[go: up one dir, main page]

CN106126919A - A kind of accurate Hausdorff distance computational methods between any type point set data - Google Patents

A kind of accurate Hausdorff distance computational methods between any type point set data Download PDF

Info

Publication number
CN106126919A
CN106126919A CN201610463827.5A CN201610463827A CN106126919A CN 106126919 A CN106126919 A CN 106126919A CN 201610463827 A CN201610463827 A CN 201610463827A CN 106126919 A CN106126919 A CN 106126919A
Authority
CN
China
Prior art keywords
point set
hausdorff distance
point
dist
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610463827.5A
Other languages
Chinese (zh)
Inventor
何发智
陈壹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201610463827.5A priority Critical patent/CN106126919A/en
Publication of CN106126919A publication Critical patent/CN106126919A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Image Analysis (AREA)

Abstract

本发明公开了一种任意类型点集数据之间的精确豪斯多夫距离计算方法,首先输入两点集数据A和B,如果点集是散乱无序的点云数据,则采用莫顿曲线(Morton Curve)预处理散乱无序的点集数据A和B,使点集规则有序且具有很好的空间局部性。然后使用局部搜索算法分别计算出单向豪斯多夫距离h(A,B)和h(B,A)。最后比较单向豪斯多夫距离h(A,B)和h(B,A),取其中的最大值即为豪斯多夫距离H(A,B)。本发明利用数据的空间局部性特性能够减少遍历内循环中对豪斯多夫距离没有贡献的点,从而极大的减少计算的复杂度,结合莫顿曲线方法,本发明可以处理任意类型的点集数据,更具通用性。

The invention discloses an accurate Hausdorff distance calculation method between any type of point set data. First, two point set data A and B are input. If the point set is scattered and disordered point cloud data, the Morton curve is used. (Morton Curve) preprocesses the scattered and unordered point set data A and B, so that the point set is ordered and has good spatial locality. Then use the local search algorithm to calculate the one-way Hausdorff distance h(A, B) and h(B, A) respectively. Finally, compare the one-way Hausdorff distance h(A, B) and h(B, A), and take the maximum value as the Hausdorff distance H(A, B). The present invention utilizes the spatial locality of the data to reduce the points that do not contribute to the Hausdorff distance in the traversal inner loop, thereby greatly reducing the complexity of calculation. Combined with the Morton curve method, the present invention can process any type of point Collecting data is more versatile.

Description

一种任意类型点集数据之间的精确豪斯多夫距离计算方法A Calculation Method of Accurate Hausdorff Distance Between Any Type of Point Set Data

技术领域technical field

本发明属于模式识别,形状匹配技术领域,涉及一种任意类型点集数据之间的精确豪斯多夫距离(Hausdorff Distance)计算方法,具体涉及一种局部搜索的任意类型点集的精确豪斯多夫距离计算方法。The invention belongs to the technical field of pattern recognition and shape matching, and relates to a calculation method for precise Hausdorff distance (Hausdorff Distance) between any type of point set data, in particular to an exact Hausdorff distance for any type of point set with local search Dove distance calculation method.

背景技术Background technique

豪斯多夫距离是非常重要的相似度衡量标准,广泛应用于模式识别,形状匹配等领域。然而,由于豪斯多夫距离计算是同时包含求最大值和最小值问题,因此,豪斯多夫距离的计算是一件非常具有挑战性的工作。豪斯多夫距离得到了学术界和工业界极大的关注并提出了很多有效的算法旨在减少豪斯多夫距离的计算复杂度。一般而言,根据处理的数据类型,豪斯多夫距离计算可以分为三类:多边形模型,点集,网格曲面。同样,豪斯多夫距离算法可以粗略的分为近似算法和精确算法。Hausdorff distance is a very important measure of similarity, widely used in pattern recognition, shape matching and other fields. However, the calculation of Hausdorff distance is a very challenging task because the calculation of Hausdorff distance includes both the maximum value and the minimum value problem. Hausdorff distance has received great attention from academia and industry and many effective algorithms have been proposed to reduce the computational complexity of Hausdorff distance. Generally speaking, according to the type of data processed, Hausdorff distance calculations can be divided into three categories: polygonal models, point sets, and mesh surfaces. Similarly, Hausdorff distance algorithms can be roughly divided into approximate algorithms and exact algorithms.

给定点集A和点集B,豪斯多夫距离H(A,B)的定义如下:Given a point set A and a point set B, the Hausdorff distance H(A, B) is defined as follows:

H(A,B=max(h(A,B,h(B,A))H(A, B=max(h(A, B, h(B, A))

其中h(A,B)和h(B,A)为单向豪斯多夫距离,且h(A,B)≠h(B,A)单向豪斯多夫距离分别定义为:Where h(A, B) and h(B, A) are one-way Hausdorff distances, and h(A, B)≠h(B, A) one-way Hausdorff distances are defined as:

hh (( AA ,, BB )) == mm aa xx aa ∈∈ AA (( minmin bb ∈∈ BB dd ii sthe s tt (( aa ,, bb )) ))

hh (( BB ,, AA )) == mm aa xx bb ∈∈ BB (( minmin aa ∈∈ AA dd ii sthe s tt (( bb ,, aa )) ))

其中dist(.,.)函数为欧式距离函数;The dist(.,.) function is the Euclidean distance function;

采用暴力方法计算豪斯多夫距离非常困难,特别是处理大规模点集数据的时候。目前,计算点集之间精确豪斯多夫距离的最新方法是EARLYBREAK方法,但是该方法还存在一些不足。第一,当两点集部分重叠的时候,EARLYBREAK方法不能有效的减少任意类型点集的豪斯多夫距离的计算复杂度。第二,当两点集完全重叠的时候是最坏的情况,EARLYBREAK方法退化成了暴力方法计算豪斯多夫距离。第三,EARLYBREAK方法只针对于规则化的点集数据能求得精确豪斯多夫距离,如图像、体素数据,而散乱点云数据只能求得近似解,因为在点云数据上应用EARLYBREAK方法求豪斯多夫距离需要先将点云数据转换成规则化的数据。It is very difficult to calculate Hausdorff distance by brute force method, especially when dealing with large-scale point set data. At present, the latest method to calculate the exact Hausdorff distance between point sets is the EARLYBREAK method, but there are still some shortcomings in this method. First, when two point sets partially overlap, the EARLYBREAK method cannot effectively reduce the computational complexity of the Hausdorff distance for any type of point set. Second, it is the worst case when the two point sets completely overlap, and the EARLYBREAK method degenerates into a violent method to calculate the Hausdorff distance. Third, the EARLYBREAK method can only obtain accurate Hausdorff distance for regularized point set data, such as images and voxel data, while scattered point cloud data can only obtain approximate solutions, because the application of The EARLYBREAK method to calculate the Hausdorff distance needs to convert the point cloud data into regularized data first.

发明内容Contents of the invention

本发明解决了上述技术问题,针对任意点集之间精确豪斯多夫计算问题,本发明利用数据的空间局部性特性,提出了一种基于局部搜索的任意类型点集的精确豪斯多夫距离计算方法。The present invention solves the above-mentioned technical problems. Aiming at the problem of accurate Hausdorff calculation between arbitrary point sets, the present invention utilizes the spatial locality characteristics of data and proposes an accurate Hausdorff calculation for any type of point set based on local search. distance calculation method.

本发明所采用的技术方案是:一种任意类型点集数据之间的精确豪斯多夫距离计算方法,其特征在于,包括以下步骤:The technical scheme adopted in the present invention is: a method for calculating the precise Hausdorff distance between any type of point set data, characterized in that it comprises the following steps:

步骤1:输入两点集数据A和B,并执行下述判断;Step 1: Input two point sets data A and B, and perform the following judgments;

如果点集是规则化数据,则执行下述步骤3;如果点集是散乱无序的点云数据,则执行下述步骤2;If the point set is regularized data, then perform the following step 3; if the point set is scattered and unordered point cloud data, then perform the following step 2;

步骤2:采用莫顿曲线预处理散乱无序的点集数据A和B,使点集规则有序且具有很好的空间局部性;Step 2: Use the Morton curve to preprocess the scattered and unordered point set data A and B, so that the point set is regular and orderly and has good spatial locality;

步骤3:使用局部搜索算法分别计算出单向豪斯多夫距离h(A,B)和h(B,A);Step 3: Use the local search algorithm to calculate the one-way Hausdorff distance h(A, B) and h(B, A);

步骤4:比较单向豪斯多夫距离h(A,B)和h(B,A),取其中的最大值即为豪斯多夫距离H(A,B)。Step 4: Compare the one-way Hausdorff distance h(A, B) and h(B, A), and take the maximum value as the Hausdorff distance H(A, B).

作为优选,步骤2中所述采用莫顿曲线预处理散乱无序的点集数据A和B,其具体实现包括以下子步骤:As a preference, the Morton curve is used to preprocess the scattered and disordered point set data A and B described in step 2, and its specific implementation includes the following sub-steps:

步骤2.1:对点集中的每一个点进行莫顿编码;对于给定的多维点数据坐标,其莫顿码的计算为交错每一维用二进制表示的坐标值;Step 2.1: Perform Morton coding on each point in the point set; for a given multi-dimensional point data coordinates, the calculation of the Morton code is to interleave the coordinate values expressed in binary for each dimension;

步骤2.2:根据莫顿码值使用基数排序方法按大小升序排序,得到莫顿曲线,这时点集按着莫顿曲线的顺序具有很好的空间局部性。Step 2.2: According to the Morton code value, the radix sorting method is used to sort in ascending order of size, and the Morton curve is obtained. At this time, the point set has good spatial locality according to the order of the Morton curve.

作为优选,步骤3中所述使用局部搜索算法分别计算出单向豪斯多夫距离h(A,B)和h(B,A),其具体实现包括以下子步骤:As preferably, use the local search algorithm described in step 3 to calculate one-way Hausdorff distance h (A, B) and h (B, A) respectively, and its specific implementation includes the following sub-steps:

步骤3.1:计算单向豪斯多夫距离h(A,B),定义参数preindex初始化为0,用于存储遍历B时中止循环的索引位置,该位置用于作为下一个循环搜索开始的地方;定义参数cmax初始化为0,表示临时的单向豪斯多夫距离;定义参数cmin初始化为无穷大,表示临时的最小值;Step 3.1: Calculate the one-way Hausdorff distance h(A, B), define the parameter preindex and initialize it to 0, which is used to store the index position where the loop is terminated when traversing B, and this position is used as the place where the next loop search starts; Define the parameter cmax to be initialized to 0, indicating the temporary one-way Hausdorff distance; define the parameter cmin to be initialized to infinity, indicating the temporary minimum value;

步骤3.2:设A中的一个点a,求h(a,B),从preindex位置开始左右遍历B中的点,计算点a与B[preindex+1],B[preindex-1]点的欧式距离dist;Step 3.2: Set a point a in A, find h(a, B), traverse the points in B from the preindex position left and right, and calculate the European formula between point a and B[preindex+1], B[preindex-1] distance dist;

步骤3.3:将dist与cmax比较,如果dist<cmax,则执行下述步骤3.4;如果dist>=cmax,则执行下述步骤3.5;Step 3.3: compare dist with cmax, if dist<cmax, then perform the following step 3.4; if dist>=cmax, then perform the following step 3.5;

步骤3.4:如果dist<cmax,那么中止遍历B,跳出循环,将当前索引值赋值给preindex,同时将cmin赋值为0,执行下述步骤3.6;Step 3.4: If dist<cmax, then stop traversing B, jump out of the loop, assign the current index value to preindex, and assign cmin to 0, and execute the following step 3.6;

步骤3.5:如果dist>=cmax,将dist与cmin比较,当dist<cmin时将dist的值更新cmin的值;然后往preindex的左右方向继续遍历B,直到找到小于cmax的点或者所有B中的点都已遍历;Step 3.5: If dist>=cmax, compare dist with cmin, and update the value of dist to the value of cmin when dist<cmin; then continue to traverse B in the left and right directions of preindex until you find a point smaller than cmax or all the points in B points have been traversed;

步骤3.6:依次遍历A中的点,当遍历完A中所有的点后,cmax的值即为单向豪斯多夫距离h(A,B),同理求得h(B,A)。Step 3.6: Traverse the points in A in turn. After traversing all the points in A, the value of cmax is the one-way Hausdorff distance h(A, B), and obtain h(B, A) in the same way.

本发明有益效果是:本发明与最新的EAELYBREAK算法结果对比,本发明更具有通用性且高效。本发明能处理任意类型的点集,并且能处理不同重叠度的点集,同时极大的减少了计算的复杂度,易于实现。The beneficial effects of the present invention are: compared with the latest EAELYBREAK algorithm results, the present invention is more versatile and efficient. The invention can deal with arbitrary types of point sets, and can deal with point sets of different overlapping degrees, and at the same time greatly reduces the complexity of calculation and is easy to realize.

附图说明Description of drawings

图1是本发明实施例的算法流程图;Fig. 1 is the algorithm flowchart of the embodiment of the present invention;

图2是本发明实施例中莫顿曲线(Morton Curve)的示意图;Fig. 2 is the schematic diagram of Morton curve (Morton Curve) in the embodiment of the present invention;

图3是本发明实施例中点集非重叠情况下,本发明与EAELYBREAK(PAMI2015)算法的性能对比图;Fig. 3 is under the non-overlapping situation of the point set in the embodiment of the present invention, the performance contrast figure of the present invention and EAELYBREAK (PAMI2015) algorithm;

图4是本发明实施例中散乱点集情况下,本发明与EAELYBREAK(PAMI2015)算法的性能对比图。Fig. 4 is a performance comparison diagram between the present invention and EAELYBREAK (PAMI2015) algorithm in the case of scattered point sets in the embodiment of the present invention.

具体实施方式detailed description

为了便于本领域普通技术人员理解和实施本发明,下面结合附图及实施例对本发明作进一步的详细描述,应当理解,此处所描述的实施示例仅用于说明和解释本发明,并不用于限定本发明。In order to facilitate those of ordinary skill in the art to understand and implement the present invention, the present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the implementation examples described here are only used to illustrate and explain the present invention, and are not intended to limit this invention.

请见图1,本发明提供的一种基于局部搜索的任意类型点集的精确豪斯多夫距离计算方法,包含以下步骤:Please see Fig. 1, a kind of accurate Hausdorff distance calculation method based on local search of any type of point set provided by the present invention comprises the following steps:

步骤1,输入两点集数据A和B,如果点集是规则化数据,则转到步骤3,如果点集是散乱无序的点云数据,则转到步骤2;Step 1, input two point set data A and B, if the point set is regularized data, go to step 3, if the point set is scattered and unordered point cloud data, go to step 2;

步骤2,采用莫顿曲线(Morton Curve)预处理散乱无序的点集数据A和B,使点集规则有序且具有很好的空间局部性;Step 2, using Morton Curve to preprocess the scattered and unordered point set data A and B, so that the point set is regular and orderly and has good spatial locality;

请见图2,本实施例使用莫顿曲线预处理点集数据包含以下步骤:Please see Fig. 2, the present embodiment uses the Morton curve preprocessing point set data to include the following steps:

步骤2.1先要对点集中的每一个点进行莫顿编码。给定一个多维点数据坐标,它的莫顿码可以简单的计算为交错每一维用二进制表示的坐标值,编码过程易通过GPU并行实现。In step 2.1, Morton coding is performed on each point in the point set. Given a multi-dimensional point data coordinate, its Morton code can be simply calculated as the coordinate value of each interleaved dimension expressed in binary, and the encoding process can be easily implemented in parallel by GPU.

步骤2.2对点集进行莫顿编码以后,根据莫顿码值按大小升序排序,得到莫顿曲线,这时点集按着莫顿曲线的顺序具有很好的空间局部性。排序过程是采用GPU并行实现的基数排序。Step 2.2 After Morton encoding is performed on the point set, the Morton code value is sorted in ascending order according to the size, and the Morton curve is obtained. At this time, the point set has good spatial locality according to the order of the Morton curve. The sorting process is a radix sort implemented in parallel using the GPU.

步骤3,使用局部搜索算法分别计算出单向豪斯多夫距离h(A,B)和h(B,A);具体实现包含以下步骤:Step 3, use the local search algorithm to calculate the one-way Hausdorff distance h(A, B) and h(B, A); the specific implementation includes the following steps:

步骤3.1计算单向豪斯多夫距离h(A,B),定义参数preindex初始化为0,用于保留遍历B时中止循环的索引位置,该位置可以作为下一个循环搜索开始的地方。定义参数cmax初始化为0,表示临时的单向豪斯多夫距离,定义参数cmin初始化为无穷大,表示临时的最小值;Step 3.1 Calculate the one-way Hausdorff distance h(A, B), define the parameter preindex and initialize it to 0, which is used to reserve the index position where the loop is terminated when traversing B, and this position can be used as the place where the next loop search starts. Define the parameter cmax to be initialized to 0, indicating the temporary one-way Hausdorff distance, and define the parameter cmin to be initialized to infinity, indicating the temporary minimum value;

步骤3.2设A中的一个点a,求h(a,B),从preindex位置开始遍历B中的点,计算点a与B[preindex]点的欧式距离dist;Step 3.2 Set a point a in A, find h(a, B), traverse the points in B from the preindex position, and calculate the Euclidean distance dist between point a and point B[preindex];

步骤3.3将dist与cmax比较,如果dist<cmax,转到步骤3.4;如果dist<cmax,转到步骤3.5;Step 3.3 compare dist with cmax, if dist<cmax, go to step 3.4; if dist<cmax, go to step 3.5;

步骤3.4如果dist<cmax,那么中止遍历B,跳出循环,将当前索引值赋值给preindex,同时将cmin赋值为0,转到步骤3.6;Step 3.4 If dist<cmax, stop traversing B, jump out of the loop, assign the current index value to preindex, and assign cmin to 0, and go to step 3.6;

步骤3.5如果dist>=cmax,将dist与cmin比较,当dist<cmin时将dist的值更新cmin的值,那么往preindex的左右方向继续遍历B,直到找到小于cmax的点或者所有B中的点都已遍历;Step 3.5 If dist>=cmax, compare dist with cmin, and update the value of dist to the value of cmin when dist<cmin, then continue to traverse B in the left and right direction of preindex until you find a point smaller than cmax or all points in B have been traversed;

步骤3.6依次遍历A中的点重复步骤3.2和3.3,当遍历完A中所有的点后,cmax的值即为单向豪斯多夫距离h(A,B),同理求得h(B,A)。Step 3.6 Repeat steps 3.2 and 3.3 by traversing the points in A in turn. After traversing all the points in A, the value of cmax is the one-way Hausdorff distance h(A, B), and obtain h(B) in the same way , A).

步骤4,比较单向豪斯多夫距离h(A,B)和h(B,A),取其中的最大值即为豪斯多夫距离H(A,B)。Step 4, compare the one-way Hausdorff distance h(A, B) and h(B, A), and take the maximum value as the Hausdorff distance H(A, B).

请见图3,是点集非重叠情况下,本发明与EAELYBREAK(PAMI2015)算法的性能对比图,如表1所示,本发明在点集部分重叠和点集完全重叠情况下,豪斯多夫距离计算总耗时间都远小于EAELYBREAK(PAMI2015)。Please see Fig. 3, which is a performance comparison diagram between the present invention and the EAELYBREAK (PAMI2015) algorithm under the condition of non-overlapping point sets. The total time spent on distance calculation is much less than EAELYBREAK (PAMI2015).

表1Table 1

请见图4,是散乱点集情况下,本发明与EAELYBREAK(PAMI2015)算法的性能对比图,如表2所示,本发明处理散乱点集性能优于EAELYBREAK(PAMI2015)。说明本发明在计算任意类型点集的精确豪斯多夫距离问题上优于目前最新的技术。Please see Figure 4, which is a performance comparison diagram between the present invention and the EAELYBREAK (PAMI2015) algorithm in the case of a scattered point set. As shown in Table 2, the performance of the present invention in dealing with a scattered point set is better than that of EAELYBREAK (PAMI2015). It shows that the present invention is superior to the current latest technology on the problem of calculating the precise Hausdorff distance of any type of point set.

表2Table 2

本发明利用数据的空间局部性特性能够减少遍历内循环中对豪斯多夫距离没有贡献的点,从而极大的减少计算的复杂度,结合莫顿曲线方法,本发明可以处理任意类型的点集数据,更具通用性。The present invention utilizes the spatial locality of the data to reduce the points that do not contribute to the Hausdorff distance in the traversal inner loop, thereby greatly reducing the complexity of calculation. Combined with the Morton curve method, the present invention can process any type of point Collecting data is more versatile.

应当理解的是,本说明书未详细阐述的部分均属于现有技术。It should be understood that the parts not described in detail in this specification belong to the prior art.

应当理解的是,上述针对较佳实施例的描述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本领域的普通技术人员在本发明的启示下,在不脱离本发明权利要求所保护的范围情况下,还可以做出替换或变形,均落入本发明的保护范围之内,本发明的请求保护范围应以所附权利要求为准。It should be understood that the above-mentioned descriptions for the preferred embodiments are relatively detailed, and should not therefore be considered as limiting the scope of the patent protection of the present invention. Within the scope of protection, replacements or modifications can also be made, all of which fall within the protection scope of the present invention, and the scope of protection of the present invention should be based on the appended claims.

Claims (3)

1.一种任意类型点集数据之间的精确豪斯多夫距离计算方法,其特征在于,包括以下步骤:1. an accurate Hausdorff distance calculation method between arbitrary type point set data, is characterized in that, comprises the following steps: 步骤1:输入两点集数据A和B,并执行下述判断;Step 1: Input two point sets data A and B, and perform the following judgments; 如果点集是规则化数据,则执行下述步骤3;如果点集是散乱无序的点云数据,则执行下述步骤2;If the point set is regularized data, then perform the following step 3; if the point set is scattered and unordered point cloud data, then perform the following step 2; 步骤2:采用莫顿曲线预处理散乱无序的点集数据A和B,使点集规则有序且具有很好的空间局部性;Step 2: Use the Morton curve to preprocess the scattered and unordered point set data A and B, so that the point set is regular and orderly and has good spatial locality; 步骤3:使用局部搜索算法分别计算出单向豪斯多夫距离h(A,B)和h(B,A);Step 3: Use the local search algorithm to calculate the one-way Hausdorff distance h(A, B) and h(B, A); 步骤4:比较单向豪斯多夫距离h(A,B)和h(B,A),取其中的最大值即为豪斯多夫距离H(A,B)。Step 4: Compare the one-way Hausdorff distance h(A, B) and h(B, A), and take the maximum value as the Hausdorff distance H(A, B). 2.根据权利要求1中所述的任意类型点集数据之间的精确豪斯多夫距离计算方法,其特征在于,步骤2中所述采用莫顿曲线预处理散乱无序的点集数据A和B,其具体实现包括以下子步骤:2. according to the accurate Hausdorff distance calculating method between arbitrary type point set data described in claim 1, it is characterized in that, described in step 2 adopts Morton curve preprocessing scattered and unordered point set data A and B, its specific implementation includes the following sub-steps: 步骤2.1:对点集中的每一个点进行莫顿编码;对于给定的多维点数据坐标,其莫顿码的计算为交错每一维用二进制表示的坐标值;Step 2.1: Perform Morton coding on each point in the point set; for a given multi-dimensional point data coordinates, the calculation of the Morton code is to interleave the coordinate values expressed in binary for each dimension; 步骤2.2:根据莫顿码值使用基数排序方法按大小升序排序,得到莫顿曲线,这时点集按着莫顿曲线的顺序具有很好的空间局部性。Step 2.2: According to the Morton code value, the radix sorting method is used to sort in ascending order of size, and the Morton curve is obtained. At this time, the point set has good spatial locality according to the order of the Morton curve. 3.根据权利要求1中所述的任意类型点集数据之间的精确豪斯多夫距离计算方法,其特征在于,步骤3中所述使用局部搜索算法分别计算出单向豪斯多夫距离h(A,B)和h(B,A),其具体实现包括以下子步骤:3. according to the accurate Hausdorff distance calculating method between arbitrary type point set data described in claim 1, it is characterized in that, use local search algorithm described in step 3 to calculate one-way Hausdorff distance respectively h(A, B) and h(B, A), its specific implementation includes the following sub-steps: 步骤3.1:计算单向豪斯多夫距离h(A,B),定义参数preindex初始化为0,用于存储遍历B时中止循环的索引位置,该位置用于作为下一个循环搜索开始的地方;定义参数cmax初始化为0,表示临时的单向豪斯多夫距离;定义参数cmin初始化为无穷大,表示临时的最小值;Step 3.1: Calculate the one-way Hausdorff distance h(A, B), define the parameter preindex and initialize it to 0, which is used to store the index position where the loop is terminated when traversing B, and this position is used as the place where the next loop search starts; Define the parameter cmax to be initialized to 0, indicating the temporary one-way Hausdorff distance; define the parameter cmin to be initialized to infinity, indicating the temporary minimum value; 步骤3.2:设A中的一个点a,求h(a,B),从preindex位置开始左右遍历B中的点,计算点a与B[preindex+1],B[preindex-1]点的欧式距离dist;Step 3.2: Set a point a in A, find h(a, B), traverse the points in B from the preindex position left and right, and calculate the European formula between point a and B[preindex+1], B[preindex-1] distance dist; 步骤3.3:将dist与cmax比较,如果dist<cmax,则执行下述步骤3.4;如果dist>=cmax,则执行下述步骤3.5;Step 3.3: compare dist with cmax, if dist<cmax, then execute the following step 3.4; if dist>=cmax, then execute the following step 3.5; 步骤3.4:如果dist<cmax,那么中止遍历B,跳出循环,将当前索引值赋值给preindex,同时将cmin赋值为0,执行下述步骤3.6;Step 3.4: If dist<cmax, then stop traversing B, jump out of the loop, assign the current index value to preindex, and assign cmin to 0, and execute the following step 3.6; 步骤3.5:如果dist>=cmax,将dist与cmin比较,当dist<cmin时将dist的值更新cmin的值;然后往preindex的左右方向继续遍历B,直到找到小于cmax的点或者所有B中的点都已遍历;Step 3.5: If dist>=cmax, compare dist with cmin, and update the value of dist to the value of cmin when dist<cmin; then continue to traverse B in the left and right direction of preindex until you find a point smaller than cmax or all the points in B points have been traversed; 步骤3.6:依次遍历A中的点,当遍历完A中所有的点后,cmax的值即为单向豪斯多夫距离h(A,B),同理求得h(B,A)。Step 3.6: Traverse the points in A in turn. After traversing all the points in A, the value of cmax is the one-way Hausdorff distance h(A, B), and obtain h(B, A) in the same way.
CN201610463827.5A 2016-06-23 2016-06-23 A kind of accurate Hausdorff distance computational methods between any type point set data Pending CN106126919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610463827.5A CN106126919A (en) 2016-06-23 2016-06-23 A kind of accurate Hausdorff distance computational methods between any type point set data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610463827.5A CN106126919A (en) 2016-06-23 2016-06-23 A kind of accurate Hausdorff distance computational methods between any type point set data

Publications (1)

Publication Number Publication Date
CN106126919A true CN106126919A (en) 2016-11-16

Family

ID=57268100

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610463827.5A Pending CN106126919A (en) 2016-06-23 2016-06-23 A kind of accurate Hausdorff distance computational methods between any type point set data

Country Status (1)

Country Link
CN (1) CN106126919A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108665459A (en) * 2018-05-22 2018-10-16 释码融和(上海)信息科技有限公司 A kind of image fuzzy detection method, computing device and readable storage medium storing program for executing
CN109127477A (en) * 2018-10-19 2019-01-04 合肥澎湃能源技术有限公司 System for screening the single battery of battery pack
CN109127478A (en) * 2018-10-19 2019-01-04 合肥澎湃能源技术有限公司 Method for screening the single battery of battery pack
CN111931839A (en) * 2020-08-04 2020-11-13 西门子电力自动化有限公司 Method and device for on-line monitoring of switch equipment
WO2021138786A1 (en) * 2020-01-06 2021-07-15 Oppo广东移动通信有限公司 Nearest neighbor search method, apparatus, device, and storage medium
CN113473153A (en) * 2020-03-30 2021-10-01 鹏城实验室 Point cloud attribute prediction method, encoding method, decoding method and equipment thereof
CN114065817A (en) * 2021-11-23 2022-02-18 成都信息工程大学 Intelligent waveform classification method
CN115356013A (en) * 2022-08-15 2022-11-18 桂林师范高等专科学校 Reflow soldering temperature curve abnormity detection method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108665459A (en) * 2018-05-22 2018-10-16 释码融和(上海)信息科技有限公司 A kind of image fuzzy detection method, computing device and readable storage medium storing program for executing
CN109127477A (en) * 2018-10-19 2019-01-04 合肥澎湃能源技术有限公司 System for screening the single battery of battery pack
CN109127478A (en) * 2018-10-19 2019-01-04 合肥澎湃能源技术有限公司 Method for screening the single battery of battery pack
WO2021138786A1 (en) * 2020-01-06 2021-07-15 Oppo广东移动通信有限公司 Nearest neighbor search method, apparatus, device, and storage medium
US12200231B2 (en) 2020-01-06 2025-01-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Nearest neighbor search method, apparatus, device, and storage medium
CN113473153A (en) * 2020-03-30 2021-10-01 鹏城实验室 Point cloud attribute prediction method, encoding method, decoding method and equipment thereof
CN113473153B (en) * 2020-03-30 2023-04-25 鹏城实验室 A point cloud attribute prediction method, encoding method, decoding method and equipment thereof
CN111931839A (en) * 2020-08-04 2020-11-13 西门子电力自动化有限公司 Method and device for on-line monitoring of switch equipment
CN114065817A (en) * 2021-11-23 2022-02-18 成都信息工程大学 Intelligent waveform classification method
CN115356013A (en) * 2022-08-15 2022-11-18 桂林师范高等专科学校 Reflow soldering temperature curve abnormity detection method

Similar Documents

Publication Publication Date Title
CN106126919A (en) A kind of accurate Hausdorff distance computational methods between any type point set data
CN106682233B (en) Hash image retrieval method based on deep learning and local feature fusion
CN103207898B (en) A kind of similar face method for quickly retrieving based on local sensitivity Hash
CN104199842B (en) A kind of similar pictures search method based on local feature neighborhood information
CN103136520B (en) The form fit of Based PC A-SC algorithm and target identification method
CN101697232B (en) SIFT characteristic reducing method facing close repeated image matching
CN110111430B (en) Method for extracting quadric surface from three-dimensional point cloud
CN103020960B (en) Based on the point cloud registration method of convex closure unchangeability
CN105809651A (en) Image saliency detection method based on edge non-similarity comparison
CN103345628A (en) Target recognition and shape retrieval method based on hierarchical description
CN101882150B (en) Three-dimensional model comparison and search method based on nuclear density estimation
CN106355577A (en) Method and system for quickly matching images on basis of feature states and global consistency
CN103455794A (en) Dynamic gesture recognition method based on frame fusion technology
CN103955950B (en) Image tracking method utilizing key point feature matching
CN110111375A (en) A kind of Image Matching elimination of rough difference method and device under Delaunay triangulation network constraint
CN111199558A (en) Image matching method based on deep learning
CN105183792A (en) Distributed fast text classification method based on locality sensitive hashing
CN104866854A (en) Equal-bottom triangle area description-based target recognition and shape retrieval method
CN104504696A (en) Embedded parallel optimization method for image salient region detection
CN109919958B (en) Multi-constraint line segment extraction method based on multi-scale image space
CN106780294B (en) Circular arc matching method based on feature descriptors
CN103336963A (en) Method and device for image feature extraction
CN102201060A (en) Method for tracking and evaluating nonparametric outline based on shape semanteme
CN104462503B (en) The method for determining the similarity of data point
CN109919057B (en) A Multimodal Fusion Gesture Recognition Method Based on Efficient Convolutional Neural Network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161116

RJ01 Rejection of invention patent application after publication