CN1061407C - Stiffness decoupler for base insolation of structures - Google Patents
Stiffness decoupler for base insolation of structures Download PDFInfo
- Publication number
- CN1061407C CN1061407C CN 92110609 CN92110609A CN1061407C CN 1061407 C CN1061407 C CN 1061407C CN 92110609 CN92110609 CN 92110609 CN 92110609 A CN92110609 A CN 92110609A CN 1061407 C CN1061407 C CN 1061407C
- Authority
- CN
- China
- Prior art keywords
- foundation
- pipe
- retaining ring
- pipes
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004567 concrete Substances 0.000 claims abstract description 20
- 230000033001 locomotion Effects 0.000 claims abstract description 15
- 238000002955 isolation Methods 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims description 10
- 238000013016 damping Methods 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 5
- 125000006850 spacer group Chemical group 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 229910000906 Bronze Inorganic materials 0.000 claims description 2
- 239000001996 bearing alloy Substances 0.000 claims description 2
- 239000010974 bronze Substances 0.000 claims description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 2
- 238000009434 installation Methods 0.000 claims 1
- 239000011133 lead Substances 0.000 claims 1
- 239000000314 lubricant Substances 0.000 claims 1
- 239000011150 reinforced concrete Substances 0.000 description 5
- 239000003351 stiffener Substances 0.000 description 5
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
一种刚度隔离装置,用于保护遭受地震影响的建筑物或其它建筑结构物(20),防止这种结构物(20)的倒塌或灾难性破坏。优选的隔离装置(22)包括一些长的相对挠性的混凝土填充了的管件(28),管件与结构物(20)固连并向下朝下面的地基(26)方向伸展,至少一部分管件与地基相连接,阻止结构物(20)的倾翻。主承载柱(46)支承在地基(26)上并容纳一组管件排列,在柱的上端和结构物之间装有支座装置(32),可在其间作有限的横向移动。
A stiffness isolation device for protecting a building or other architectural structure (20) subject to earthquakes from collapse or catastrophic failure of such a structure (20). A preferred isolator (22) comprises long, relatively flexible, concrete-filled pipes (28) secured to the structure (20) and extending downwardly toward the underlying foundation (26), at least some of which are in contact with The foundations are connected to prevent the structure (20) from tipping over. The main bearing column (46) is supported on the foundation (26) and accommodates a group of pipe fittings, and a support device (32) is installed between the upper end of the column and the structure, which can make limited lateral movement therebetween.
Description
概括地说,本发明涉及用在诸如多层建筑物或桥梁等抗震结构物的建设中的刚度隔离装置或减震装置。这种装置能有效地将所涉及的结构物的横向刚度从结构物的支撑柱系统的承载强度中隔离出来,或者说消除横向刚度和承载强度间的相互影响。这样就能有效地控制结构物在地震状态下的动态特性或变化,同时保持结构物的必要的承载强度,减振强和自然周期。本发明的隔离装置最好包含数个长的,填充有混凝土的管件,管件固连在结构物上,以及一个包围着管件的主承载柱,该柱位于下面的地基和结构物之间并容纳管件。在柱和结构物之间设置有低摩阻的支座,可允在其间作相对的横向移动。In general terms, the present invention relates to stiffness isolation or shock absorbing devices for use in the construction of earthquake resistant structures such as multistory buildings or bridges. This arrangement effectively isolates the lateral stiffness of the structure involved from the load-bearing strength of the structure's supporting column system, or eliminates the interaction between lateral stiffness and load-bearing strength. In this way, the dynamic characteristics or changes of the structure under the seismic state can be effectively controlled, while maintaining the necessary bearing strength, vibration damping strength and natural period of the structure. The isolation device of the present invention preferably comprises several long, concrete-filled pipes fixed to the structure, and a main load-bearing column surrounding the pipes, which is located between the underlying foundation and the structure and holds the pipe fittings. A low-friction support is provided between the column and the structure to allow relative lateral movement therebetween.
长期以来建筑师和结构工程师们都在设法解决易受地震影响地区的建筑物,桥梁或其它结构的设计问题。最近旧金山生的地震是这种地区由于建筑设计不当而存在潜在灾难后果的例子之一。Architects and structural engineers have long struggled with the design of buildings, bridges or other structures in areas prone to earthquakes. The recent earthquake in San Francisco is one example of the potentially catastrophic consequences of poorly designed buildings in such an area.
过去曾提供了许多建议,它们旨在增加各种结构物的抗震的安全性。一般地,大多数的当代建议或方案都是试图将强度的质量(即在保持弹性下能够承受大的力的能力)、可变形性和能量吸收能力结合在一起。例如,人们知道采用大的弹性支座来支承可延伸的加强混凝土的框架结构物,以便将结构物与下面的地基隔开。但是这种支座很昂贵,而且有些要受环境的损坏。Numerous proposals have been made in the past aimed at increasing the seismic safety of various structures. In general, most contemporary proposals or solutions attempt to combine the qualities of strength (ie the ability to withstand large forces while maintaining elasticity), deformability and energy absorption. For example, it is known to support an extendable reinforced concrete frame structure using large elastic bearings to isolate the structure from the underlying foundation. But such mounts are expensive and some are subject to environmental damage.
过去也有人建议采用柔性钢能量吸收装置,这些装置在工作负荷下是刚性的,而在大的地震负荷下则弯曲从而吸收能量。这种方案取决于作为底座隔离装置是使用的钢棒的滞后能量吸收能力。Flexible steel energy absorbing devices have also been proposed in the past, which are rigid under operational loads but bend to absorb energy under large seismic loads. This solution depends on the hysteretic energy absorption capacity of the steel rods used as base isolation means.
虽然本领域中的技术人员在这种地区一直进行着深入细致的研究,但至今还没有找到一个真正有效的底座隔离系统,它应是经济、易于安装,寿命长并且能吸收潜在的破坏地震力同时防止被支撑的结构物的倒塌。Although those skilled in the art have been conducting intensive research in this area, a truly effective base isolation system that is economical, easy to install, long-lived and able to absorb potentially damaging seismic forces has not yet been found. At the same time prevent the collapse of the supported structure.
本发明克服了上述问题,提供了一种提高了对楼房和桥梁建筑结构物抗震保护的新型刚度隔离装置。本发明的隔离装置用于从支撑着结构物的柱系统的承载强度中隔离开横向刚度(lateral stiff-ness),由此减小地面加速度向被隔开的结构物的传输速度。The present invention overcomes the above-mentioned problems and provides a novel rigidity isolation device which improves the anti-seismic protection of buildings and bridges. The isolation device of the present invention is used to isolate lateral stiffness from the load-bearing strength of the column system supporting the structure, thereby reducing the transmission rate of ground accelerations to the isolated structure.
在优选的形式中,本发明考虑采用数个长的相对挠性的空心管件,管件的上端部分固连到被保护的结构物上,另一端向下朝着位于下面的结构物的地基(或地脚)延伸。至少一部分(最好全部)管件中填充有对引起的管件运动减振或阻尼的材料,这材料最好是混凝土。此外整个隔离装置还包含将至少一部分管件连接到地基上的部件,这种连接用于防止结构物的倾翻。有利的情况是,将这些管件连接到地基上,但可以允许管件相对于一增加着的偏压力能作有限的向上移动。In a preferred form, the invention contemplates the use of several long, relatively flexible, hollow pipes, with the upper ends partially secured to the structure to be protected and the other ends directed downward toward the foundation (or feet) extend. At least a portion (preferably all) of the pipe is filled with a material that dampens or damps induced movement of the pipe, preferably concrete. In addition, the entire isolation device includes means for connecting at least a portion of the pipes to the foundation, this connection being used to prevent the structure from tipping over. It is advantageous to connect the pipes to the foundation, but allow limited upward movement of the pipes against an increased biasing force.
主承载件也构成整个隔离装置的一部分。相对于数个管件相间隔地布置。为此目的典型的是采用了一根空心的、整体的、横截面为方形或圆形的混凝土加强柱,数个管件则穿过该柱向下延伸。该承载件支撑在地基上,向上朝结构物伸展,构成一上端。在承载件和结构物之间插入一些支座,使它们相互接合在一起,并可以在其间作相对的横向移动。The main carrier also forms part of the overall isolator. They are arranged at intervals relative to several pipe pieces. Typically for this purpose a hollow, integral concrete reinforcement column of square or circular cross-section is used, through which pipes extend downwardly. The supporting part is supported on the foundation and extends upward toward the structure to form an upper end. Bearings are interposed between the carrier and the structure so that they engage with each other and allow relative lateral movement therebetween.
在实际中,给定的建筑结构物上将配置这种隔离装置,设置在所有常规承载柱的位置处,但是要配置前面所述的支座结构和内部管件。In practice, a given building structure will be provided with such isolators, provided at all conventional load-bearing column locations, but provided with the support structures and internal pipework previously described.
图1为多层建筑物的结构架的部分视图,为清楚起见断开了某些部分,本发明的隔离装置装在结构架底座和一个位于下面的地脚之间,Figure 1 is a partial view of a structural frame of a multi-storey building, with some parts broken for clarity, with an isolating device of the present invention mounted between the structural frame base and an underlying foot,
图2为一部分视图,其中断开了一些部分,一些部件为局部剖视,展示隔离装置的重要部件,Fig. 2 is a partial view, in which some parts are broken, and some parts are partially cut away, showing the important parts of the isolating device,
图3a为沿图2中3a-3a线的断面视图,拆掉了一些部件,展示了一个隔离装置的结构,它采用一个空心的方形横截面的混凝土加强柱,柱角处分别装有低摩阻的支座,Figure 3a is a sectional view along the line 3a-3a in Figure 2, with some components removed, showing the structure of an isolator, which uses a hollow square cross-section reinforced concrete column, and the corners of the column are respectively equipped with low-friction resistance stand,
图3b为类似于图3a的视图,但其中的隔离装置采用一种空心的圆形横截面的柱和相间布置的低摩阻支座,Fig. 3b is a view similar to Fig. 3a, but wherein the isolation device adopts a hollow circular cross-section column and alternately arranged low-friction bearings,
图4为用于本发明中的一个优选支座的各部件分解视图,Figure 4 is an exploded view of the components of a preferred support used in the present invention,
图5为一个优选的弹簧偏压连接器的垂直剖视放大视图,用于将管件最低端固定到位于下面的建筑物地脚上,Figure 5 is an enlarged vertical sectional view of a preferred spring biased connector for securing the lowermost end of the pipe to the underlying building footing,
图6为类似于图5的视图,但为另一种类型的加弹簧偏压的管件连接器,Figure 6 is a view similar to Figure 5 but for another type of spring-biased tubing connector,
图7为展示本发明的一种隔离装置的部件的剖视图,采用数个管件束装置起来置于空心柱中,Fig. 7 is a sectional view showing the components of an isolating device according to the present invention, which adopts several tube bundles and installs them in a hollow column,
图8为一放大的局部视图,展示图7所示实施例中管件的排列定向情况,Fig. 8 is an enlarged partial view showing the arrangement and orientation of pipe fittings in the embodiment shown in Fig. 7,
图9为一局部视图,展示了将次级加强缆中的一条固定到建筑物框架底座上的情况,Figure 9 is a fragmentary view showing the fixing of one of the secondary reinforcing cables to the base of the building frame,
图10为一沿图5中10-10线的剖视图。进一步展示管件连接布置的情况。Fig. 10 is a cross-sectional view along line 10-10 in Fig. 5 . Further demonstrate the situation of pipe connection arrangement.
现参见附图,尤其是图1,图中示出了多层建筑物的框架20与一些刚度隔离装置22,后者位于框架20的底座24和一个位于下方的混凝土加强的地脚26之间,概括地讲,每个隔离装置22包含一些长的有相对挠性的空心管件28,一个空心的、整体的、直立的承载柱30且该承载柱30包围着管件28,一些大体上用标号32表示的支承件,这些支承件被置于框架20的下端面和各柱30上端之间。Referring now to the drawings, and in particular to Figure 1, there is shown a
更详细地讲,框架20完全是常规件,除底座24外它还包含通常的直立柱34和各层楼板36、38。典型地,框架20可由例如加强混凝土等任何所希望的建筑材料制成,在关键部位处提供惯常的支承面40,它们是底座24的一部分。在图示的例子中,每个支承面40是一对横向水平梁40a、40b。In more detail, the
同样地,地基26也是常规类型的(除了此处与管件28相关联的改变以外),它有底脚42。地基26也是用加强混凝土制成的。Likewise, the
现在参见图2和图3a,它们详细地示出了其中的一个隔离装置22,可以看到此处数个管件28是相互相间布置的,组成由周边管件28a和中央管件28b构成的一个排列。这些管件是常规型的薄壁金属结构管,典型的直径范围为约3/4寸至3寸(英寸)。每个管件28a,28b中都填充有合适的减振材料,此处为混凝土44。管件28的最上端伸入并埋在支承面40的加强混凝土中。由图1可看到,管件向上延伸穿过底座24进入相关联的柱34中。为增强管件28与框架20的刚性连接,可在管件上采用横向延伸的凸缘或卡环。更广泛地,管件28可以用任何方便的合适的手段固定到诸如框架20这样的结构物件上,只要能在结构物件和各个管件之间形成刚性牢固的连接就行。在所示实施例中,管件28伸入并埋在下面的地基26的底脚42中。此处同样也可以采用合适的手段将管件28和地基26符合工作要求地连接起来。下面要详细说明两种优选的方法。Referring now to Figures 2 and 3a which show in detail one of the isolating means 22, it can be seen here that a plurality of
每个装置22进一步包含一个直立的空心的整体的主承载柱46。图1-3a所示实施例中,柱46为方形横截面,在每个支座下都有垂直加强杆48。如图2所示,一金属加强件50穿过每个加强杆48进入下面的地基26中,用于增强柱46的刚性和横向稳定性。在这点上可以看到柱46支撑在底脚42顶端上,并且向上朝着框架20延伸,在每个柱46的上端设有支座。Each
整个支座装置32由一些相当的支座组件54组成,每个组件54都装在各梁40a、40b的下面。每个组件54包含一个截头三角形结构的底座56,它支承着一个直立的支承垫58,该支承垫58由摩擦系数相当低的材料(例如由青铜、钢铅或粉末烧结金属组成的轴承合金,带有或没有润滑)制成。底座56的每个角的附近设有孔60(见图4),以便将底座56支承板52相连。此外在底座56的每个角的下面叠装有一对锥面方向相反的成对相匹配的带槽孔楔形垫片62,64,槽孔与孔60相对齐。三个约呈J形状的螺纹连接件66埋设在柱46中,用于每个支座组件54,这些连接件向上延伸穿过垫片槽孔和孔60。用螺母68将支座组件固定在柱上。在设置配对装配的垫片62、64时要考虑每个支座组件54的高长和位置应是可调整的,以避免支座上所承受的负荷不均匀,而应在支座上建立所希望的正常负荷。The
各支座垫58可以和支承面40的下端面啮合并且可以在承载柱46和框架20之间作相对的横向移动。为了使这一动作能容易地进行,在每个支承面40的下端面上固定一个金属滑板70,位于垫片58与支承面40相接触的地方。每个滑板70由一些埋设在混凝土中的螺栓72固定到位,螺栓72也可以是固定在由常规建筑材料构成的支承面上。Each stand-off pad 58 is engageable with the lower end surface of
图36示出了一个类似的隔离装置22,其中采用了一个空心圆柱72。柱72也设有垂直加强杆74,相互间隔90°,和方形柱46的情况一样,其中也埋设有相互连接的加强件50。该实施例的隔离装置22也包含一些填充了混凝土的管件28,以及在加强杆74上方的四个支座组件54。四个单独的滑板78固定在相应的支承面40的下端面上,与每个支座组件54的各个支座垫58共同作用。Figure 36 shows a
在本发明的最优实施形式中,在各柱46或72中的每个管件排列中至少周边的管件28a这样地与地或20相连,即周边的管件在相对于一个增加的偏压力能向上作有限的移动。先参见图5和图10,它们示出了一种这样的连接布置情况。具体地,设置了一个管件连接装置80,它包含一个安装管件的牢固在底脚42上的底座,它有一个最下端的支承板82和一个位于支承板82上方相互一定间隔的保持环84。在该实施例中,支承板82和环84埋底脚42的混凝土中。此外,保持环84还用同样埋设在设在底脚42中的螺母和螺栓组件86作进一步的固定,防止拔出。安在装置80中的管件28a的最下端设有支撑板88,它由焊接或其它合适的手段进行固定。支撑板88的形状和布置能将管件28a的最下端有效地保持在支承板82和保持环84之间。一个圈簧90位于支撑板88和环84之间,设置在安装在装置80中的管件28a的最下端部分的上方。由图可以明白。克服圈簧90的偏压,管件28a可向上移动。In the preferred embodiment of the present invention, at least the
图6示出了另一类似的管件连接装置92,该装置92包含一个牢固在底脚42上的底座94,它有一个向上延伸的销96,该销96有一个固定在上端的支撑板98。底座98用埋设的螺柱螺母组件100固定,防止拔出。Fig. 6 shows another similar
在该实施例中,管件28a的最下端是空心的,设有一装配板102和一保持环104。由图6可见,板102在向上方向与管件28a的最下端相间隔但位于管内。另一方面,保持环104位于板102下面但也在管28a内。环104是圆形的,可以滑动地装在销96上。在该方位上,支撑板98和环104和环104相互配合将销96的上端保持在装配板102和环104之间。螺旋弹簧106位于保持环104和装配板102之间,设置在销96的上端的上方。此处也可看到,管件28克服弹簧106的力可向上移动。In this embodiment, the lowermost end of the
图1-3a和36中所示实施例中管件28相互之间都是相间布置的,但是本发明并不局限于这种布置。例如,数个管件108(各管件中填充有混凝土)可以相互接触地布置形成一管束排列。这些管件也主要填充了混凝土110或类似减振材料。管件排列的具体类型不是关键的,重要的是管件的位置要与周围的柱或其它支承部件的围成的壁有足够的间隔,以防止在地震发生时管件和支承部件之间有显著的接触。最后,在优选的实施形式中采用了整体空心支承柱,但在实践中本发明也可以采用相间隔的直立板或类似部件,这些部件设置在一管件排列的上方。In the embodiment shown in Figures 1-3a and 36 the
为了提供最有效的防地震保护,本发明的隔离装置可以和其它用于增加给定结构(建筑物)抗震能力的装置一起使用。例如,参见图1,可以看见,横向挠性缆112,114在框架20的底座24和地基26之间延伸并埋设在其中。在安装时,这些缆绳相当松。由保持弹簧118保持在一悬挂状态下(例如在一门道116上方)。本领域的技术人员可知,该缆绳112、114可用于在额外强烈的地震条件下防止框架20相对于地基16过分地横向移动。可以用任何合适的手段来联系缆索112、114,例如用埋设在底座24中的横销120,缆索的端绕在横销上并用连接件122固定。In order to provide the most effective protection against earthquakes, the isolation device of the present invention may be used with other devices for increasing the seismic resistance of a given structure (building). For example, referring to FIG. 1 , it can be seen that
作为辅助措施。最好在地基26和底座24之间设置混凝土加强的承载壁24。特别地,壁124的上承载面设置得稍低于支座装置32和底座24之间的接合面。这样在完全失败的情况下,建筑物结构可以置于承载壁上,以防止整个结构的完全倒塌。as an auxiliary measure. A concrete reinforced
在隔离装置22的正常使用期间,主要结构负荷是通过各个支座组件54的媒介由直立的柱46或72产生的。填充有混凝土的管件只承受极小的压力负荷。如所描述的,主柱46或72没有剪切连接件和弯矩连接件与被支承的结构物件相连。During normal use of the
在地震时,充有混凝土的管件和相关的支承柱用于大大地减小地面加速度向被隔离的结构物(建筑物)的传输性,其结果也减少了楼层之间的滑移(脱)。填充在各管件中的混凝土在移动期间起着局部加强杆和减振器或衰减器的作用。特别的,混凝土填充物以冲击吸收器的方向有助于将移动分解和减弱。在发生地震时管件也作为拉力杆防止被保护的结构物分开和倾翻。在这点上,采用图5和6中所述类型的弹簧偏压管件连接件尤其有利,因为当倾翻力矩增大时。用于阻止倾翻的拉也增大。最后,填充了混凝土的管件控制被保护的结构物的自然周期(阶段),并提供恢复力将地震后的结构物复位到其中性位置上。During earthquakes, the concrete-filled pipes and associated support columns are used to greatly reduce the transmission of ground accelerations to the isolated structure (building) and consequently reduce slippage (detachment) between floors . The concrete filled in each tube acts as a local stiffener and a shock absorber or attenuator during movement. In particular, the concrete filling helps to break down and dampen the movement in the direction of the shock absorber. The pipe also acts as a tension rod to prevent the protected structure from falling apart and tipping over in the event of an earthquake. In this regard, the use of a spring-biased pipe connection of the type described in Figures 5 and 6 is particularly advantageous as tipping moments increase. The pull to prevent tipping is also increased. Finally, the concrete-filled pipes control the natural cycles (phases) of the protected structure and provide restoring forces to return the earthquake-affected structure to its neutral position.
支座组件支承着结构物并将偏心负荷传送到支承柱,以保持结构物的平衡同时维持其在强制振动的运动中的稳定性。因此,支座的功能非常象辊子支承件,它对在结构物和支承柱之间的相对横向运动具有很小的阻力。The bearing assemblies support the structure and transfer eccentric loads to the support columns to keep the structure in balance while maintaining its stability during forced vibratory motion. Thus, the bearing functions much like a roller bearing with little resistance to relative lateral movement between the structure and the support column.
交叉缆索112,114作为非线性弹簧。防止过度的横向移动,亦即当需要时就增大结构物的横向阻力。只要变形不大,那么承载壁124与被保护的结构物保持分离状态。当地震的程度过大时,亦即由结构物的横向变形造成的垂直位移大到足以使被保护的结构物和承载壁相接触时,这些壁就开始起作用了,它们为变形的结构物提供额外的支承强度,并提供摩擦力来吸收动能、减少振动幅度。The
这样本发明提供了一些先有技术所没有的优点。例如,本发明的隔离装置是一些被动式的装置,可以吸收压力负荷和拉力负荷。这些装置的寿命长,长期工作时其强度和功能没有什么降低。这与先有技术中所用的弹性橡胶支座垫中出现的损坏老化过程形成对照。但是更重要的,本发明的隔离装置甚至在由地震造成的过度横向位移下仍能保持稳定,从而保持被保护的结构物在强烈地震期间和之间处于平衡状态。同时隔离还提供高的拉伸强度,承受倾翻力矩。The present invention thus provides several advantages not found in the prior art. For example, the isolators of the present invention are passive devices that absorb compressive and tensile loads. These devices have a long lifespan with little loss of strength and function over long periods of time. This is in contrast to the damaging aging process that occurs in the elastic rubber bearing pads used in the prior art. But more importantly, the isolation device of the present invention remains stable even under excessive lateral displacement caused by earthquakes, thereby keeping the protected structure in equilibrium during and between severe earthquakes. At the same time the isolation also provides high tensile strength to withstand tipping moments.
虽然本发明的应用主要是在抗震方面进行描述的,但本发明也可用于其它方面。例可以这样来描述本发明。即将横向刚度从柱的支承强度中隔离开可以减小由于长跨距刚性框架桥梁中的应力所引起的温度变化。Although the application of the invention has been described primarily in the area of seismic resistance, the invention can be used in other areas as well. Examples can describe the present invention in this way. That is, isolating the lateral stiffness from the support strength of the columns can reduce temperature variations due to stresses in long span rigid frame bridges.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 92110609 CN1061407C (en) | 1992-09-14 | 1992-09-14 | Stiffness decoupler for base insolation of structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 92110609 CN1061407C (en) | 1992-09-14 | 1992-09-14 | Stiffness decoupler for base insolation of structures |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1084243A CN1084243A (en) | 1994-03-23 |
CN1061407C true CN1061407C (en) | 2001-01-31 |
Family
ID=4944901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 92110609 Expired - Fee Related CN1061407C (en) | 1992-09-14 | 1992-09-14 | Stiffness decoupler for base insolation of structures |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1061407C (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3530301B2 (en) * | 1996-03-22 | 2004-05-24 | 三菱重工業株式会社 | Lever type frictional resistance variable device |
KR20040075319A (en) * | 2001-12-26 | 2004-08-27 | 학교법인 일본대학 | Base isolation device for structure |
JP3906185B2 (en) * | 2003-06-19 | 2007-04-18 | 多摩エンジニアリング株式会社 | Structure support equipment |
CN102409777A (en) * | 2011-09-30 | 2012-04-11 | 福州大学 | A structural three-dimensional seismic isolation and anti-overturning device |
-
1992
- 1992-09-14 CN CN 92110609 patent/CN1061407C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1084243A (en) | 1994-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5014474A (en) | System and apparatus for limiting the effect of vibrations between a structure and its foundation | |
US8307585B2 (en) | Frictional damper for damping movement of structures | |
US5386671A (en) | Stiffness decoupler for base isolation of structures | |
JP6513387B2 (en) | Vibration control device for girder bridge and reinforcement method for girder bridge | |
SK286842B6 (en) | Method of protecting buildings and objects from dynamic forces caused by acceleration foundation plate, for instance due to earthquake and apparatus for making the same | |
US5669189A (en) | Antiseismic connector of limited vibration for seismic isolation of an structure | |
CN110080589B (en) | A vertical vibration isolation device and its vibration isolation and installation method | |
Kelly et al. | Earthquake simulation testing of a stepping frame with energy-absorbing devices | |
JP6920049B2 (en) | Seismic isolation building | |
US5660007A (en) | Stiffness decoupler for base isolation of structures | |
JP4836340B2 (en) | Seismic isolation structure using a connected seismic control device | |
JP3350818B2 (en) | Seismic building structure | |
CN1061407C (en) | Stiffness decoupler for base insolation of structures | |
US5134818A (en) | Shock absorber for buildings | |
US6256943B1 (en) | Antiseismic device for buildings and works of art | |
CA2930193C (en) | Polygonal seismic isolation systems | |
KR101070217B1 (en) | Seismic system | |
JP3626973B2 (en) | Support system for building elements | |
WO2020240260A1 (en) | Seesaw structural systems for seismic low-rise buildings | |
JPH10513238A (en) | Rigid absorber for blocking the foundation of structures | |
CN211499998U (en) | Device capable of adjusting horizontal rigidity at will and adapting to wind resistance and shock isolation | |
KR101230056B1 (en) | Moving Floor Structure for Seismic Isolation | |
JP2000328811A (en) | Vibrational energy absorber using wire bundle | |
US20220106804A1 (en) | Kinematic seismic isolation device | |
JPH10176432A (en) | Three-dimensional vibration isolation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C15 | Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993) | ||
OR01 | Other related matters | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20010131 Termination date: 20110914 |