CN106125165B - A kind of ultra-thin plano-concave lens realized sub-wavelength and focused on - Google Patents
A kind of ultra-thin plano-concave lens realized sub-wavelength and focused on Download PDFInfo
- Publication number
- CN106125165B CN106125165B CN201610544351.8A CN201610544351A CN106125165B CN 106125165 B CN106125165 B CN 106125165B CN 201610544351 A CN201610544351 A CN 201610544351A CN 106125165 B CN106125165 B CN 106125165B
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- ultra
- concave
- thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000006185 dispersion Substances 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 229910002601 GaN Inorganic materials 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 3
- 238000013461 design Methods 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 abstract description 22
- 238000003384 imaging method Methods 0.000 abstract description 7
- 238000012546 transfer Methods 0.000 abstract description 7
- 230000010354 integration Effects 0.000 abstract description 2
- 239000003989 dielectric material Substances 0.000 abstract 1
- 230000006870 function Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0012—Optical design, e.g. procedures, algorithms, optimisation routines
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种实现亚波长聚焦的超薄平凹透镜,包括凹面超薄介质膜结构和双曲色散平板基底两大部分,双曲色散平板基底由介质与金属多层膜构成,保证切向介电常数与径向介电常数异号,凹面超薄介质膜与基底的介质材料一致,且凹面形状遵循光学传递函数公式。本发明首次提出“凹曲面”相位补偿机制与双曲色散平板基底结合的透镜模型,与半球状超级透镜相比,增加一层凹面超薄介质膜在平板基底上,大大降低了透镜的质量和大小,解决了传统超级透镜无法远场成像的问题,实现了光学系统的集成化和小型化。
An ultra-thin plano-concave lens that realizes sub-wavelength focusing, including two parts: a concave ultra-thin dielectric film structure and a hyperbolic dispersion plate base. The radial dielectric constants have different signs, the concave ultra-thin dielectric film is consistent with the dielectric material of the substrate, and the shape of the concave surface follows the formula of the optical transfer function. The present invention first proposes a lens model combining a "concave surface" phase compensation mechanism with a hyperbolic dispersion flat substrate. Compared with a hemispherical superlens, a layer of concave ultra-thin dielectric film is added on the flat substrate, which greatly reduces the quality and quality of the lens. The size solves the problem that the traditional super lens cannot perform far-field imaging, and realizes the integration and miniaturization of the optical system.
Description
技术领域technical field
本发明属于光学成像技术领域,涉及中红外波段亚波长聚焦透镜仿真设计。The invention belongs to the technical field of optical imaging and relates to the simulation design of a mid-infrared band sub-wavelength focusing lens.
背景技术Background technique
长期以来,人们一直认为德国科学家Ernst Abbe提出的衍射极限是透镜成像过程中不可逾越的大山,无论如何改造透镜的制造工艺,能够被透镜解析的最小结构最终都被定格到半个波长的大小。所谓的衍射极是指一个理想点物经光学系统成像时由于衍射的限制,不可能得到理想像点而是一个以像点为中心的夫朗和费衍射图像。对于一般的光学透镜,其口径基本是圆形的,这样每个物点的成像就是一个弥散斑,两个弥散斑靠近后将变得无法区分,这便限制了常规光学系统的分辨率,而这个弥散斑越大,系统的分辨率越低。物体散射的电磁波成份中不仅包含传导波成份,同时还包含近场区域的倏逝波成份,其中传导波成份能完整的通过透镜结构被传输到远场,而倏逝波成份在离开物体很短的距离内会以指数形式迅速衰减,无法被传输到远场。但是,倏逝波成份代表了物体最精细的信息即物体散射场中的高频成份,这些高频成分随着光的传播以指数形式衰减,这才导致不完美像的形成。For a long time, people have always believed that the diffraction limit proposed by the German scientist Ernst Abbe is an insurmountable mountain in the lens imaging process. No matter how the lens manufacturing process is improved, the smallest structure that can be resolved by the lens will eventually be frozen to the size of half a wavelength. The so-called diffraction pole means that when an ideal point is imaged by the optical system, due to the limitation of diffraction, it is impossible to obtain an ideal image point but a Fraunhofer diffraction image centered on the image point. For general optical lenses, the aperture is basically circular, so that the imaging of each object point is a diffuse spot, and the two diffuse spots will become indistinguishable when they are close together, which limits the resolution of conventional optical systems. The larger this speckle, the lower the resolution of the system. The electromagnetic wave components scattered by the object include not only the propagating wave components, but also the evanescent wave components in the near-field region. It will decay exponentially rapidly within a distance and cannot be transmitted to the far field. However, the evanescent wave component represents the most delicate information of the object, that is, the high-frequency component in the object's scattering field. These high-frequency components decay exponentially with the propagation of light, which leads to the formation of imperfect images.
国际上普遍采用基于金属-介质多层膜结构的超级透镜实现对倏逝波的感知与放大,实现近场物体的亚波长成像。其中,基于多层膜的超级透镜为半球形,曲率较大,后端配有显微系统。目前,国内外尚无针对远场物体聚焦成像的超级透镜模型。而利用扁平的超薄透镜将光束聚焦到一个具有很高光强的极小光斑(亚波长尺度)在众多光学领域具有重要应用价值,如光学存储、光刻、纳米激光加工、共聚焦显微技术以及生命科学等领域。Superlenses based on metal-dielectric multilayer film structures are widely used in the world to realize the perception and amplification of evanescent waves, and realize sub-wavelength imaging of near-field objects. Among them, the superlens based on multilayer film is hemispherical, with a large curvature, and the back end is equipped with a microscopic system. At present, there is no superlens model for focusing imaging of far-field objects at home and abroad. The use of flat ultra-thin lenses to focus the beam to a very small spot (sub-wavelength scale) with high light intensity has important application value in many optical fields, such as optical storage, lithography, nano-laser processing, confocal microscopy and life sciences and other fields.
发明内容Contents of the invention
本发明解决的技术问题是:克服现有技术的不足,提供一种可实现远场亚波长聚焦的超薄平凹透镜,解决原有超级透镜曲度大,且无法实现远场聚焦等问题。The technical problem solved by the present invention is to overcome the deficiencies of the prior art, provide an ultra-thin plano-concave lens that can realize far-field subwavelength focusing, and solve the problems that the original super lens has a large curvature and cannot realize far-field focusing.
本发明的技术方案是:一种实现亚波长聚焦的超薄平凹透镜,包括金属-介质多层膜双曲色散平板基底;平板基底上有凹面超薄介质膜结构;所述凹面超薄介质膜结构的设计满足如下公式:The technical solution of the present invention is: an ultra-thin plano-concave lens for sub-wavelength focusing, comprising a metal-dielectric multilayer film hyperbolic dispersion plate base; a concave ultra-thin dielectric film structure on the plate base; the concave ultra-thin dielectric film The design of the structure satisfies the following formula:
其中n0为真空折射率,n为凹面超薄介质膜结构材料的折射率,h0为凹面超薄介质膜的厚度,εx为双曲色散平板基底的垂直于平面波传播方向的介电常数,εz为双曲色散平板基底的沿着平面波传播方向的介电常数,L为物距,f为焦距;以凹面超薄介质膜结构的凹曲面上表面中心点为坐标零点建立笛卡尔直角坐标系,定义超薄平凹透镜表面相互垂直的两个方向分别为X、Y轴,垂直于超薄平凹透镜表面沿金属-介质多层膜双曲色散平板基底方向为Z轴,其中x、y、z为距离坐标零点的距离。Where n 0 is the vacuum refractive index, n is the refractive index of the concave ultra-thin dielectric film structure material, h 0 is the thickness of the concave ultra-thin dielectric film, ε x is the dielectric constant of the hyperbolic dispersion plate substrate perpendicular to the plane wave propagation direction , ε z is the dielectric constant of the hyperbolic dispersion plate substrate along the direction of plane wave propagation, L is the object distance, f is the focal length; the Cartesian right angle is established with the center point of the concave surface of the concave ultra-thin dielectric film structure as the coordinate zero point The coordinate system defines the two directions perpendicular to each other on the surface of the ultra-thin plano-concave lens as the X and Y axes, and the direction perpendicular to the surface of the ultra-thin plano-concave lens along the base of the metal-dielectric multilayer hyperbolic dispersion plate is the Z axis, where x and y , z is the distance from the coordinate zero point.
所述双曲色散平板基底由金属-介质多层膜结构组成,其中金属膜材料为掺杂型氮化镓GaN,凹面超薄介质膜结构的材料为二氧化硅SiO2,金属膜的占空比为0.4998,其中金属膜厚度100nm,介质膜厚度100nm,金属膜和介质膜交替排列共200层,双曲色散的各向异性介电常数分别为εx=5.82,εz=-0.85;凹面超薄介质膜结构的厚度h0=15μm,折射率为n=3.42;入射超薄平凹透镜的电磁波波长为λ=4μm。The hyperbolic dispersion plate substrate is composed of a metal-dielectric multilayer film structure, wherein the material of the metal film is doped gallium nitride GaN, the material of the concave ultra-thin dielectric film structure is silicon dioxide SiO 2 , and the space of the metal film is The ratio is 0.4998, in which the thickness of the metal film is 100nm, the thickness of the dielectric film is 100nm, the metal film and the dielectric film are arranged alternately for a total of 200 layers, and the anisotropic dielectric constants of the hyperbolic dispersion are ε x = 5.82, ε z = -0.85; The thickness of the ultra-thin dielectric film structure is h 0 =15 μm, and the refractive index is n=3.42; the wavelength of electromagnetic waves incident on the ultra-thin plano-concave lens is λ=4 μm.
超薄平凹透镜的直径为d=100μm,物距为L=1000μm,焦距为f=20μm。The diameter of the ultra-thin plano-concave lens is d=100 μm, the object distance is L=1000 μm, and the focal length is f=20 μm.
本发明与现有技术相比的有益效果是:The beneficial effect of the present invention compared with prior art is:
(1)本发明与传统半球状超级透镜相比,增加一层凹面超薄介质膜在平板基底上,介质膜与金属-介质多层膜双曲色散平板基底选取同种材料,电磁兼容性好,利用更加贴合平板基底的凹曲面,并根据焦距和材料选择改变曲面的形状,大大降低了透镜的质量和大小,实现了光学系统的集成化和小型化,保证高质量的聚焦能力。(1) Compared with the traditional hemispherical superlens, the present invention adds a layer of concave ultra-thin dielectric film on the flat substrate, and the dielectric film and the metal-dielectric multilayer hyperbolic dispersion flat substrate select the same material, and the electromagnetic compatibility is good , using the concave surface that is more suitable for the flat substrate, and changing the shape of the surface according to the focal length and material selection, greatly reducing the quality and size of the lens, realizing the integration and miniaturization of the optical system, and ensuring high-quality focusing ability.
(2)本发明首次提出了“凹曲面”相位补偿机制与双曲色散平板基底结合的透镜模型,在电磁波波长为λ=4μm的条件下,实现了亚波长聚焦,聚焦光斑的直径为D=λ/3,解决了传统超级透镜无法远场成像的问题。(2) The present invention proposes the lens model that " concave surface " phase compensation mechanism and hyperbolic dispersion plate base combine for the first time, under the condition that electromagnetic wave wavelength is λ=4 μ m, has realized sub-wavelength focusing, and the diameter of focused light spot is D= λ/3, which solves the problem that traditional superlenses cannot perform far-field imaging.
附图说明Description of drawings
图1:超薄平凹透镜组成示意图。Figure 1: Schematic diagram of the composition of an ultrathin plano-concave lens.
图2:“凹曲面”光学传递函数示意图。Figure 2: Schematic of the optical transfer function of a "concave surface".
具体实施方式detailed description
高频倏逝波无法在常规材料中传播,主要是因为截断波矢的这一物理瓶颈,通过构建径向和切向的介电常数异号的材料体系是倏逝波传播和亚波长聚焦成像的基础。High-frequency evanescent waves cannot propagate in conventional materials, mainly because of the physical bottleneck of truncated wave vectors. By constructing a material system with different signs of radial and tangential dielectric constants, evanescent wave propagation and sub-wavelength focused imaging Foundation.
如图1所示,超薄平凹透镜包括凹面超薄介质膜结构和双曲色散平板基底两大部分,其中双曲色散平板基底由介质与金属多层膜构成,保证切向介电常数与径向介电常数异号。在该模型中“凹曲面”具体形式如曲线形状受凹面超薄介质膜和双曲色散平板基底的折射率、焦距、物距、介电常数以及相关几何尺寸限制,我们称这一曲线形状公式为光学传递函数。As shown in Figure 1, the ultra-thin plano-concave lens consists of two parts: a concave ultra-thin dielectric film structure and a hyperbolic dispersion plate base. Different sign to the dielectric constant. In this model, the specific form of "concave surface" such as the shape of the curve is limited by the refractive index, focal length, object distance, dielectric constant and related geometric dimensions of the concave ultra-thin dielectric film and the hyperbolic dispersion plate substrate. We call this curve shape formula is the optical transfer function.
下面具体求解平凹薄透镜的光学传递函数,以凹面超薄介质膜结构的凹曲面上表面中心点为坐标零点建立笛卡尔直角坐标系,定义超薄平凹透镜表面相互垂直的两个方向分别为X、Y轴,垂直于超薄平凹透镜表面沿金属-介质多层膜双曲色散平板基底方向为Z轴,其中x、y、z为距离坐标零点的距离,如附图2所示,其中透镜的直径尺寸在x∈[-xmax,xmax]范围内,当一束平面波从上向下照射到该透镜时,任选两条路径来分别计算光程。Next, the optical transfer function of the plano-concave thin lens is specifically solved, and the Cartesian rectangular coordinate system is established with the center point of the concave surface of the concave ultra-thin dielectric film structure as the coordinate zero point, and the two directions perpendicular to each other of the ultra-thin plano-concave lens surface are defined as X, Y axis, perpendicular to the surface of the ultra-thin plano-concave lens is the Z axis along the direction of the base of the metal-dielectric multilayer film hyperbolic dispersion plate, where x, y, and z are the distances from the coordinate zero point, as shown in Figure 2, wherein The diameter of the lens is in the range of x∈[-x max ,x max ]. When a plane wave irradiates the lens from top to bottom, choose two paths to calculate the optical path respectively.
对于OGFM这条路径,光程为:For the path of OGFM, the optical path is:
对于BCEFM这条路径,其光程分为三个部分来分别计算:For the path of BCEFM, its optical path is divided into three parts to calculate separately:
BC段光程为:The optical path length of BC section is:
n0z 5-2n 0 z 5-2
CE段光程为:The optical path length of CE segment is:
EFM段光程为:The optical path of the EFM segment is:
由于超透镜将平面波汇聚到FM点,所以任意两段路径的光程相等,可以得到如下的光程等式:Since the metalens converges the plane wave to the FM point, the optical paths of any two paths are equal, and the following optical path equation can be obtained:
公式5-5即为本发明相位补偿机制“凹曲面”的曲线公式,我们称之为光学传递函数,该光学传递函数受到五个参数调控,分别是h0,n,f,L,εx,εz。通过光学传递函数特性调整参数,可以获得理想的相位补偿凹曲线,进而确定实现亚波长聚焦的平凹薄透镜的具体参数。Formula 5-5 is the curve formula of the "concave surface" of the phase compensation mechanism of the present invention, which we call the optical transfer function, which is regulated by five parameters, namely h 0 , n, f, L, ε x ,ε z . By adjusting the parameters of the optical transfer function characteristics, the ideal phase compensation concave curve can be obtained, and then the specific parameters of the plano-concave thin lens for sub-wavelength focusing can be determined.
在本发明中,入射电磁波波长为λ=4μm,薄透镜的直径为d=100μm,物距L=1000μm,焦距f=20μm。凹面超薄介质膜结构的材料为二氧化硅SiO2,折射率n=3.42。双曲色散超构材料平板基底由金属-介质多层膜结构组成,其中金属膜材料为掺杂型氮化镓GaN,介质膜材料为二氧化硅SiO2,考虑到亚波长聚焦和倏逝波传播的前提条件,通过等效介质理论,计算获得其中金属膜厚度100nm,介质膜厚度100nm,共200层,金属膜的占空比为0.4998,介电常数分别为εx=5.82,εz=-0.85。In the present invention, the wavelength of the incident electromagnetic wave is λ=4 μm, the diameter of the thin lens is d=100 μm, the object distance L=1000 μm, and the focal length f=20 μm. The material of the concave ultra-thin dielectric film structure is silicon dioxide SiO 2 , and the refractive index n=3.42. The hyperbolic dispersion metamaterial flat substrate is composed of a metal-dielectric multilayer film structure, in which the metal film material is doped gallium nitride GaN, and the dielectric film material is silicon dioxide SiO 2 . Considering subwavelength focusing and evanescent wave The preconditions for propagation are obtained through equivalent medium theory, where the thickness of the metal film is 100nm, the thickness of the dielectric film is 100nm, a total of 200 layers, the duty ratio of the metal film is 0.4998, and the dielectric constants are ε x = 5.82, ε z = -0.85.
在光学传递函数中,针对凹面超薄介质膜结构的厚度h0这一变量,通过利用comosol软件进行仿真实验,通过对比分析聚焦光斑尺寸大小以及强度,结果表明当h0=15μm时,聚焦光斑最小且质量最佳,焦斑直径尺寸D=λ/3。In the optical transfer function, aiming at the variable thickness h 0 of the concave ultra-thin dielectric film structure, the comosol software is used to carry out simulation experiments, and the size and intensity of the focused spot are compared and analyzed. The results show that when h 0 = 15 μm, the focused spot Smallest and best quality, focal spot diameter size D=λ/3.
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。The content that is not described in detail in the description of the present invention belongs to the well-known technology of those skilled in the art.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610544351.8A CN106125165B (en) | 2016-07-12 | 2016-07-12 | A kind of ultra-thin plano-concave lens realized sub-wavelength and focused on |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610544351.8A CN106125165B (en) | 2016-07-12 | 2016-07-12 | A kind of ultra-thin plano-concave lens realized sub-wavelength and focused on |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106125165A CN106125165A (en) | 2016-11-16 |
CN106125165B true CN106125165B (en) | 2018-01-05 |
Family
ID=57283046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610544351.8A Active CN106125165B (en) | 2016-07-12 | 2016-07-12 | A kind of ultra-thin plano-concave lens realized sub-wavelength and focused on |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106125165B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113311516B (en) * | 2020-02-27 | 2022-10-04 | 东北大学秦皇岛分校 | Hyperbolic lens with large radius arc inner surface |
CN111900545B (en) * | 2020-08-16 | 2021-05-04 | 西安电子科技大学 | Highly directional plano-concave lens with non-uniform thickness ENZ metamaterial sandwich layer |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104898191A (en) * | 2015-05-20 | 2015-09-09 | 北京空间机电研究所 | Middle-infrared band ultrathin slab lens based on meta-material |
-
2016
- 2016-07-12 CN CN201610544351.8A patent/CN106125165B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104898191A (en) * | 2015-05-20 | 2015-09-09 | 北京空间机电研究所 | Middle-infrared band ultrathin slab lens based on meta-material |
Non-Patent Citations (5)
Title |
---|
Concave hyperlens for directed;Lin Cheng, Pengfei Cao, Qingqing Meng等;《JOURNAL OF OPTICS》;20111231;第13卷;全文 * |
Performance of a negative index of refraction lens;C.G.Parazzoli,R.B.Greegor,J.A.Nielsen等;《APPLIED PHYSICS LETTERS》;20050426;第84卷(第17期);全文 * |
Phase Compensated Metamaterial Superlenses;Changbao Ma and Zhaowei Liu;《Frontiers in Optics 2010》;20101231;全文 * |
提高非匹配超透镜的光学成像分辨率研究;娄元成,杨学峰,王晓雪等;《河南理工大学学报》;20110630;第30卷(第3期);全文 * |
突破衍射极限的超级透镜技术及其应用研究;郑国兴,李莹,刘莎莎等;《光学与光电技术》;20101031;第8卷(第5期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN106125165A (en) | 2016-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112601990B (en) | Diffraction grating comprising a two-material structure | |
US9151891B2 (en) | Metamaterial-based optical lenses | |
Lu et al. | Hyperlenses and metalenses for far-field super-resolution imaging | |
US9581796B2 (en) | Imaging device and method | |
CN106199997B (en) | Large-view-field super-resolution imaging device | |
CN107315206A (en) | Efficient infrared optics lens based on the super surface texture of all dielectric and preparation method thereof | |
WO2019196077A1 (en) | Low-refractive-index all-dielectric flat lens manufacturing method | |
CN107748410B (en) | A near-far field integrated planar optical control device and its design and preparation method | |
CN114815014B (en) | Super lens focusing vortex light beam and super lens array | |
Mollaei et al. | Dual-metasurface superlens: A comprehensive study | |
CN102565929A (en) | Surface plasmon polaritons optical waveguide of nanowire arrays | |
CN102289083B (en) | Far-field super-resolution visual imaging device and imaging method | |
CN106125165B (en) | A kind of ultra-thin plano-concave lens realized sub-wavelength and focused on | |
CN202141822U (en) | A super-resolution focusing plano-convex lens based on metamaterials | |
CN108363127A (en) | A kind of surface phasmon bifocal | |
Dong et al. | A super lens system for demagnification imaging beyond the diffraction limit | |
Wang et al. | Converting evanescent waves into propagating waves by hyper-hemi-microsphere | |
CN102565928B (en) | A Subwavelength Dielectric Loaded Surface Plasmon Optical Waveguide | |
CN207067428U (en) | A kind of metal Ag films radial polarisation light long-focus planar lens | |
Zhang et al. | Superresolution focusing using metasurface with circularly arranged nanoantennas | |
Jiao et al. | Improvement of focusing efficiency of plasmonic planar lens by oil immersion | |
CN108445560B (en) | A Field Local Enhancement Device Based on Hybrid Plasmon Waveguide | |
CN114967127A (en) | Design method of multi-wavelength achromatic ultra-thin flat lens | |
Qi et al. | Focusing characteristics of graded photonic crystal waveguide lens based on interference lithography | |
Kim et al. | Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |