大小,进而计算外加角速度的大小,从而减小均匀分布式外电极之间的寄生电容,提高检测精度。Further, the micro gyroscope of the present invention collects the signal changes on the uniformly distributed inner electrodes to calculate the magnitude of the detection modal vibration amplitude, and then calculates the magnitude of the applied angular velocity, thereby reducing the parasitic capacitance between the uniformly distributed outer electrodes. , to improve the detection accuracy.
进一步的,本发明所述微陀螺仪在均匀分布式内电极上施加交流驱动信号,并在均匀分布式外电极或均匀分布式内电极上采集检测信号,提供不同的驱动、检测及控制方式。Further, the micro gyroscope of the present invention applies an AC drive signal on the uniformly distributed inner electrodes, and collects detection signals on the uniformly distributed outer electrodes or the uniformly distributed inner electrodes, providing different driving, detection and control modes.
进一步的,本发明通过均匀分布式内电极上的信号变化判断所述微陀螺仪的工作状态,在非正常工作状态下,通过控制算法在部分所述均匀分布式内电极上施加控制信号,可调节所述微陀螺仪的工作状态,从而使所述微陀螺仪正常工作。Further, the present invention judges the working state of the micro-gyroscope through the signal changes on the uniformly distributed inner electrodes, and in the abnormal working state, applying a control signal on some of the uniformly distributed inner electrodes through a control algorithm, so as to obtain a better performance. The working state of the micro-gyroscope is adjusted so that the micro-gyroscope can work normally.
进一步的,本发明所述微陀螺仪能工作在力平衡模式和全角度模式下,力平衡模式直接检测外加角速度的大小,全角度模式直接检测外加旋转角度的大小。Further, the micro gyroscope of the present invention can work in a force balance mode and an all-angle mode, the force balance mode directly detects the magnitude of the applied angular velocity, and the all-angle mode directly detects the magnitude of the applied rotation angle.
优选地,所述外电极和所述内电极的材料为硼离子或磷离子掺杂硅或者为金属镍;当外电极或者内电极位于单晶硅基底上时,材料为硼离子或磷离子掺杂硅;当外电极或者内电极位于玻璃基底上时,材料为金属镍。Preferably, the material of the outer electrode and the inner electrode is boron ion or phosphorus ion doped silicon or metal nickel; when the outer electrode or the inner electrode is located on a single crystal silicon substrate, the material is boron ion or phosphorus ion doped Miscellaneous silicon; when the outer electrode or inner electrode is on a glass substrate, the material is metallic nickel.
优选地,所述微陀螺仪为鸟巢形谐振陀螺仪、环形谐振陀螺仪、半球谐振陀螺仪、杯形谐振陀螺仪。Preferably, the micro-gyroscope is a bird's nest resonant gyroscope, a ring resonant gyroscope, a hemispherical resonant gyroscope, or a cup-shaped resonant gyroscope.
优选地,所述单晶硅基底和玻璃基底的材料分别为高阻硅和二氧化硅的高阻材料,高阻材料用于减小外电极与内电极之间的信号干扰。Preferably, the materials of the single crystal silicon substrate and the glass substrate are high-resistance silicon and silicon dioxide high-resistance materials, respectively, and the high-resistance materials are used to reduce signal interference between the external electrode and the internal electrode.
优选地,所述中心固定支撑柱的材料为高阻硅或者二氧化硅。Preferably, the material of the central fixed support column is high-resistance silicon or silicon dioxide.
优选地,所述微型谐振子的材料为掺杂金刚石或掺杂多晶硅,是微陀螺仪的主要振动体。Preferably, the material of the micro resonator is doped diamond or doped polysilicon, which is the main vibrating body of the micro gyroscope.
本发明中,所述内电极和外电极分布可用于复杂的控制系统中,实现全角度控制。In the present invention, the distribution of the inner electrode and the outer electrode can be used in a complex control system to realize full-angle control.
本发明可以是均匀分布的内外分立的双电极分布的多种微型陀螺仪结构,电极分布方式存在巨大差异,能适用于特殊的电路驱动和检测方案(如实施例中所述),微型谐振子不仅仅局限于微型半球谐振陀螺仪,也能为多种微型陀螺仪提供了不同的电极分布方案。The present invention can be a variety of micro-gyroscope structures with evenly distributed inner and outer discrete two-electrode distribution, and there are huge differences in the electrode distribution methods, which can be suitable for special circuit driving and detection schemes (as described in the embodiment), micro-resonator It is not only limited to micro hemispherical resonant gyroscopes, but also provides different electrode distribution schemes for a variety of micro gyroscopes.
本发明所述的内分立外环形的双电极分布,是内外分布的,而不是相邻分布或者上下分布,并且外侧电极为环形一体式,与内外双分立电极相比工艺更为简单。The inner discrete outer annular double electrode distribution of the present invention is distributed inside and outside, rather than adjacent or up and down, and the outer electrodes are annular and integrated, and the process is simpler compared with the inner and outer dual discrete electrodes.
根据本发明的另一个方面,提供一种内外分立的双电极分布式微陀螺仪的制备方法,包括如下步骤:According to another aspect of the present invention, there is provided a preparation method of a two-electrode distributed micro-gyroscope that is separated inside and outside, comprising the following steps:
第一步、对单晶硅基底和玻璃基底进行清洗、涂胶、光刻、显影、硼离子注入、溅射、去胶工艺,在单晶硅基底上得到硼离子或磷离子掺杂硅材料的内电极或外电极;The first step is to perform cleaning, coating, photolithography, development, boron ion implantation, sputtering, and debonding processes on the single crystal silicon substrate and the glass substrate to obtain boron ion or phosphorus ion doped silicon material on the single crystal silicon substrate the inner electrode or outer electrode;
第二步、在单晶硅基底上进行涂胶、光刻、显影、硅的各向同性刻蚀、去胶,以在单晶硅基底上得到微型谐振子形状对应的凹槽;The second step is to apply glue, photolithography, development, silicon isotropic etching, and debonding on the monocrystalline silicon substrate to obtain grooves corresponding to the shape of the micro-resonator on the monocrystalline silicon substrate;
第三步、在单晶硅基底上沉积二氧化硅,为制作微型谐振子及内电极或外电极间隙提供牺牲层;The third step is to deposit silicon dioxide on the single crystal silicon substrate to provide a sacrificial layer for making micro-resonators and the gap between inner electrodes or outer electrodes;
第四步、在单晶硅基底上沉积掺杂金刚石或掺杂多晶硅,并进行化学机械抛光,以制作微型谐振子;The fourth step, depositing doped diamond or doped polysilicon on the single crystal silicon substrate, and carrying out chemical mechanical polishing to make micro-resonators;
第五步、在第四步的基础上利用BOE溶液刻蚀二氧化硅牺牲层并控制刻蚀时间,以释放微型谐振子,并将残余部分作为中心固定支撑柱;The fifth step is to use the BOE solution to etch the silicon dioxide sacrificial layer on the basis of the fourth step and control the etching time to release the micro-resonator, and use the residual part as the center to fix the support column;
第六步、在玻璃基底上进行涂胶、光刻、显影、电镀镍、去胶,以制作金属镍材料的内电极或外电极;The sixth step is to apply glue, photolithography, development, nickel electroplating, and glue removal on the glass substrate to make the inner electrode or outer electrode of the metal nickel material;
第七步、倒置玻璃基底,并与单晶硅基底进行键合,使玻璃基底的中心部分与单晶硅基底的中心固定支撑柱的中心对准,实现两个基底固定,从而得到内外分立的双电极分布式微陀螺仪。The seventh step is to invert the glass substrate and bond it with the single crystal silicon substrate, so that the center part of the glass substrate is aligned with the center of the center fixed support column of the single crystal silicon substrate, so that the two substrates can be fixed, so as to obtain a separate inner and outer Two-electrode distributed microgyroscope.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)所述微陀螺仪是结合MEMS体硅加工工艺和表面硅加工工艺进行制作的,是一种新颖的加工工艺;(1) The micro-gyroscope is made by combining MEMS bulk silicon processing technology and surface silicon processing technology, and is a novel processing technology;
(2)所述微陀螺仪可提供不同的驱动、检测方式及不同的工作模式,在不减小电极面积的情况下,增加了电极数量,可使所述微陀螺仪工作在需要复杂控制的系统中;(2) The micro gyroscope can provide different driving, detection methods and different working modes. The number of electrodes is increased without reducing the electrode area, so that the micro gyroscope can work in complex control conditions. in the system;
(3)所述微陀螺仪可利用内电极和外电极分别进行驱动和检测,减小驱动电极和检测电极之间的寄生电容,提高检测精度;可用于复杂的控制系统中,实现全角度控制。(3) The micro gyroscope can be driven and detected by the inner electrode and the outer electrode respectively, so as to reduce the parasitic capacitance between the driving electrode and the detection electrode and improve the detection accuracy; it can be used in a complex control system to realize full-angle control .
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments with reference to the following drawings:
图1(a)-图1(c)为本发明一内外分立的双电极分布式微型半球谐振陀螺仪结构;Fig. 1 (a)-Fig. 1 (c) is the structure of an inner and outer discrete two-electrode distributed miniature hemispherical resonant gyroscope of the present invention;
图2(a)-图2(c)为本发明一内外分立的双电极分布式微型环形谐振陀螺仪结构;Fig. 2 (a)-Fig. 2 (c) is the structure of an inner and outer discrete two-electrode distributed miniature ring resonant gyroscope of the present invention;
图3(a)-图3(c)为本发明一内外分立的双电极分布式微型杯形谐振陀螺仪结构;Fig. 3 (a)-Fig. 3 (c) is an inner and outer discrete two-electrode distributed miniature cup-shaped resonant gyroscope structure of the present invention;
图4(a)-图4(g)为本发明一实施例的内外分立的双电极分布式微型杯形谐振陀螺仪的制备方法流程图;4(a)-FIG. 4(g) are flowcharts of a method for preparing an inner and outer discrete two-electrode distributed miniature cup-shaped resonant gyroscope according to an embodiment of the present invention;
图中:1为微型谐振子,2为均匀分布式外电极,3为均匀分布式内电极,4为单晶硅基底,5为玻璃基底,6为中心固定支撑柱。In the figure: 1 is a miniature resonator, 2 is a uniformly distributed outer electrode, 3 is a uniformly distributed inner electrode, 4 is a monocrystalline silicon substrate, 5 is a glass substrate, and 6 is a central fixed support column.
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。The present invention will be described in detail below with reference to specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that, for those skilled in the art, several modifications and improvements can be made without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
实施例1Example 1
如图1(a)-图1(c)所示,本实施例提供一种内外分立的双电极分布式微型半球谐振陀螺仪结构,包括:As shown in FIG. 1(a)-FIG. 1(c), this embodiment provides a two-electrode distributed micro-hemispherical resonant gyroscope structure with internal and external discrete, including:
一个半球形的微型谐振子1;A
十六个均匀分布式外电极2;Sixteen evenly distributed
十六个均匀分布式内电极3;Sixteen evenly distributed
一个单晶硅基底4;a single
一个玻璃基底5;a
一个中心固定支撑柱6;其中:A central fixed
所述中心固定支撑柱6的一端与所述单晶硅基底4连接,所述中心固定支撑柱6的另一端与所述微型谐振子1连接(如图1(a)所示);One end of the central fixed
十六个所述均匀分布式外电极2设置于所述玻璃基底5的表面(如图1(b)所示),并均匀地分布在所述微型谐振子1的外围(如图1(c)所示);十六个所述均匀分布式内电极3设置于所述玻璃基底5的表面(如图1(b)所示),并均匀地分布在所述微型谐振子1的内腔(如图1(c)所示);所述单晶硅基底4与玻璃基底5键合。Sixteen uniformly distributed
本实施例中,所述微型谐振子1的材料为掺杂金刚石或掺杂多晶硅,是所述微型半球谐振陀螺仪的主要振动体。In this embodiment, the material of the
本实施例中,所述均匀分布式外电极2的材料为硼离子掺杂硅,也可以是磷离子掺杂硅,用于所述微型半球谐振陀螺仪的驱动、检测及控制。In this embodiment, the material of the uniformly distributed
本实施例中,所述均匀分布式内电极3的材料为为硼离子或磷离子掺杂硅,用于所述微型半球谐振陀螺仪的驱动、检测及控制。In this embodiment, the material of the uniformly distributed
本实施例中,所述单晶硅基底4和玻璃基底5的材料分别为高阻硅和二氧化硅这样的高阻材料,高阻材料可以减小十六个均匀分布式外电极2和十六个均匀分布式内电极3之间的信号干扰。In this embodiment, the materials of the single
本实施例中,所述中心固定支撑柱6的材料为二氧化硅,也可以是高阻硅。In this embodiment, the material of the central fixed
本实施例中,所述微型半球谐振陀螺仪可工作在角速率模式下,施加交流驱动信号,在所述微型谐振子1上施加直流偏置信号,所述均匀分布式外电极2通过静电力使所述微型谐振子1工作在所需的驱动模态下,驱动模态的振动幅值和频率保持不变;当垂直于单晶硅基底4方向存在外加角速度时,检测模态的振动幅值会发生变化,该振动幅值的大小与外加角速度的大小成正比,同时引起所述均匀分布式外电极2与所述微型谐振子1之间的电容发生变化;通过采集所述均匀分布式外电极2上的信号变化可以计算检测模态振动幅值的大小,进而计算外加角速度的大小。In this embodiment, the micro hemispherical resonant gyroscope can work in the angular rate mode, applying an AC drive signal, applying a DC bias signal to the
本实施例中,所述微型半球谐振陀螺仪也可以采集所述均匀分布式内电极3上的信号变化计算检测模态振动幅值的大小,进而计算外加角速度的大小,从而减小所述均匀分布式外电极2之间的寄生电容,提高检测精度。In this embodiment, the miniature hemispherical resonant gyroscope can also collect the signal changes on the uniformly distributed
本实施例中,所述微型半球谐振陀螺仪可以在所述均匀分布式内电极3上施加交流驱动信号,并在所述均匀分布式外电极2或所述均匀分布式内电极3上采集检测信号,提供不同的驱动、检测及控制方式。In this embodiment, the micro hemispherical resonant gyroscope can apply an AC drive signal on the uniformly distributed
本实施例中,所述微型半球谐振陀螺仪可以通过所述均匀分布式内电极3上的信号变化判断所述微型半球谐振陀螺仪的工作状态,在非正常工作状态下,通过控制算法在部分所述均匀分布式内电极3上施加控制信号,可调节所述微型半球谐振陀螺仪的工作状态,从而使所述微型半球谐振陀螺仪正常工作。In this embodiment, the miniature hemispherical resonant gyroscope can judge the working state of the miniature hemispherical resonant gyroscope through the signal changes on the uniformly distributed
本实施例中,所述微型半球谐振陀螺仪也可工作在力平衡模式和全角度模式下,力平衡模式可直接检测外加角速度的大小,全角度模式可直接检测外加旋转角度的大小。In this embodiment, the micro hemispherical resonant gyroscope can also work in the force balance mode and the full angle mode. The force balance mode can directly detect the magnitude of the applied angular velocity, and the full angle mode can directly detect the magnitude of the applied rotation angle.
实施例2Example 2
如图2(a)-图2(c)所示,本实施例提供一种内外分立的双电极分布式微型环形谐振陀螺仪,包括:As shown in Fig. 2(a)-Fig. 2(c), this embodiment provides a two-electrode distributed miniature ring resonant gyroscope with inner and outer discrete, including:
一个环形的微型谐振子1;A ring-shaped
十六个均匀分布式外电极2;Sixteen evenly distributed
十六个均匀分布式内电极3;Sixteen evenly distributed
一个单晶硅基底4;a single
一个玻璃基底5;a
一个中心固定支撑柱6;其中:A central fixed
所述中心固定支撑柱6的一端与所述单晶硅基底4连接,所述中心固定支撑柱6的另一端与所述微型谐振子1连接(如图2(a)所示);十六个所述均匀分布式外电极2设置于所述单晶硅基底4表面,并均匀地分布在所述微型谐振子1的外围(如图2(a)所示);十六个所述均匀分布式内电极3设置于所述玻璃基底5的表面(如图2(b)所示),并均匀地分布在所述微型谐振子1的内侧(如图2(c)所示);所述单晶硅基底4与玻璃基底5键合。One end of the central fixed
本实施例中,所述微型谐振子1的材料为掺杂金刚石或掺杂多晶硅,是所述微型环形谐振陀螺仪的主要振动体。In this embodiment, the material of the
本实施例中,所述均匀分布式外电极2的材料为硼离子掺杂硅,也可以是磷离子掺杂硅,用于所述微型环形谐振陀螺仪的驱动、检测及控制。In this embodiment, the material of the uniformly distributed
本实施例中,所述均匀分布式内电极3的材料为为硼离子或磷离子掺杂硅,用于所述微型环形谐振陀螺仪的驱动、检测及控制。In this embodiment, the material of the uniformly distributed
本实施例中,所述单晶硅基底4和玻璃基底5的材料分别为高阻硅和二氧化硅这样的高阻材料,高阻材料可以减小十六个均匀分布式外电极2和十六个均匀分布式内电极3之间的信号干扰。In this embodiment, the materials of the single
本实施例中,所述中心固定支撑柱6的材料为二氧化硅,也可以是高阻硅。In this embodiment, the material of the central fixed
本实施例中,所述微型环形谐振陀螺仪也可工作在力平衡模式和全角度模式下,力平衡模式可直接检测外加角速度的大小,全角度模式可直接检测外加旋转角度的大小。In this embodiment, the micro ring resonant gyroscope can also work in the force balance mode and the full angle mode. The force balance mode can directly detect the magnitude of the applied angular velocity, and the full angle mode can directly detect the magnitude of the applied rotation angle.
实施例3Example 3
如图3(a)-图3(c)所示,本实施例提供一种内外分立的双电极分布式微型杯形谐振陀螺仪,包括:As shown in FIG. 3(a)-FIG. 3(c), this embodiment provides a two-electrode distributed micro-cup resonant gyroscope with internal and external discrete, including:
一个杯形的微型谐振子1;A cup-shaped
十六个均匀分布式外电极2;Sixteen evenly distributed
十六个均匀分布式内电极3;Sixteen evenly distributed
一个单晶硅基底4;a single
一个玻璃基底5;a
一个中心固定支撑柱6;其中:A central fixed
所述中心固定支撑柱6的一端与所述单晶硅基底4连接,所述中心固定支撑柱6的另一端与所述微型谐振子1连接(如图3(a)所示);十六个所述均匀分布式外电极2设置于所述单晶硅基底4表面,并均匀地分布在所述微型谐振子1的外围(如图3(a)所示);十六个所述均匀分布式内电极3设置于所述玻璃基底5的表面(如图3(b)所示),并均匀地分布在所述微型谐振子1的内侧(如图3(c)所示);所述单晶硅基底4与玻璃基底5键合。One end of the central fixed
本实施例中,所述微型谐振子1的材料为掺杂金刚石或掺杂多晶硅,是所述微型杯形谐振陀螺仪的主要振动体。In this embodiment, the material of the
本实施例中,所述均匀分布式外电极2的材料为硼离子掺杂硅,也可以是磷离子掺杂硅,用于所述微型杯形谐振陀螺仪的驱动、检测及控制。In this embodiment, the material of the uniformly distributed
进一步的,所述陀螺仪可以设置金属引线,所述金属引线的一端与所述外电极、所述内电极连接,所述金属引线的另外一端作为外部接口,所述金属引线用于信号施加和信号提取。Further, the gyroscope can be provided with a metal lead, one end of the metal lead is connected to the outer electrode and the inner electrode, the other end of the metal lead serves as an external interface, and the metal lead is used for signal application and Signal extraction.
本实施例中,所述均匀分布式内电极3的材料为为硼离子或磷离子掺杂硅,用于所述微型杯形谐振陀螺仪的驱动、检测及控制。In this embodiment, the material of the uniformly distributed
本实施例中,所述单晶硅基底4和玻璃基底5的材料分别为高阻硅和二氧化硅这样的高阻材料,高阻材料可以减小十六个均匀分布式外电极2和十六个均匀分布式内电极3之间的信号干扰。In this embodiment, the materials of the single
本实施例中,所述中心固定支撑柱6的材料为二氧化硅,也可以是高阻硅。In this embodiment, the material of the central fixed
本实施例中,所述微型杯形谐振陀螺仪也可工作在力平衡模式和全角度模式下,力平衡模式可直接检测外加角速度的大小,全角度模式可直接检测外加旋转角度的大小。In this embodiment, the micro-cup resonant gyroscope can also work in the force balance mode and the full angle mode. The force balance mode can directly detect the magnitude of the applied angular velocity, and the full angle mode can directly detect the magnitude of the applied rotation angle.
本发明结合了MEMS体硅加工工艺和表面硅加工工艺进行制作,是一种新颖的加工工艺;本发明中的微陀螺仪可提供不同的驱动、检测方式及不同的工作模式,可工作在需要复杂控制的系统中;本发明中的微陀螺仪可利用内电极和外电极分别进行驱动和检测,减小驱动电极和检测电极之间的寄生电容,提高检测精度;本发明中的微陀螺仪内电极和外电极提供了金属引线,便于信号施加和信号提取。The invention combines the MEMS bulk silicon processing technology and the surface silicon processing technology for production, and is a novel processing technology; the micro gyroscope in the invention can provide different driving, detection methods and different working modes, and can work when required In a complex control system; the micro gyroscope in the present invention can use the inner electrode and the outer electrode to drive and detect respectively, reduce the parasitic capacitance between the driving electrode and the detection electrode, and improve the detection accuracy; the micro gyroscope in the present invention Metal leads are provided for the inner and outer electrodes for easy signal application and signal extraction.
实施例4Example 4
如图4(a)-图4(g)所示,本实施例提供一种内外分立的双电极分布式微型半球谐振陀螺仪的制备方法,包括如下步骤:As shown in FIG. 4(a)-FIG. 4(g), the present embodiment provides a preparation method of a two-electrode distributed miniature hemispherical resonant gyroscope that is separated inside and outside, including the following steps:
第一步、如图4(a)所示,对单晶硅基底4进行清洗、涂胶、光刻、显影、硼离子注入、溅射、去胶工艺,以在单晶硅基底1上得到厚度为10μm-50μm的硼离子掺杂硅材料的外电极2;The first step, as shown in FIG. 4( a ), is to perform cleaning, gluing, photolithography, developing, boron ion implantation, sputtering, and degumming processes on the single
第二步、如图4(b)所示,在单晶硅基底上进行涂胶、光刻、显影、硅的各向同性刻蚀、去胶,以在单晶硅基底4上得到半径为300μm-700μm的半球形凹槽;In the second step, as shown in Figure 4(b), glue coating, photolithography, development, silicon isotropic etching, and glue removal are performed on the single crystal silicon substrate to obtain a radius of 300μm-700μm hemispherical groove;
第三步、如图4(c)所示,在单晶硅基底上沉积厚度为1μm-5μm的二氧化硅,为制作微型半球谐振子1及电极间隙提供牺牲层;The third step, as shown in Figure 4(c), depositing silicon dioxide with a thickness of 1 μm-5 μm on the monocrystalline silicon substrate to provide a sacrificial layer for making the miniature
第四步、如图4(d)所示,在第三步的基础上沉积掺杂金刚石或掺杂多晶硅,并进行化学机械抛光,以制作厚度为1μm-5μm的微型半球谐振子1;The fourth step, as shown in Fig. 4(d), is to deposit doped diamond or doped polysilicon on the basis of the third step, and perform chemical mechanical polishing to manufacture a micro
第五步、如图4(e)所示,在第四步的基础上利用BOE溶液刻蚀二氧化硅牺牲层并控制刻蚀时间,以释放微型半球谐振子1,将残余部分作为半径为15μm-35μm的中心固定支撑柱6;The fifth step, as shown in Figure 4(e), on the basis of the fourth step, the silicon dioxide sacrificial layer is etched with BOE solution and the etching time is controlled to release the micro
第六步、如图4(f)所示,在玻璃基底5上涂胶、光刻、显影、电镀镍、去胶,以制作高度为20μm-70μm的金属镍材料的内电极3。In the sixth step, as shown in FIG. 4(f), glue, photolithography, development, nickel electroplating, and glue removal are applied on the
第七步、如图4(g)所示,倒置玻璃基底5,并与单晶硅基底4进行键合,使玻璃基底5的中心部分与单晶硅基底4的中心固定支撑柱的中心对准,实现两个基底固定,从而得到内外分立的双电极分布式微陀螺仪。In the seventh step, as shown in FIG. 4(g), the
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the above-mentioned specific embodiments, and those skilled in the art can make various variations or modifications within the scope of the claims, which do not affect the essential content of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610633735.7A CN106153028B (en) | 2016-08-04 | 2016-08-04 | Internal and external discrete double-electrode distributed micro gyroscope and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610633735.7A CN106153028B (en) | 2016-08-04 | 2016-08-04 | Internal and external discrete double-electrode distributed micro gyroscope and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106153028A CN106153028A (en) | 2016-11-23 |
CN106153028B true CN106153028B (en) | 2020-11-17 |
Family
ID=57329058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610633735.7A Active CN106153028B (en) | 2016-08-04 | 2016-08-04 | Internal and external discrete double-electrode distributed micro gyroscope and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106153028B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107389050B (en) * | 2017-07-04 | 2020-07-31 | 东南大学 | Micro-hemispherical resonator gyroscope with accurately controlled inner and outer electrode gaps and processing method thereof |
CN109186575B (en) * | 2018-09-20 | 2022-02-01 | 北方电子研究院安徽有限公司 | Preparation method of double-electrode micro-cylindrical resonant gyroscope based on SOI |
CN113959422B (en) * | 2021-10-29 | 2023-03-14 | 重庆天箭惯性科技股份有限公司 | Solid wave gyroscope structure and preparation method thereof |
CN114505629B (en) * | 2022-03-15 | 2022-12-06 | 哈尔滨工业大学 | An electrode substrate fixing device for welding a hemispherical resonator and an electrode substrate |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2936049B1 (en) * | 2008-09-16 | 2010-09-17 | Sagem Defense Securite | PARTIALLY METALLIZING RESONATOR FOR ANGULAR PARAMETER DETECTOR. |
CN103344229A (en) * | 2013-07-05 | 2013-10-09 | 西北工业大学 | Miniature hemispherical resonant gyroscope based on SOI (Silicon on Insulator) silicon slice and manufacturing method of miniature hemispherical resonant gyroscope |
CN103322994B (en) * | 2013-08-01 | 2015-10-07 | 东南大学 | Silica-based super-thin micro-hemispherical resonator gyroscope of a kind of biplate integrated form and preparation method thereof |
CN104197909B (en) * | 2014-08-08 | 2017-03-15 | 上海交通大学 | A kind of pair of semiglobe miniature resonant gyroscope and preparation method thereof |
CN104165623B (en) * | 2014-08-08 | 2017-02-15 | 上海交通大学 | Internal-external double-electrode type miniature hemispherical resonance gyroscope and preparation method thereof |
-
2016
- 2016-08-04 CN CN201610633735.7A patent/CN106153028B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN106153028A (en) | 2016-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104165623B (en) | Internal-external double-electrode type miniature hemispherical resonance gyroscope and preparation method thereof | |
CN106289216B (en) | Inner ring and outer discrete two-electrode distributed micro-gyroscope and preparation method thereof | |
CN104197917B (en) | A kind of Piezoelectric Driving and the micro hemispherical resonator gyro instrument of detection and preparation method thereof | |
CN106153028B (en) | Internal and external discrete double-electrode distributed micro gyroscope and preparation method thereof | |
CN105486297B (en) | A kind of polycyclic interior S-shaped flexible beam resonant gyroscope of disk and preparation method thereof | |
CN104197909B (en) | A kind of pair of semiglobe miniature resonant gyroscope and preparation method thereof | |
CN103344227B (en) | Electrostatic drives piezoelectric detection bulk acoustic resonance three axle microthrust test and preparation method thereof | |
CN105004334B (en) | Electromagnetic type hemispherical gyroscope and preparation method thereof outside face | |
CN104197910B (en) | Micro hemispherical resonator gyro instrument based on micro- ball and preparation method thereof | |
CN104197916B (en) | Hemispheroid solid fluctuation micro-gyroscope and manufacturing method thereof | |
CN104197921A (en) | Pattern-transferred embossed miniature hemispherical resonant gyroscope and manufacturing method thereof | |
CN104897146B (en) | Piezoelectric type hemispherical gyroscope and preparation method thereof outside face | |
CN105371832B (en) | A kind of polycyclic interior twin beams of disk isolates annulus resonant gyroscope and preparation method thereof | |
CN103363970A (en) | Electromagnetic-driving electromagnetic-detection triaxial microgyroscope with bulk acoustic wave resonance, and preparation method thereof | |
CN104197918B (en) | Semi-circular piezoelectric resonator gyroscope and preparation method thereof | |
CN104197908B (en) | Recessed annular piezoelectric resonator gyroscope and preparation method thereof | |
CN106323261B (en) | Two-electrode distributed micro-gyroscope with upper discrete and lower annular and preparation method thereof | |
CN106323260B (en) | Side-separated adjacent-surface annular double-electrode distributed micro gyroscope and preparation method thereof | |
CN103322995B (en) | Piezoelectric Driving electrostatic detection bulk acoustic resonance three axle microthrust test and preparation method thereof | |
CN103344230B (en) | Electrostatic drives electrostatic detection bulk acoustic resonance three axle microthrust test and preparation method thereof | |
US20150330782A1 (en) | Mass-loaded coriolis vibratory gyroscope | |
CN104197912B (en) | A kind of fixed silicon-base miniature hemispherical resonant gyro of both-end and preparation method thereof | |
CN104897148A (en) | Cellular solid fluctuating micromechanical gyroscope and preparation method thereof | |
CN106168483B (en) | Two-electrode distributed micro-gyroscope with upper ring and lower discrete and its preparation method | |
CN106323259B (en) | Discrete upper and lower two-electrode distributed micro-gyroscope and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |