CN106128098B - 一种能够进行交通流量预测的多屏显示装置 - Google Patents
一种能够进行交通流量预测的多屏显示装置 Download PDFInfo
- Publication number
- CN106128098B CN106128098B CN201610513353.0A CN201610513353A CN106128098B CN 106128098 B CN106128098 B CN 106128098B CN 201610513353 A CN201610513353 A CN 201610513353A CN 106128098 B CN106128098 B CN 106128098B
- Authority
- CN
- China
- Prior art keywords
- traffic flow
- data
- module
- magnitude
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011159 matrix material Substances 0.000 claims abstract description 84
- 230000002123 temporal effect Effects 0.000 claims abstract description 63
- 238000010276 construction Methods 0.000 claims abstract description 40
- 238000007781 pre-processing Methods 0.000 claims abstract description 22
- 238000004364 calculation method Methods 0.000 claims description 35
- 238000005311 autocorrelation function Methods 0.000 claims description 21
- 230000000875 corresponding effect Effects 0.000 claims description 21
- 238000005498 polishing Methods 0.000 claims description 21
- 238000007689 inspection Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 15
- 230000002596 correlated effect Effects 0.000 claims description 8
- 108010014173 Factor X Proteins 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 7
- 238000003032 molecular docking Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0129—Traffic data processing for creating historical data or processing based on historical data
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明一种能够进行交通流量预测的多屏显示装置,包括多屏显示装置和与多屏显示装置相连的预测装置,所述预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块。本发明预测精度较高且构造的预测模型更有针对性。
Description
技术领域
本发明涉及智能交通领域,具体涉及一种能够进行交通流量预测的多屏显示装置。
背景技术
交通流量是指单位时间内通过道路某一断面的实际车辆数,是描述交通状态的重要特征参数。交通流量的变化又是一个实时、高维、非线性、非平稳的随机过程,相关因素的变化都可能影响下一时刻的交通流量。相关技术中,关于短时的预测装置局限性强,预测精度较低,实时预测未能取得令人满意的结果,未能对人们的实时道路选择提供有效建议,从而交通流量预测大部分停留在交通流量的中长期预测。
发明内容
针对上述问题,本发明提供一种能够进行交通流量预测的多屏显示装置。
本发明的目的采用以下技术方案来实现:
一种能够进行交通流量预测的多屏显示装置,包括多屏显示装置和与多屏显示装置相连的预测装置,所述多屏显示装置包括:
第一显示装置,该第一显示装置包括至少一显示屏,该第一显示装置显示较小的用户界面,其特征在于:该多屏显示装置还包括第二显示装置,该第二显示装置与该第一显示装置转动连接,该第二显示装置包括至少一显示屏,当该第一显示装置与该第二显示装置位于同一平面时,该第一显示装置的至少一显示屏和该第二显示装置的至少一显示屏无缝对接以显示较大的用户界面。
优选地,第一显示装置包括第一壳体,该第一壳体包括第一主体,该第一主体具有一第一面和一邻近该第一面的第一侧面,该第一侧面的两端沿着垂直该第一侧面的方向上凸伸出第一枢接轴和第二枢接轴,该第一枢接轴和该第二枢接轴同轴,该第一枢接轴和该主体之间形成一第一收容槽,该第二枢接轴与该主体之间形成有一第二收容槽,该第二显示装置包括第二壳体,该第二壳体包括第二主体,该第二主体具有一与该第一面相背的第二面和一邻近该第二面的第二侧面,该第二侧面的两端沿着垂直于该第二侧面的方向凸伸出第三枢接轴和第四枢接轴,该第三枢接轴和该第四枢接轴同轴,且该第三枢接轴收容于该第一收容槽,该第四枢接轴收容于该第二收容槽。
优选地,第一壳体包括位于该第一面上的主控键和音量端口,该第一枢接轴远离该第二枢接轴的一侧上设置有一耳机接口,该第二枢接轴远离该第一枢接轴的一侧上设置有一电源端口。
优选地,其特征是,预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块:
(1)采集模块,用于采集路网S内观测路段Si、预测路段Sj对应各时间段的交通流量数据和通行情况;
(2)数据预处理模块,用于对所述交通流量数据进行数据预处理,并剔除不符合交通实际情况的数据;
(3)数据分类模块,用于对经过数据预处理的交通流量数据进行类型分类,所述类型包括节假日交通流量数据、周末交通流量数据和工作日交通流量数据;
(4)平稳性检验模块,用于对处于同一类型的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj分别进行平稳性检验,检验平稳性的自相关函数为:
其中,Xx表示待检验交通流量序列,νi表示待检验交通流量序列的均值,Xx+τ表示Xx在时间延迟τ后的交通流量序列,νx+τ为Xx+τ的均值,σ2为Xx与Xx+τ之间的方差;
当自相关函数P(τ)能快速衰减趋近于0或在0附近波动,则所述待检验交通流量序列通过平稳性检验;当自相关函数P(τ)不能快速衰减趋近于0或在0附近波动,则对所述待检验交通流量序列进行平稳处理后继续进行平稳性检验;
(5)相关系数计算模块,用于计算通过平稳性检验的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj在时间延迟τ下的时间相关系数ρij(τ)和空间相关系数ρij(w),设路网S内有N个路段,交通流量序列Xi=[xi(1),xi(2),...,xi(n)],交通流量序列xi(t)表示观测路段Si在t时刻的流量,xj(t)表示预测路段Sj在t时刻的流量,t=1,2,...n,时间相关系数ρij(τ)的计算公式为:
空间相关系数ρij(w)的计算公式为:
优选地,其特征是,预测装置还包括:
(6)阈值设定模块,用于设定各路段之间的时间延迟最大值L、时空相关系数阈值T1和历史相关系数阈值T2;
(7)时空相关系数矩阵生成模块,用于根据各路段的时间相关系数ρij(τ)和空间相关系数ρij(w)构建各观测路段Si与预测路段Sj在不同时间延迟τ下的时空相关系数矩阵ρ(τ)',并计算各路段的时空相关系数ρij(τ)',其中i∈[1,N]且τ∈[0,L],L的取值范围为[8,12],时空相关系数矩阵ρ(τ)'的计算公式为:
时空相关系数ρij(τ)'的计算公式为:
ρij(τ)'=ρij(τ)ρij(w);
(8)历史相关系数矩阵生成模块,用于生成预测路段Sj的历史相关系数矩阵ρ(t):
其中,选取近M周的同期且同一类型的历史流量作为交通流量序列Xj的历史相关序列,记为Xjm m=1,2,...M,M的取值范围为[3,5],所述历史相关系数ρjm(t)的计算公式为:
(9)预测因子选取模块,用于根据所述时空相关系数阈值T1和历史相关系数阈值T2选取与预测目标点相关的预测因子,并按照其所选空间位置j与时间延迟τ进行矩阵重构,选取原则为:
若ρij(τ)'>T1,则将观测路段Si的交通流量序列Xi中满足条件的交通流量组成新的序列并作为第一预测因子,记做X',X'=(x1',x2',...,xp'),其中p为所述满足条件的交通流量个数,设L1为第一预测因子中时间延迟的最大值,L1=max{τ|τ∈[0,L]andρij(τ)'>T1},则第一预测因子X'可表述成如下矩阵形式:
若ρjm(t)>T2,则将所有满足条件的历史相关序列Xjm(t)作为第二预测因子,记作Y',Y'={y1',y2',...,yq'},其中q为满足条件的历史流量个数,第二预测因子Y'可表述成如下矩阵形式:
(10)预测模型构造模块,其通过将第一预测因子和第二预测因子作为训练样本来构造可预测路段在下一时刻的交通流量的预测模型。
其中,所述数据预处理模块中,剔除所述不符合交通实际情况的数据的规则为:在一个数据更新周期内,分别设定各路段的总交通流量数据的阀值范围,若采集到的某路段的总交通流量数据落在对应的阈值范围内,则表明该组数据可靠,保留该组数据;若采集到的某路段的总交通流量数据落不在对应的阈值范围内,则表明该组数据不可靠,并将其剔除。
其中,所述平稳性检验模块包括以下子模块:
(1)检验子模块,用于对处于同一类型的观测路段的交通流量序列与预测路段的交通流量序列分别进行平稳性检验;
(2)连续性检查子模块,与检验子模块连接,用于对不通过平稳性检验的待检验交通流量序列进行连续性检查,若不符合连续性,所述连续性检查子模块采用平均插值法对数据进行补齐;
(3)排错子模块,与连续性检查子模块连接,用于删除明显错误的数据,同时采用平均插值法对数据进行补齐;
(4)差分处理子模块,连接排错子模块和检验子模块,用于对补齐后的数据进行差分处理,并将差分处理后的数据传送到检验子模块。
本发明的有益效果为:
1、设置数据分类模块和平稳性检验模块,增加了数据的准确度,且使构造的预测模型更有针对性;
2、设置相关系数计算模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块,其中预测因子直接影响预测精度,相关系数是测量随机变量相关性的指标,能够帮助选取与预测点密切相关的变量作为预测模型的训练样本,选取多个相关系数作为预测因子,消除了最初预测因子选取的主观性,能够增加预测精度,使预测模型构造模块更加稳定和准确;
3、相关系数计算模块中的空间相关系数反映了路网的可达性对预测模型的影响,时间相关系数能够表达流量序列的时间顺序,反映两序列时间上的因果关系,从而提高预测因子选取的效率;由于交通流量的周相似性,引入历史相关系数矩阵生成模块的历史相关系数,同时间相关系数和空间相关系数配合使用,为准确预测提供更多的数据支持。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是本发明预测装置各模块的连接示意图。
图2是本发明多屏显示装置立体结构示意图。
具体实施方式
结合以下实施例对本发明作进一步描述。
实施例1
参见图1,图2,本实施例一种能够进行交通流量预测的多屏显示装置,包括多屏显示装置和与多屏显示装置相连的预测装置,所述多屏显示装置包括:
第一显示装置,该第一显示装置包括至少一显示屏,该第一显示装置显示较小的用户界面,其特征在于:该多屏显示装置还包括第二显示装置,该第二显示装置与该第一显示装置转动连接,该第二显示装置包括至少一显示屏,当该第一显示装置与该第二显示装置位于同一平面时,该第一显示装置的至少一显示屏和该第二显示装置的至少一显示屏无缝对接以显示较大的用户界面。
优选地,第一显示装置包括第一壳体,该第一壳体包括第一主体,该第一主体具有一第一面和一邻近该第一面的第一侧面,该第一侧面的两端沿着垂直该第一侧面的方向上凸伸出第一枢接轴和第二枢接轴,该第一枢接轴和该第二枢接轴同轴,该第一枢接轴和该主体之间形成一第一收容槽,该第二枢接轴与该主体之间形成有一第二收容槽,该第二显示装置包括第二壳体,该第二壳体包括第二主体,该第二主体具有一与该第一面相背的第二面和一邻近该第二面的第二侧面,该第二侧面的两端沿着垂直于该第二侧面的方向凸伸出第三枢接轴和第四枢接轴,该第三枢接轴和该第四枢接轴同轴,且该第三枢接轴收容于该第一收容槽,该第四枢接轴收容于该第二收容槽。
优选地,第一壳体包括位于该第一面上的主控键和音量端口,该第一枢接轴远离该第二枢接轴的一侧上设置有一耳机接口,该第二枢接轴远离该第一枢接轴的一侧上设置有一电源端口。
优选地,其特征是,预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块:
(1)采集模块,用于采集路网S内观测路段Si、预测路段Sj对应各时间段的交通流量数据和通行情况;
(2)数据预处理模块,用于对所述交通流量数据进行数据预处理,并剔除不符合交通实际情况的数据;
(3)数据分类模块,用于对经过数据预处理的交通流量数据进行类型分类,所述类型包括节假日交通流量数据、周末交通流量数据和工作日交通流量数据;
(4)平稳性检验模块,用于对处于同一类型的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj分别进行平稳性检验,检验平稳性的自相关函数为:
其中,Xx表示待检验交通流量序列,νi表示待检验交通流量序列的均值,Xx+τ表示Xx在时间延迟τ后的交通流量序列,νx+τ为Xx+τ的均值,σ2为Xx与Xx+τ之间的方差;
当自相关函数P(τ)能快速衰减趋近于0或在0附近波动,则所述待检验交通流量序列通过平稳性检验;当自相关函数P(τ)不能快速衰减趋近于0或在0附近波动,则对所述待检验交通流量序列进行平稳处理后继续进行平稳性检验;
(5)相关系数计算模块,用于计算通过平稳性检验的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj在时间延迟τ下的时间相关系数ρij(τ)和空间相关系数ρij(w),设路网S内有N个路段,交通流量序列Xi=[xi(1),xi(2),...,xi(n)],交通流量序列xi(t)表示观测路段Si在t时刻的流量,xj(t)表示预测路段Sj在t时刻的流量,t=1,2,...n,时间相关系数ρij(τ)的计算公式为:
空间相关系数ρij(w)的计算公式为:
优选地,其特征是,预测装置还包括:
(6)阈值设定模块,用于设定各路段之间的时间延迟最大值L、时空相关系数阈值T1和历史相关系数阈值T2;
(7)时空相关系数矩阵生成模块,用于根据各路段的时间相关系数ρij(τ)和空间相关系数ρij(w)构建各观测路段Si与预测路段Sj在不同时间延迟τ下的时空相关系数矩阵ρ(τ)',并计算各路段的时空相关系数ρij(τ)',其中i∈[1,N]且τ∈[0,L],L的取值范围为[8,12],时空相关系数矩阵ρ(τ)'的计算公式为:
时空相关系数ρij(τ)'的计算公式为:
ρij(τ)'=ρij(τ)ρij(w);
(8)历史相关系数矩阵生成模块,用于生成预测路段Sj的历史相关系数矩阵ρ(t):
其中,选取近M周的同期且同一类型的历史流量作为交通流量序列Xj的历史相关序列,记为m=1,2,...M,M的取值范围为[3,5],所述历史相关系数ρjm(t)的计算公式为:
(9)预测因子选取模块,用于根据所述时空相关系数阈值T1和历史相关系数阈值T2选取与预测目标点相关的预测因子,并按照其所选空间位置j与时间延迟τ进行矩阵重构,选取原则为:
若ρij(τ)'>T1,则将观测路段Si的交通流量序列Xi中满足条件的交通流量组成新的序列并作为第一预测因子,记做X',X'=(x1',x2',...,xp'),其中p为所述满足条件的交通流量个数,设L1为第一预测因子中时间延迟的最大值,L1=max{τ|τ∈[0,L]andρij(τ)'>T1},则第一预测因子X'可表述成如下矩阵形式:
若ρjm(t)>T2,则将所有满足条件的历史相关序列Xjm(t)作为第二预测因子,记作Y',Y'={y1',y2',...,yq'},其中q为满足条件的历史流量个数,第二预测因子Y'可表述成如下矩阵形式:
(10)预测模型构造模块,其通过将第一预测因子和第二预测因子作为训练样本来构造可预测路段在下一时刻的交通流量的预测模型。
其中,所述数据预处理模块中,剔除所述不符合交通实际情况的数据的规则为:在一个数据更新周期内,分别设定各路段的总交通流量数据的阀值范围,若采集到的某路段的总交通流量数据落在对应的阈值范围内,则表明该组数据可靠,保留该组数据;若采集到的某路段的总交通流量数据落不在对应的阈值范围内,则表明该组数据不可靠,并将其剔除。
其中,所述平稳性检验模块包括以下子模块:
(1)检验子模块,用于对处于同一类型的观测路段的交通流量序列与预测路段的交通流量序列分别进行平稳性检验;
(2)连续性检查子模块,与检验子模块连接,用于对不通过平稳性检验的待检验交通流量序列进行连续性检查,若不符合连续性,所述连续性检查子模块采用平均插值法对数据进行补齐;
(3)排错子模块,与连续性检查子模块连接,用于删除明显错误的数据,同时采用平均插值法对数据进行补齐;
(4)差分处理子模块,连接排错子模块和检验子模块,用于对补齐后的数据进行差分处理,并将差分处理后的数据传送到检验子模块。
本实施例设置数据分类模块和平稳性检验模块,增加了数据的准确度,且使构造的预测模型更有针对性;设置相关系数计算模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块,消除了最初预测因子选取的主观性,能够增加预测精度,使预测模型构造模块更加稳定和准确;本实施例取值L=8,M=3,预测精度相对于相关技术提高了1.5%。
实施例2
参见图1,图2,本实施例一种能够进行交通流量预测的多屏显示装置,包括多屏显示装置和与多屏显示装置相连的预测装置,所述多屏显示装置包括:
第一显示装置,该第一显示装置包括至少一显示屏,该第一显示装置显示较小的用户界面,其特征在于:该多屏显示装置还包括第二显示装置,该第二显示装置与该第一显示装置转动连接,该第二显示装置包括至少一显示屏,当该第一显示装置与该第二显示装置位于同一平面时,该第一显示装置的至少一显示屏和该第二显示装置的至少一显示屏无缝对接以显示较大的用户界面。
优选地,第一显示装置包括第一壳体,该第一壳体包括第一主体,该第一主体具有一第一面和一邻近该第一面的第一侧面,该第一侧面的两端沿着垂直该第一侧面的方向上凸伸出第一枢接轴和第二枢接轴,该第一枢接轴和该第二枢接轴同轴,该第一枢接轴和该主体之间形成一第一收容槽,该第二枢接轴与该主体之间形成有一第二收容槽,该第二显示装置包括第二壳体,该第二壳体包括第二主体,该第二主体具有一与该第一面相背的第二面和一邻近该第二面的第二侧面,该第二侧面的两端沿着垂直于该第二侧面的方向凸伸出第三枢接轴和第四枢接轴,该第三枢接轴和该第四枢接轴同轴,且该第三枢接轴收容于该第一收容槽,该第四枢接轴收容于该第二收容槽。
优选地,第一壳体包括位于该第一面上的主控键和音量端口,该第一枢接轴远离该第二枢接轴的一侧上设置有一耳机接口,该第二枢接轴远离该第一枢接轴的一侧上设置有一电源端口。
优选地,其特征是,预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块:
(1)采集模块,用于采集路网S内观测路段Si、预测路段Sj对应各时间段的交通流量数据和通行情况;
(2)数据预处理模块,用于对所述交通流量数据进行数据预处理,并剔除不符合交通实际情况的数据;
(3)数据分类模块,用于对经过数据预处理的交通流量数据进行类型分类,所述类型包括节假日交通流量数据、周末交通流量数据和工作日交通流量数据;
(4)平稳性检验模块,用于对处于同一类型的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj分别进行平稳性检验,检验平稳性的自相关函数为:
其中,Xx表示待检验交通流量序列,νi表示待检验交通流量序列的均值,Xx+τ表示Xx在时间延迟τ后的交通流量序列,νx+τ为Xx+τ的均值,σ2为Xx与Xx+τ之间的方差;
当自相关函数P(τ)能快速衰减趋近于0或在0附近波动,则所述待检验交通流量序列通过平稳性检验;当自相关函数P(τ)不能快速衰减趋近于0或在0附近波动,则对所述待检验交通流量序列进行平稳处理后继续进行平稳性检验;
(5)相关系数计算模块,用于计算通过平稳性检验的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj在时间延迟τ下的时间相关系数ρij(τ)和空间相关系数ρij(w),设路网S内有N个路段,交通流量序列Xi=[xi(1),xi(2),...,xi(n)],交通流量序列xi(t)表示观测路段Si在t时刻的流量,xj(t)表示预测路段Sj在t时刻的流量,t=1,2,...n,时间相关系数ρij(τ)的计算公式为:
空间相关系数ρij(w)的计算公式为:
优选地,其特征是,预测装置还包括:
(6)阈值设定模块,用于设定各路段之间的时间延迟最大值L、时空相关系数阈值T1和历史相关系数阈值T2;
(7)时空相关系数矩阵生成模块,用于根据各路段的时间相关系数ρij(τ)和空间相关系数ρij(w)构建各观测路段Si与预测路段Sj在不同时间延迟τ下的时空相关系数矩阵ρ(τ)',并计算各路段的时空相关系数ρij(τ)',其中i∈[1,N]且τ∈[0,L],L的取值范围为[8,12],时空相关系数矩阵ρ(τ)'的计算公式为:
时空相关系数ρij(τ)'的计算公式为:
ρij(τ)'=ρij(τ)ρij(w);
(8)历史相关系数矩阵生成模块,用于生成预测路段Sj的历史相关系数矩阵ρ(t):
其中,选取近M周的同期且同一类型的历史流量作为交通流量序列Xj的历史相关序列,记为m=1,2,...M,M的取值范围为[3,5],所述历史相关系数ρjm(t)的计算公式为:
(9)预测因子选取模块,用于根据所述时空相关系数阈值T1和历史相关系数阈值T2选取与预测目标点相关的预测因子,并按照其所选空间位置j与时间延迟τ进行矩阵重构,选取原则为:
若ρij(τ)'>T1,则将观测路段Si的交通流量序列Xi中满足条件的交通流量组成新的序列并作为第一预测因子,记做X',X'=(x1',x2',...,xp'),其中p为所述满足条件的交通流量个数,设L1为第一预测因子中时间延迟的最大值,L1=max{τ|τ∈[0,L]andρij(τ)'>T1},则第一预测因子X'可表述成如下矩阵形式:
若ρjm(t)>T2,则将所有满足条件的历史相关序列Xjm(t)作为第二预测因子,记作Y',Y'={y1',y2',...,yq'},其中q为满足条件的历史流量个数,第二预测因子Y'可表述成如下矩阵形式:
(10)预测模型构造模块,其通过将第一预测因子和第二预测因子作为训练样本来构造可预测路段在下一时刻的交通流量的预测模型。
其中,所述数据预处理模块中,剔除所述不符合交通实际情况的数据的规则为:在一个数据更新周期内,分别设定各路段的总交通流量数据的阀值范围,若采集到的某路段的总交通流量数据落在对应的阈值范围内,则表明该组数据可靠,保留该组数据;若采集到的某路段的总交通流量数据落不在对应的阈值范围内,则表明该组数据不可靠,并将其剔除。
其中,所述平稳性检验模块包括以下子模块:
(1)检验子模块,用于对处于同一类型的观测路段的交通流量序列与预测路段的交通流量序列分别进行平稳性检验;
(2)连续性检查子模块,与检验子模块连接,用于对不通过平稳性检验的待检验交通流量序列进行连续性检查,若不符合连续性,所述连续性检查子模块采用平均插值法对数据进行补齐;
(3)排错子模块,与连续性检查子模块连接,用于删除明显错误的数据,同时采用平均插值法对数据进行补齐;
(4)差分处理子模块,连接排错子模块和检验子模块,用于对补齐后的数据进行差分处理,并将差分处理后的数据传送到检验子模块。
本实施例设置数据分类模块和平稳性检验模块,增加了数据的准确度,且使构造的预测模型更有针对性;设置相关系数计算模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块,消除了最初预测因子选取的主观性,能够增加预测精度,使预测模型构造模块更加稳定和准确;本实施例取值L=9,M=3,预测精度相对于相关技术提高了2%。
实施例3
参见图1,图2,本实施例一种能够进行交通流量预测的多屏显示装置,包括多屏显示装置和与多屏显示装置相连的预测装置,所述多屏显示装置包括:
第一显示装置,该第一显示装置包括至少一显示屏,该第一显示装置显示较小的用户界面,其特征在于:该多屏显示装置还包括第二显示装置,该第二显示装置与该第一显示装置转动连接,该第二显示装置包括至少一显示屏,当该第一显示装置与该第二显示装置位于同一平面时,该第一显示装置的至少一显示屏和该第二显示装置的至少一显示屏无缝对接以显示较大的用户界面。
优选地,第一显示装置包括第一壳体,该第一壳体包括第一主体,该第一主体具有一第一面和一邻近该第一面的第一侧面,该第一侧面的两端沿着垂直该第一侧面的方向上凸伸出第一枢接轴和第二枢接轴,该第一枢接轴和该第二枢接轴同轴,该第一枢接轴和该主体之间形成一第一收容槽,该第二枢接轴与该主体之间形成有一第二收容槽,该第二显示装置包括第二壳体,该第二壳体包括第二主体,该第二主体具有一与该第一面相背的第二面和一邻近该第二面的第二侧面,该第二侧面的两端沿着垂直于该第二侧面的方向凸伸出第三枢接轴和第四枢接轴,该第三枢接轴和该第四枢接轴同轴,且该第三枢接轴收容于该第一收容槽,该第四枢接轴收容于该第二收容槽。
优选地,第一壳体包括位于该第一面上的主控键和音量端口,该第一枢接轴远离该第二枢接轴的一侧上设置有一耳机接口,该第二枢接轴远离该第一枢接轴的一侧上设置有一电源端口。
优选地,其特征是,预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块:
(1)采集模块,用于采集路网S内观测路段Si、预测路段Sj对应各时间段的交通流量数据和通行情况;
(2)数据预处理模块,用于对所述交通流量数据进行数据预处理,并剔除不符合交通实际情况的数据;
(3)数据分类模块,用于对经过数据预处理的交通流量数据进行类型分类,所述类型包括节假日交通流量数据、周末交通流量数据和工作日交通流量数据;
(4)平稳性检验模块,用于对处于同一类型的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj分别进行平稳性检验,检验平稳性的自相关函数为:
其中,Xx表示待检验交通流量序列,νi表示待检验交通流量序列的均值,Xx+τ表示Xx在时间延迟τ后的交通流量序列,νx+τ为Xx+τ的均值,σ2为Xx与Xx+τ之间的方差;
当自相关函数P(τ)能快速衰减趋近于0或在0附近波动,则所述待检验交通流量序列通过平稳性检验;当自相关函数P(τ)不能快速衰减趋近于0或在0附近波动,则对所述待检验交通流量序列进行平稳处理后继续进行平稳性检验;
(5)相关系数计算模块,用于计算通过平稳性检验的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj在时间延迟τ下的时间相关系数ρij(τ)和空间相关系数ρij(w),设路网S内有N个路段,交通流量序列Xi=[xi(1),xi(2),...,xi(n)],交通流量序列xi(t)表示观测路段Si在t时刻的流量,xj(t)表示预测路段Sj在t时刻的流量,t=1,2,...n,时间相关系数ρij(τ)的计算公式为:
空间相关系数ρij(w)的计算公式为:
优选地,其特征是,预测装置还包括:
(6)阈值设定模块,用于设定各路段之间的时间延迟最大值L、时空相关系数阈值T1和历史相关系数阈值T2;
(7)时空相关系数矩阵生成模块,用于根据各路段的时间相关系数ρij(τ)和空间相关系数ρij(w)构建各观测路段Si与预测路段Sj在不同时间延迟τ下的时空相关系数矩阵ρ(τ)',并计算各路段的时空相关系数ρij(τ)',其中i∈[1,N]且τ∈[0,L],L的取值范围为[8,12],时空相关系数矩阵ρ(τ)'的计算公式为:
时空相关系数ρij(τ)'的计算公式为:
ρij(τ)'=ρij(τ)ρij(w);
(8)历史相关系数矩阵生成模块,用于生成预测路段Sj的历史相关系数矩阵ρ(t):
其中,选取近M周的同期且同一类型的历史流量作为交通流量序列Xj的历史相关序列,记为m=1,2,...M,M的取值范围为[3,5],所述历史相关系数ρjm(t)的计算公式为:
(9)预测因子选取模块,用于根据所述时空相关系数阈值T1和历史相关系数阈值T2选取与预测目标点相关的预测因子,并按照其所选空间位置j与时间延迟τ进行矩阵重构,选取原则为:
若ρij(τ)'>T1,则将观测路段Si的交通流量序列Xi中满足条件的交通流量组成新的序列并作为第一预测因子,记做X',X'=(x1',x2',...,xp'),其中p为所述满足条件的交通流量个数,设L1为第一预测因子中时间延迟的最大值,L1=max{τ|τ∈[0,L]andρij(τ)'>T1},则第一预测因子X'可表述成如下矩阵形式:
若ρjm(t)>T2,则将所有满足条件的历史相关序列Xjm(t)作为第二预测因子,记作Y',Y'={y1',y2',...,yq'},其中q为满足条件的历史流量个数,第二预测因子Y'可表述成如下矩阵形式:
(10)预测模型构造模块,其通过将第一预测因子和第二预测因子作为训练样本来构造可预测路段在下一时刻的交通流量的预测模型。
其中,所述数据预处理模块中,剔除所述不符合交通实际情况的数据的规则为:在一个数据更新周期内,分别设定各路段的总交通流量数据的阀值范围,若采集到的某路段的总交通流量数据落在对应的阈值范围内,则表明该组数据可靠,保留该组数据;若采集到的某路段的总交通流量数据落不在对应的阈值范围内,则表明该组数据不可靠,并将其剔除。
其中,所述平稳性检验模块包括以下子模块:
(1)检验子模块,用于对处于同一类型的观测路段的交通流量序列与预测路段的交通流量序列分别进行平稳性检验;
(2)连续性检查子模块,与检验子模块连接,用于对不通过平稳性检验的待检验交通流量序列进行连续性检查,若不符合连续性,所述连续性检查子模块采用平均插值法对数据进行补齐;
(3)排错子模块,与连续性检查子模块连接,用于删除明显错误的数据,同时采用平均插值法对数据进行补齐;
(4)差分处理子模块,连接排错子模块和检验子模块,用于对补齐后的数据进行差分处理,并将差分处理后的数据传送到检验子模块。
本实施例设置数据分类模块和平稳性检验模块,增加了数据的准确度,且使构造的预测模型更有针对性;设置相关系数计算模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块,消除了最初预测因子选取的主观性,能够增加预测精度,使预测模型构造模块更加稳定和准确;本实施例取值L=10,M=4,预测精度相对于相关技术提高了2.6%。
实施例4
参见图1,图2,本实施例一种能够进行交通流量预测的多屏显示装置,包括多屏显示装置和与多屏显示装置相连的预测装置,所述多屏显示装置包括:
第一显示装置,该第一显示装置包括至少一显示屏,该第一显示装置显示较小的用户界面,其特征在于:该多屏显示装置还包括第二显示装置,该第二显示装置与该第一显示装置转动连接,该第二显示装置包括至少一显示屏,当该第一显示装置与该第二显示装置位于同一平面时,该第一显示装置的至少一显示屏和该第二显示装置的至少一显示屏无缝对接以显示较大的用户界面。
优选地,第一显示装置包括第一壳体,该第一壳体包括第一主体,该第一主体具有一第一面和一邻近该第一面的第一侧面,该第一侧面的两端沿着垂直该第一侧面的方向上凸伸出第一枢接轴和第二枢接轴,该第一枢接轴和该第二枢接轴同轴,该第一枢接轴和该主体之间形成一第一收容槽,该第二枢接轴与该主体之间形成有一第二收容槽,该第二显示装置包括第二壳体,该第二壳体包括第二主体,该第二主体具有一与该第一面相背的第二面和一邻近该第二面的第二侧面,该第二侧面的两端沿着垂直于该第二侧面的方向凸伸出第三枢接轴和第四枢接轴,该第三枢接轴和该第四枢接轴同轴,且该第三枢接轴收容于该第一收容槽,该第四枢接轴收容于该第二收容槽。
优选地,第一壳体包括位于该第一面上的主控键和音量端口,该第一枢接轴远离该第二枢接轴的一侧上设置有一耳机接口,该第二枢接轴远离该第一枢接轴的一侧上设置有一电源端口。
优选地,其特征是,预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块:
(1)采集模块,用于采集路网S内观测路段Si、预测路段Sj对应各时间段的交通流量数据和通行情况;
(2)数据预处理模块,用于对所述交通流量数据进行数据预处理,并剔除不符合交通实际情况的数据;
(3)数据分类模块,用于对经过数据预处理的交通流量数据进行类型分类,所述类型包括节假日交通流量数据、周末交通流量数据和工作日交通流量数据;
(4)平稳性检验模块,用于对处于同一类型的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj分别进行平稳性检验,检验平稳性的自相关函数为:
其中,Xx表示待检验交通流量序列,νi表示待检验交通流量序列的均值,Xx+τ表示Xx在时间延迟τ后的交通流量序列,νx+τ为Xx+τ的均值,σ2为Xx与Xx+τ之间的方差;
当自相关函数P(τ)能快速衰减趋近于0或在0附近波动,则所述待检验交通流量序列通过平稳性检验;当自相关函数P(τ)不能快速衰减趋近于0或在0附近波动,则对所述待检验交通流量序列进行平稳处理后继续进行平稳性检验;
(5)相关系数计算模块,用于计算通过平稳性检验的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj在时间延迟τ下的时间相关系数ρij(τ)和空间相关系数ρij(w),设路网S内有N个路段,交通流量序列Xi=[xi(1),xi(2),...,xi(n)],交通流量序列xi(t)表示观测路段Si在t时刻的流量,xj(t)表示预测路段Sj在t时刻的流量,t=1,2,...n,时间相关系数ρij(τ)的计算公式为:
空间相关系数ρij(w)的计算公式为:
优选地,其特征是,预测装置还包括:
(6)阈值设定模块,用于设定各路段之间的时间延迟最大值L、时空相关系数阈值T1和历史相关系数阈值T2;
(7)时空相关系数矩阵生成模块,用于根据各路段的时间相关系数ρij(τ)和空间相关系数ρij(w)构建各观测路段Si与预测路段Sj在不同时间延迟τ下的时空相关系数矩阵ρ(τ)',并计算各路段的时空相关系数ρij(τ)',其中i∈[1,N]且τ∈[0,L],L的取值范围为[8,12],时空相关系数矩阵ρ(τ)'的计算公式为:
时空相关系数ρij(τ)'的计算公式为:
ρij(τ)'=ρij(τ)ρij(w);
(8)历史相关系数矩阵生成模块,用于生成预测路段Sj的历史相关系数矩阵ρ(t):
其中,选取近M周的同期且同一类型的历史流量作为交通流量序列Xj的历史相关序列,记为m=1,2,...M,M的取值范围为[3,5],所述历史相关系数ρjm(t)的计算公式为:
(9)预测因子选取模块,用于根据所述时空相关系数阈值T1和历史相关系数阈值T2选取与预测目标点相关的预测因子,并按照其所选空间位置j与时间延迟τ进行矩阵重构,选取原则为:
若ρij(τ)'>T1,则将观测路段Si的交通流量序列Xi中满足条件的交通流量组成新的序列并作为第一预测因子,记做X',X'=(x1',x2',...,xp'),其中p为所述满足条件的交通流量个数,设L1为第一预测因子中时间延迟的最大值,L1=max{τ|τ∈[0,L]andρij(τ)'>T1},则第一预测因子X'可表述成如下矩阵形式:
若ρjm(t)>T2,则将所有满足条件的历史相关序列Xjm(t)作为第二预测因子,记作Y',Y'={y1',y2',...,yq'},其中q为满足条件的历史流量个数,第二预测因子Y'可表述成如下矩阵形式:
(10)预测模型构造模块,其通过将第一预测因子和第二预测因子作为训练样本来构造可预测路段在下一时刻的交通流量的预测模型。
其中,所述数据预处理模块中,剔除所述不符合交通实际情况的数据的规则为:在一个数据更新周期内,分别设定各路段的总交通流量数据的阀值范围,若采集到的某路段的总交通流量数据落在对应的阈值范围内,则表明该组数据可靠,保留该组数据;若采集到的某路段的总交通流量数据落不在对应的阈值范围内,则表明该组数据不可靠,并将其剔除。
其中,所述平稳性检验模块包括以下子模块:
(1)检验子模块,用于对处于同一类型的观测路段的交通流量序列与预测路段的交通流量序列分别进行平稳性检验;
(2)连续性检查子模块,与检验子模块连接,用于对不通过平稳性检验的待检验交通流量序列进行连续性检查,若不符合连续性,所述连续性检查子模块采用平均插值法对数据进行补齐;
(3)排错子模块,与连续性检查子模块连接,用于删除明显错误的数据,同时采用平均插值法对数据进行补齐;
(4)差分处理子模块,连接排错子模块和检验子模块,用于对补齐后的数据进行差分处理,并将差分处理后的数据传送到检验子模块。
本实施例设置数据分类模块和平稳性检验模块,增加了数据的准确度,且使构造的预测模型更有针对性;设置相关系数计算模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块,消除了最初预测因子选取的主观性,能够增加预测精度,使预测模型构造模块更加稳定和准确;本实施例取值L=11,M=5,预测精度相对于相关技术提高了3.2%。
实施例5
参见图1,图2,本实施例一种能够进行交通流量预测的多屏显示装置,包括多屏显示装置和与多屏显示装置相连的预测装置,所述多屏显示装置包括:
第一显示装置,该第一显示装置包括至少一显示屏,该第一显示装置显示较小的用户界面,其特征在于:该多屏显示装置还包括第二显示装置,该第二显示装置与该第一显示装置转动连接,该第二显示装置包括至少一显示屏,当该第一显示装置与该第二显示装置位于同一平面时,该第一显示装置的至少一显示屏和该第二显示装置的至少一显示屏无缝对接以显示较大的用户界面。
优选地,第一显示装置包括第一壳体,该第一壳体包括第一主体,该第一主体具有一第一面和一邻近该第一面的第一侧面,该第一侧面的两端沿着垂直该第一侧面的方向上凸伸出第一枢接轴和第二枢接轴,该第一枢接轴和该第二枢接轴同轴,该第一枢接轴和该主体之间形成一第一收容槽,该第二枢接轴与该主体之间形成有一第二收容槽,该第二显示装置包括第二壳体,该第二壳体包括第二主体,该第二主体具有一与该第一面相背的第二面和一邻近该第二面的第二侧面,该第二侧面的两端沿着垂直于该第二侧面的方向凸伸出第三枢接轴和第四枢接轴,该第三枢接轴和该第四枢接轴同轴,且该第三枢接轴收容于该第一收容槽,该第四枢接轴收容于该第二收容槽。
优选地,第一壳体包括位于该第一面上的主控键和音量端口,该第一枢接轴远离该第二枢接轴的一侧上设置有一耳机接口,该第二枢接轴远离该第一枢接轴的一侧上设置有一电源端口。
优选地,其特征是,预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块:
(1)采集模块,用于采集路网S内观测路段Si、预测路段Sj对应各时间段的交通流量数据和通行情况;
(2)数据预处理模块,用于对所述交通流量数据进行数据预处理,并剔除不符合交通实际情况的数据;
(3)数据分类模块,用于对经过数据预处理的交通流量数据进行类型分类,所述类型包括节假日交通流量数据、周末交通流量数据和工作日交通流量数据;
(4)平稳性检验模块,用于对处于同一类型的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj分别进行平稳性检验,检验平稳性的自相关函数为:
其中,Xx表示待检验交通流量序列,νi表示待检验交通流量序列的均值,Xx+τ表示Xx在时间延迟τ后的交通流量序列,νx+τ为Xx+τ的均值,σ2为Xx与Xx+τ之间的方差;
当自相关函数P(τ)能快速衰减趋近于0或在0附近波动,则所述待检验交通流量序列通过平稳性检验;当自相关函数P(τ)不能快速衰减趋近于0或在0附近波动,则对所述待检验交通流量序列进行平稳处理后继续进行平稳性检验;
(5)相关系数计算模块,用于计算通过平稳性检验的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj在时间延迟τ下的时间相关系数ρij(τ)和空间相关系数ρij(w),设路网S内有N个路段,交通流量序列Xi=[xi(1),xi(2),...,xi(n)],交通流量序列xi(t)表示观测路段Si在t时刻的流量,xj(t)表示预测路段Sj在t时刻的流量,t=1,2,...n,时间相关系数ρij(τ)的计算公式为:
空间相关系数ρij(w)的计算公式为:
优选地,其特征是,预测装置还包括:
(6)阈值设定模块,用于设定各路段之间的时间延迟最大值L、时空相关系数阈值T1和历史相关系数阈值T2;
(7)时空相关系数矩阵生成模块,用于根据各路段的时间相关系数ρij(τ)和空间相关系数ρij(w)构建各观测路段Si与预测路段Sj在不同时间延迟τ下的时空相关系数矩阵ρ(τ)',并计算各路段的时空相关系数ρij(τ)',其中i∈[1,N]且τ∈[0,L],L的取值范围为[8,12],时空相关系数矩阵ρ(τ)'的计算公式为:
时空相关系数ρij(τ)'的计算公式为:
ρij(τ)'=ρij(τ)ρij(w);
(8)历史相关系数矩阵生成模块,用于生成预测路段Sj的历史相关系数矩阵ρ(t):
其中,选取近M周的同期且同一类型的历史流量作为交通流量序列Xj的历史相关序列,记为m=1,2,...M,M的取值范围为[3,5],所述历史相关系数ρjm(t)的计算公式为:
(9)预测因子选取模块,用于根据所述时空相关系数阈值T1和历史相关系数阈值T2选取与预测目标点相关的预测因子,并按照其所选空间位置j与时间延迟τ进行矩阵重构,选取原则为:
若ρij(τ)'>T1,则将观测路段Si的交通流量序列Xi中满足条件的交通流量组成新的序列并作为第一预测因子,记做X',X'=(x1',x2',...,xp'),其中p为所述满足条件的交通流量个数,设L1为第一预测因子中时间延迟的最大值,L1=max{τ|τ∈[0,L]|andρij(τ)'>T1},则第一预测因子X'可表述成如下矩阵形式:
若ρjm(t)>T2,则将所有满足条件的历史相关序列Xjm(t)作为第二预测因子,记作Y',Y'={y1',y2',...,yq'},其中q为满足条件的历史流量个数,第二预测因子Y'可表述成如下矩阵形式:
(10)预测模型构造模块,其通过将第一预测因子和第二预测因子作为训练样本来构造可预测路段在下一时刻的交通流量的预测模型。
其中,所述数据预处理模块中,剔除所述不符合交通实际情况的数据的规则为:在一个数据更新周期内,分别设定各路段的总交通流量数据的阀值范围,若采集到的某路段的总交通流量数据落在对应的阈值范围内,则表明该组数据可靠,保留该组数据;若采集到的某路段的总交通流量数据落不在对应的阈值范围内,则表明该组数据不可靠,并将其剔除。
其中,所述平稳性检验模块包括以下子模块:
(1)检验子模块,用于对处于同一类型的观测路段的交通流量序列与预测路段的交通流量序列分别进行平稳性检验;
(2)连续性检查子模块,与检验子模块连接,用于对不通过平稳性检验的待检验交通流量序列进行连续性检查,若不符合连续性,所述连续性检查子模块采用平均插值法对数据进行补齐;
(3)排错子模块,与连续性检查子模块连接,用于删除明显错误的数据,同时采用平均插值法对数据进行补齐;
(4)差分处理子模块,连接排错子模块和检验子模块,用于对补齐后的数据进行差分处理,并将差分处理后的数据传送到检验子模块。
本实施例设置数据分类模块和平稳性检验模块,增加了数据的准确度,且使构造的预测模型更有针对性;设置相关系数计算模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块,消除了最初预测因子选取的主观性,能够增加预测精度,使预测模型构造模块更加稳定和准确;本实施例取值L=12,M=5,预测精度相对于相关技术提高了3.5%。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
Claims (5)
1.一种能够进行交通流量预测的多屏显示装置,包括多屏显示装置和与多屏显示装置相连的预测装置,所述多屏显示装置包括:
第一显示装置,该第一显示装置包括至少一显示屏,该第一显示装置显示较小的用户界面,其特征在于:该多屏显示装置还包括第二显示装置,该第二显示装置与该第一显示装置转动连接,该第二显示装置包括至少一显示屏,当该第一显示装置与该第二显示装置位于同一平面时,该第一显示装置的至少一显示屏和该第二显示装置的至少一显示屏无缝对接以显示较大的用户界面;
所述预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块:
(1)采集模块,用于采集路网S内观测路段Si、预测路段Sj对应各时间段的交通流量数据和通行情况;
(2)数据预处理模块,用于对所述交通流量数据进行数据预处理,并剔除不符合交通实际情况的数据;
(3)数据分类模块,用于对经过数据预处理的交通流量数据进行类型分类,所述类型包括节假日交通流量数据、周末交通流量数据和工作日交通流量数据;
(4)平稳性检验模块,用于对处于同一类型的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj分别进行平稳性检验,检验平稳性的自相关函数为:
其中,Xx表示待检验交通流量序列,νi表示待检验交通流量序列的均值,Xx+τ表示Xx在时间延迟τ后的交通流量序列,νx+τ为Xx+τ的均值,σ2为Xx与Xx+τ之间的方差;
当自相关函数P(τ)能快速衰减趋近于0或在0附近波动,则所述待检验交通流量序列通过平稳性检验;当自相关函数P(τ)不能快速衰减趋近于0或在0附近波动,则对所述待检验交通流量序列进行平稳处理后继续进行平稳性检验;
(5)相关系数计算模块,用于计算通过平稳性检验的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj在时间延迟τ下的时间相关系数ρij(τ)和空间相关系数ρij(w),设路网S内有N个路段,交通流量序列Xi=[xi(1),xi(2),...,xi(n)],交通流量序列xi(t)表示观测路段Si在t时刻的流量,xj(t)表示预测路段Sj在t时刻的流量,t=1,2,...n,时间相关系数ρij(τ)的计算公式为:
空间相关系数ρij(w)的计算公式为:
(6)阈值设定模块,用于设定各路段之间的时间延迟最大值L、时空相关系数阈值T1和历史相关系数阈值T2;
(7)时空相关系数矩阵生成模块,用于根据各路段的时间相关系数ρij(τ)和空间相关系数ρij(w)构建各观测路段Si与预测路段Sj在不同时间延迟τ下的时空相关系数矩阵ρ(τ)',并计算各路段的时空相关系数ρij(τ)',其中i∈[1,N]且τ∈[0,L],L的取值范围为[8,12],时空相关系数矩阵ρ(τ)'的计算公式为:
时空相关系数ρij(τ)'的计算公式为:
ρij(τ)'=ρij(τ)ρij(w);
(8)历史相关系数矩阵生成模块,用于生成预测路段Sj的历史相关系数矩阵ρ(t):
其中,选取近M周的同期且同一类型的历史流量作为交通流量序列Xj的历史相关序列,记为m=1,2,...M,M的取值范围为[3,5],所述历史相关系数ρjm(t)的计算公式为:
(9)预测因子选取模块,用于根据所述时空相关系数阈值T1和历史相关系数阈值T2选取与预测目标点相关的预测因子,并按照其所选空间位置j与时间延迟τ进行矩阵重构,选取原则为:
若ρij(τ)'>T1,则将观测路段Si的交通流量序列Xi中满足条件的交通流量组成新的序列并作为第一预测因子,记做X',X'=(x1',x2',...,xp'),其中p为所述满足条件的交通流量个数,设L1为第一预测因子中时间延迟的最大值,则第一预测因子X'可表述成如下矩阵形式:
若ρjm(t)>T2,则将所有满足条件的历史相关序列Xjm(t)作为第二预测因子,记作Y',Y'={y1',y2',...,yq'},其中q为满足条件的历史流量个数,第二预测因子Y'可表述成如下矩阵形式:
(10)预测模型构造模块,其通过将第一预测因子和第二预测因子作为训练样本来构造可预测路段在下一时刻的交通流量的预测模型。
2.根据权利要求1所述的一种能够进行交通流量预测的多屏显示装置,其特征是,第一显示装置包括第一壳体,该第一壳体包括第一主体,该第一主体具有一第一面和一邻近该第一面的第一侧面,该第一侧面的两端沿着垂直该第一侧面的方向上凸伸出第一枢接轴和第二枢接轴,该第一枢接轴和该第二枢接轴同轴,该第一枢接轴和该主体之间形成一第一收容槽,该第二枢接轴与该主体之间形成有一第二收容槽,该第二显示装置包括第二壳体,该第二壳体包括第二主体,该第二主体具有一与该第一面相背的第二面和一邻近该第二面的第二侧面,该第二侧面的两端沿着垂直于该第二侧面的方向凸伸出第三枢接轴和第四枢接轴,该第三枢接轴和该第四枢接轴同轴,且该第三枢接轴收容于该第一收容槽,该第四枢接轴收容于该第二收容槽。
3.根据权利要求2所述的一种能够进行交通流量预测的多屏显示装置,其特征是,第一壳体包括位于该第一面上的主控键和音量端口,该第一枢接轴远离该第二枢接轴的一侧上设置有一耳机接口,该第二枢接轴远离该第一枢接轴的一侧上设置有一电源端口。
4.根据权利要求3所述的一种能够进行交通流量预测的多屏显示装置,其特征是,所述数据预处理模块中,剔除所述不符合交通实际情况的数据的规则为:在一个数据更新周期内,分别设定各路段的总交通流量数据的阈值范围,若采集到的某路段的总交通流量数据落在对应的阈值范围内,则表明该组数据可靠,保留该组数据;若采集到的某路段的总交通流量数据落不在对应的阈值范围内,则表明该组数据不可靠,并将其剔除。
5.根据权利要求4所述的一种能够进行交通流量预测的多屏显示装置,其特征是,所述平稳性检验模块包括以下子模块:
(1)检验子模块,用于对处于同一类型的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj分别进行平稳性检验;
(2)连续性检查子模块,与检验子模块连接,用于对不通过平稳性检验的待检验交通流量序列进行连续性检查,若不符合连续性,所述连续性检查子模块采用平均插值法对数据进行补齐;
(3)排错子模块,与连续性检查子模块连接,用于删除明显错误的数据,同时采用平均插值法对数据进行补齐;
(4)差分处理子模块,连接排错子模块和检验子模块,用于对补齐后的数据进行差分处理,并将差分处理后的数据传送到检验子模块。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610513353.0A CN106128098B (zh) | 2016-06-29 | 2016-06-29 | 一种能够进行交通流量预测的多屏显示装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610513353.0A CN106128098B (zh) | 2016-06-29 | 2016-06-29 | 一种能够进行交通流量预测的多屏显示装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106128098A CN106128098A (zh) | 2016-11-16 |
CN106128098B true CN106128098B (zh) | 2018-08-03 |
Family
ID=57468672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610513353.0A Expired - Fee Related CN106128098B (zh) | 2016-06-29 | 2016-06-29 | 一种能够进行交通流量预测的多屏显示装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106128098B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109961180A (zh) * | 2019-03-15 | 2019-07-02 | 浙江工业大学 | 一种基于时空相关性的短时交通流量预测方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103620967A (zh) * | 2011-05-03 | 2014-03-05 | 艾科星科技公司 | 具有可扩展屏幕的通信装置 |
CN103632542A (zh) * | 2012-08-27 | 2014-03-12 | 国际商业机器公司 | 交通信息处理方法、装置和相应设备 |
CN104506378A (zh) * | 2014-12-03 | 2015-04-08 | 上海华为技术有限公司 | 一种预测数据流量的装置及方法 |
TW201610831A (zh) * | 2014-09-02 | 2016-03-16 | 鴻海精密工業股份有限公司 | 多屏顯示裝置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8599106B2 (en) * | 2010-10-01 | 2013-12-03 | Z124 | Dual screen application behaviour |
CN101673463B (zh) * | 2009-09-17 | 2011-12-14 | 北京世纪高通科技有限公司 | 一种基于时间序列的交通信息预测方法及装置 |
WO2015170289A1 (en) * | 2014-05-09 | 2015-11-12 | Vodafone Omnitel B.V. | Method and system for vehicular traffic prediction |
CN104899663B (zh) * | 2015-06-17 | 2019-02-26 | 北京奇虎科技有限公司 | 一种数据预测方法和装置 |
-
2016
- 2016-06-29 CN CN201610513353.0A patent/CN106128098B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103620967A (zh) * | 2011-05-03 | 2014-03-05 | 艾科星科技公司 | 具有可扩展屏幕的通信装置 |
CN103632542A (zh) * | 2012-08-27 | 2014-03-12 | 国际商业机器公司 | 交通信息处理方法、装置和相应设备 |
TW201610831A (zh) * | 2014-09-02 | 2016-03-16 | 鴻海精密工業股份有限公司 | 多屏顯示裝置 |
CN104506378A (zh) * | 2014-12-03 | 2015-04-08 | 上海华为技术有限公司 | 一种预测数据流量的装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106128098A (zh) | 2016-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105913664B (zh) | 一种交通流量监控预测系统 | |
CN108364097B (zh) | 基于生成对抗网络的台风云系预测方法 | |
CN107340365A (zh) | 一种面向湖泊蓝藻灾害的立体监控及数据挖掘系统和方法 | |
WO2021036671A1 (zh) | 基于数字孪生的智能振动检测方法及装置 | |
CN106157616B (zh) | 一种交通流量短时预测装置 | |
CN105913654B (zh) | 一种智能交通管理系统 | |
CN106128122B (zh) | 一种智能交通信号灯 | |
CN107545301A (zh) | 页面展示方法及装置 | |
Cao | 1.17 Spatial optimization for sustainable land use planning | |
CN114548811A (zh) | 一种机场可达性的检测方法、装置、电子设备及存储介质 | |
Mouchart et al. | Causal explanation: recursive decompositions and mechanisms | |
Bellenger et al. | An economic approach to environmental indices | |
Di et al. | An automatic and integrated self-diagnosing system for the silting disease of drainage pipelines based on SSAE-TSNE and MS-LSTM | |
CN106128098B (zh) | 一种能够进行交通流量预测的多屏显示装置 | |
CN116862616A (zh) | 基于神经网络与地理加权回归的土地出让价格预测方法 | |
CN103150476B (zh) | 一种基于数据站场的系统效能评估方法 | |
CN109345048B (zh) | 预测方法、装置、电子设备及计算机可读存储介质 | |
CN106097712B (zh) | 一种交通流优化引导系统 | |
CN109902209A (zh) | 一种基于空间智能的特种承压设备用户三维可视化方法 | |
CN106157615B (zh) | 一种交通流量信息管理手持终端 | |
CN106128142B (zh) | 一种机动车导航系统 | |
CN105989509A (zh) | 面向智能终端的业务推荐方法及装置 | |
CN106980675B (zh) | 一种高效的桥梁结构健康预警系统 | |
CN117458450A (zh) | 电力数据能耗预测分析方法及系统 | |
CN106128102B (zh) | 一种交通堵塞预警装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20180621 Address after: 030012 Taiyuan, Shanxi Xiaodian District, 91 West Road, B, office building, 6 floor, North Tower. Applicant after: Shanxi unobstructed engineering survey and Design Consulting Co.,Ltd. Address before: No. 372, Zhenhai District, Ningbo, Zhejiang, Zhejiang Applicant before: Xiao Rui |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180803 |