CN106119742B - A kind of titanium carbide crystal whisker toughened magnesium alloy bio-medical material of titanium oxide - Google Patents
A kind of titanium carbide crystal whisker toughened magnesium alloy bio-medical material of titanium oxide Download PDFInfo
- Publication number
- CN106119742B CN106119742B CN201610482541.1A CN201610482541A CN106119742B CN 106119742 B CN106119742 B CN 106119742B CN 201610482541 A CN201610482541 A CN 201610482541A CN 106119742 B CN106119742 B CN 106119742B
- Authority
- CN
- China
- Prior art keywords
- magnesium alloy
- powder
- titanium carbide
- titanium oxide
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 60
- 239000003519 biomedical and dental material Substances 0.000 title claims abstract description 14
- 239000013078 crystal Substances 0.000 title claims 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 title claims 3
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 title 1
- BAQNULZQXCKSQW-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[Ti+4].[Ti+4] BAQNULZQXCKSQW-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000000843 powder Substances 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 27
- 239000011812 mixed powder Substances 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 238000005245 sintering Methods 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 239000002243 precursor Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052779 Neodymium Inorganic materials 0.000 claims description 5
- 238000000498 ball milling Methods 0.000 claims description 4
- 238000005056 compaction Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims 3
- 238000007872 degassing Methods 0.000 claims 2
- 238000007731 hot pressing Methods 0.000 claims 2
- 239000000470 constituent Substances 0.000 claims 1
- 239000011159 matrix material Substances 0.000 abstract description 12
- 238000011065 in-situ storage Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 5
- KJUFNCAQCQGXFL-UHFFFAOYSA-N nickel oxotitanium Chemical compound [Ni].[Ti]=O KJUFNCAQCQGXFL-UHFFFAOYSA-N 0.000 abstract 2
- 210000000988 bone and bone Anatomy 0.000 description 19
- 241000282414 Homo sapiens Species 0.000 description 10
- 239000007943 implant Substances 0.000 description 9
- 239000011572 manganese Substances 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 229910001069 Ti alloy Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 239000000956 alloy Substances 0.000 description 6
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000012567 medical material Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 206010065687 Bone loss Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 235000021112 essential micronutrients Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000012890 simulated body fluid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C47/00—Making alloys containing metallic or non-metallic fibres or filaments
- C22C47/14—Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/047—Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/06—Titanium or titanium alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
- C22C49/02—Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
- C22C49/04—Light metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
- C22C49/14—Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Medicinal Chemistry (AREA)
- Dermatology (AREA)
- Inorganic Chemistry (AREA)
- Materials For Medical Uses (AREA)
Abstract
本发明属于生物医用材料领域,特别是氧化镍‑碳化钛晶须增韧镁合金生物医用材料。由镁合金基体材料粉末和氧化钛‑碳化钛晶须的粉末组成,采用机械混合法使镁合金基体粉末与氧化钛‑碳化钛晶须粉末均匀混合,混合粉末冷压实后真空加热除气后真空烧结,热压锭通过等通道变形获得氧化钛‑碳化钛晶须增韧镁合金生物医用材料。本发明因原位生成氧化镍‑碳化钛晶须增韧镁合金的韧性、耐磨性、强度显著提高,尤其适合于生物医用材料,还可应用于要求高强度和高耐磨性的零部件,如高端跑车镁合金轮毂。The invention belongs to the field of biomedical materials, in particular to a nickel oxide-titanium carbide whisker-toughened magnesium alloy biomedical material. It is composed of magnesium alloy matrix material powder and titanium oxide-titanium carbide whisker powder. The magnesium alloy matrix powder and titanium oxide-titanium carbide whisker powder are uniformly mixed by mechanical mixing method. The mixed powder is cold compacted and then vacuum heated and degassed. Vacuum sintering and equichannel deformation of hot-pressed ingots to obtain titanium oxide-titanium carbide whisker-toughened magnesium alloy biomedical materials. The present invention significantly improves the toughness, wear resistance and strength of the toughened magnesium alloy due to the in-situ generation of nickel oxide-titanium carbide whiskers, and is especially suitable for biomedical materials, and can also be applied to components requiring high strength and high wear resistance , such as high-end sports car magnesium alloy wheels.
Description
技术领域technical field
本发明属于生物医用材料领域,特别是氧化钛-碳化钛晶须增韧镁合金生物医用材料。The invention belongs to the field of biomedical materials, in particular to titanium oxide-titanium carbide whisker toughened magnesium alloy biomedical materials.
背景技术Background technique
目前,临床应用的生物医用材料,如骨骼植入物、心脏支架等多采用不锈钢及钛合金,不锈钢及钛合金具有良好的生物相容性、耐腐蚀性能和力学性能,因此不锈钢及钛合金的应用非常广泛,在临床医学界得到认可。对于不锈钢和钛合金等现有金属骨骼植入材料,存在着与生物骨的力学相容性差的问题。不锈钢、钛合金等材料的抗拉强度比天然骨骼高5.3倍以上,弹性模量更是高11倍以上。不锈钢、钛合金等骨骼植入物对人体局部骨组织产生很大的“应力遮挡”效应,可诱发遮挡性骨质缺失。导致人体骨骼植入物与周围的原有生物骨脆弱化、人体骨骼植入物周围的新生骨生长不良以及人体骨骼植入物与生物骨之间因应力集中引发炎症。开发新型的力学与生物相容性更理想的生物医用材料十分必要。同时,人体骨骼植入物的手术取出,增加了医疗者的痛苦、时间和费用,因此,研究和开发高强韧且可以在生物体内降解的医用材料是目前医疗领域发展的重要方向之一。而镁合金的弹性模量(45GPa)更接近人骨的弹性模量(20GPa),能有效降低“应力遮挡效应”,促进骨的愈合。同时镁合金具有一定的韧性、是人体的有益元素,因此采用高强韧镁合金作为医用可降解生物材料是可行的,但是目前镁合金多为镁铝合金,其中铝是对人体有害金属,因此限制了镁铝合金在人体中的应用,因此,开发新型的高强韧镁合金生物医学材料十分必要。At present, biomedical materials for clinical applications, such as bone implants and heart stents, are mostly made of stainless steel and titanium alloys. Stainless steel and titanium alloys have good biocompatibility, corrosion resistance and mechanical properties, so the use of stainless steel and titanium alloys It is widely used and recognized in the clinical medical field. For existing metal bone implant materials such as stainless steel and titanium alloy, there is a problem of poor mechanical compatibility with biological bone. The tensile strength of stainless steel, titanium alloy and other materials is more than 5.3 times higher than that of natural bone, and the elastic modulus is more than 11 times higher. Bone implants such as stainless steel and titanium alloy have a great "stress shielding" effect on the local bone tissue of the human body, which can induce shielding bone loss. It leads to the fragility of the human bone implant and the surrounding original biological bone, poor growth of new bone around the human bone implant, and inflammation caused by stress concentration between the human bone implant and the biological bone. It is necessary to develop new biomedical materials with better mechanical and biocompatibility. At the same time, the surgical removal of human bone implants increases the pain, time and cost of medical practitioners. Therefore, research and development of high-strength and biodegradable medical materials is one of the important development directions in the medical field. The elastic modulus (45GPa) of magnesium alloy is closer to the elastic modulus (20GPa) of human bone, which can effectively reduce the "stress shielding effect" and promote bone healing. At the same time, magnesium alloy has a certain toughness and is a beneficial element for the human body. Therefore, it is feasible to use high-strength magnesium alloy as a medical degradable biomaterial. Therefore, it is necessary to develop new high-strength and tough magnesium alloy biomedical materials.
基于上述目的,本发明开发一种不含铝、耐腐蚀的高强韧镁合金生物医学材料,采用在新型的镁合金中氧化钛-碳化钛晶须来增韧镁合金材料的强度、良好的韧性和硬度的方法。本发明的镁合金基体材料的化学成分及重量百分比为:C:0~0.8%,Nd:1 ~ 4%,Mn:0 ~ 0.8%,Zn: 0.1~1.0%,Zr:0.3~0.8%,其余为Mg。目前我国现有的镁合金材料在专利101837145A中,经研究、分析表明均有像Ag等贵金属元素添加,但是使用性能提高有限。因此,在本发明中通过氧化钛-碳化钛晶须增韧镁合金生物医用材料的目的。Based on the above-mentioned purpose, the present invention develops a high-strength and tough magnesium alloy biomedical material that does not contain aluminum and is corrosion-resistant, and adopts titanium oxide-titanium carbide whiskers in a new type of magnesium alloy to toughen the strength and good toughness of the magnesium alloy material and hardness methods. The chemical composition and weight percentage of the magnesium alloy base material of the present invention are: C: 0-0.8%, Nd: 1-4%, Mn: 0-0.8%, Zn: 0.1-1.0%, Zr: 0.3-0.8%, The remainder is Mg. At present, in the patent 101837145A of the existing magnesium alloy materials in my country, research and analysis have shown that precious metal elements such as Ag are added, but the performance improvement is limited. Therefore, in the present invention, the purpose of toughening magnesium alloy biomedical materials is through titanium oxide-titanium carbide whiskers.
发明内容Contents of the invention
本发明专利的目的是:在于克服上述现有技术不足,提供一种加工工艺稳定、生产成本低廉、无污染排放、可在常规条件下组织生产的氧化钛-碳化钛晶须增韧镁合金生物医用材料,较传统的不锈钢、钛合金等生物医学材料具有更好的生物相容性,较常规镁合金生物医学材料的韧性大幅提升。The purpose of the patent of the present invention is to overcome the above-mentioned deficiencies in the prior art, and provide a titanium oxide-titanium carbide whisker toughened magnesium alloy biotechnology with stable processing technology, low production cost, no pollution emission, and tissue production under conventional conditions. Medical materials have better biocompatibility than traditional biomedical materials such as stainless steel and titanium alloys, and their toughness is greatly improved compared with conventional magnesium alloy biomedical materials.
本发明提供了一种氧化钛-碳化钛晶须增韧镁合金生物医用材料,其特征在于:该材料沿挤压流线形成定向排列的氧化钛-碳化钛晶须和镁合金基体材料组成,晶须直径为200-800nm,原位增强相的体积总量在0.05-0.10。The invention provides a titanium oxide-titanium carbide whisker toughened magnesium alloy biomedical material, which is characterized in that: the material is composed of titanium oxide-titanium carbide whiskers and a magnesium alloy matrix material arranged in an orientation along the extrusion streamline, The whisker diameter is 200-800nm, and the total volume of the in-situ reinforcement phase is 0.05-0.10.
本发明是通过以下技术方案如下:氧化钛-碳化钛晶须增韧镁合金生物医用材料粉末由镁合金基体材料粉末和氧化钛-碳化钛晶须粉末组成,然后采用机械混合法使镁合金基体粉末与氧化钛-碳化钛晶须粉末均匀混合,混合粉末冷压实后在10-6托真空条件下逐步加热除气,然后在500-600℃,50-200Mpa条件下真空烧结1-4小时,热压锭在300-400℃通过模具通道拐角为90o的等通道弯角挤压(ECAP)变形。The present invention adopts the following technical scheme as follows: titanium oxide-titanium carbide whisker toughened magnesium alloy biomedical material powder is composed of magnesium alloy matrix material powder and titanium oxide-titanium carbide whisker powder, and then the magnesium alloy matrix is made by mechanical mixing The powder is evenly mixed with titanium oxide-titanium carbide whisker powder, and the mixed powder is cold-compacted and gradually heated and degassed under the vacuum condition of 10 -6 Torr, and then vacuum sintered at 500-600°C and 50-200Mpa for 1-4 hours , the hot-pressed ingot was deformed at 300-400 ° C by equal-channel angular extrusion (ECAP) with a die channel corner of 90o.
测试表明所获得的氧化钛-碳化钛晶须增韧镁合金生物医用材料具有高强韧性。Tests show that the obtained titanium oxide-titanium carbide whisker toughened magnesium alloy biomedical material has high strength and toughness.
方案所需材料按如下具体步骤制备:The materials required for the scheme are prepared according to the following specific steps:
(1)氧化钛-碳化钛晶须的制备:(1) Preparation of titanium oxide-titanium carbide whiskers:
氧化钛-碳化钛晶须粉末的制备工艺为:氧化钛-碳化钛晶须前驱体材料化学成分为:TiO2,C,Mn,NaCl,其质量配比为:(45.4~48.2):(45.6~50.8):(0.1~0.9):(1.0~8.1)。将按比例配制的能够生成氧化钛-碳化钛晶须的先驱体复合粉末加无水乙醇于球磨机中进行机械化球磨24小时,获得具有200-800nm晶粒尺寸超细先驱体复合粉末,将粉末装入石墨容器中,在氩气气氛保护和1300℃-1600℃的温度条件下,保温90min-180min合成。The preparation process of titanium oxide-titanium carbide whisker powder is as follows: the chemical composition of titanium oxide-titanium carbide whisker precursor material is: TiO 2 , C, Mn, NaCl, and its mass ratio is: (45.4~48.2): (45.6 ~50.8): (0.1~0.9): (1.0~8.1). The precursor composite powder capable of generating titanium oxide-titanium carbide whiskers prepared in proportion plus absolute ethanol was mechanized ball milled in a ball mill for 24 hours to obtain an ultrafine precursor composite powder with a grain size of 200-800nm. Put it into a graphite container, under the protection of argon atmosphere and the temperature condition of 1300°C-1600°C, keep it warm for 90min-180min to synthesize.
TiO2+3C=(加热)TiC+2CO↑TiO 2 +3C=(heating)TiC+2CO↑
(2)镁合金基体材料粉末制备:(2) Preparation of magnesium alloy base material powder:
镁合金基体材料的化学成分及重量百分比为:C:0~0.8%,Nd:1 ~ 4%,Mn:0 ~0.8%,Zn:0.1~1.0%,Zr:0.3~0.8%,其余为Mg。The chemical composition and weight percentage of the magnesium alloy base material are: C: 0-0.8%, Nd: 1-4%, Mn: 0-0.8%, Zn: 0.1-1.0%, Zr: 0.3-0.8%, and the rest is Mg .
本发明为获得最佳的综合力学性能和生物学腐蚀性能,进一步将合金的各组分重量百分比限制为C:0~0.2%,Nd:3 ~ 3.5%,Mn:0.2~ 0.6%,Zn: 0.1~0.4%,Zr:0.6~0.8%,其余为Mg。将按比例配制的镁合金粉末加无水乙醇于球磨机中进行机械化球磨24小时,获得具有50-150μm晶粒尺寸超细粉末。In order to obtain the best comprehensive mechanical properties and biological corrosion properties, the present invention further limits the weight percentage of each component of the alloy to C: 0-0.2%, Nd: 3-3.5%, Mn: 0.2-0.6%, Zn: 0.1-0.4%, Zr: 0.6-0.8%, and the rest is Mg. The magnesium alloy powder prepared in proportion is added with absolute ethanol and subjected to mechanical ball milling in a ball mill for 24 hours to obtain an ultrafine powder with a grain size of 50-150 μm.
本发明为获得最佳的综合力学性能和生物学腐蚀性能,严格控制Fe、Cu、Al 等杂质的含量:Mg 的纯净度大于等于99.99% ;Zn 的纯净度大于等于99.999% ;除Mg、Nd、Mn、Zn、Zr 以外的夹杂元素总量不大于0.3%。In order to obtain the best comprehensive mechanical properties and biological corrosion properties, the present invention strictly controls the content of impurities such as Fe, Cu, Al: the purity of Mg is greater than or equal to 99.99%; the purity of Zn is greater than or equal to 99.999%; The total amount of inclusion elements other than , Mn, Zn and Zr is not more than 0.3%.
(3)氧化钛-碳化钛晶须与镁合金基体材料混合粉末:(3) Mixed powder of titanium oxide-titanium carbide whiskers and magnesium alloy matrix material:
氧化钛-碳化钛在镁合金生物医用材料中的重量含量为5-10%,将氧化钛-碳化钛晶须与镁合金基体材料按重量百分比为(5-10):(95-90)的比例配制为氧化钛-碳化钛晶须增韧镁合金生物医用材料粉末。The weight content of titanium oxide-titanium carbide in the magnesium alloy biomedical material is 5-10%, and the weight percentage of titanium oxide-titanium carbide whiskers and magnesium alloy base material is (5-10):(95-90) The ratio is formulated as titanium oxide-titanium carbide whisker toughened magnesium alloy biomedical material powder.
本发明中基体合金化元素的作用分别如下:Among the present invention, the effects of matrix alloying elements are respectively as follows:
Nd 的加入可以保障镁合金具有良好的时效析出强化和固溶强化的效果,同时Nd的加入可大幅度提高镁合金基体的电极电位,减小基体与第二相的电偶腐蚀的电位差,从而显著提高镁合金的耐蚀性能。此外,Nd 属于一种轻稀土元素,具有较好的生物安全性。The addition of Nd can ensure that the magnesium alloy has a good effect of aging precipitation strengthening and solid solution strengthening. At the same time, the addition of Nd can greatly increase the electrode potential of the magnesium alloy matrix and reduce the potential difference between the matrix and the second phase of galvanic corrosion. Thereby significantly improving the corrosion resistance of magnesium alloys. In addition, Nd belongs to a light rare earth element and has good biological safety.
Zn 是对细胞生长发育有重要影响的元素,是人体必须的微量营养元素,Zn 的加入可提高合金的强度,同时有效促进室温下镁合金非基面滑移的发生,提高镁合金的塑性加工能力。Zn is an element that has an important influence on cell growth and development, and is an essential micronutrient element for the human body. The addition of Zn can improve the strength of the alloy, and at the same time effectively promote the occurrence of non-basal slip of magnesium alloys at room temperature, and improve the plastic processing of magnesium alloys ability.
Mn的加入是构成正常骨骼时所必要的物质,有多方面的作用,是人类必需的微量元素,地球上一切生命的生物学功能都与锰元素紧密相关。The addition of Mn is a necessary substance for the formation of normal bones. It has many functions and is an essential trace element for human beings. The biological functions of all life on earth are closely related to manganese.
Zr作为晶粒细化剂,可显著细化晶粒,进一步提高合金的强韧性、耐蚀性。As a grain refiner, Zr can significantly refine the grains and further improve the strength, toughness and corrosion resistance of the alloy.
该原位生成氧化钛-碳化钛晶须增韧镁合金生物医用材料无需专用设备(无需采用真空熔炼炉、高温高压等设备),在常规镁合金厂即可组织生产,本发明投资少,见效快,能快速收回投资成本。The in-situ generated titanium oxide-titanium carbide whisker-toughened magnesium alloy biomedical material does not require special equipment (no vacuum melting furnace, high temperature and high pressure equipment), and can be produced in a conventional magnesium alloy factory. The invention has less investment and is effective Fast, can quickly recover the investment cost.
与现有铸造医用镁合金技术相比,原位生成氧化钛-碳化钛晶须增韧镁合金的制备方法具有如下优点:Compared with the existing casting medical magnesium alloy technology, the preparation method of in-situ generation titanium oxide-titanium carbide whisker toughened magnesium alloy has the following advantages:
(1)韧性、耐磨性、强度显著提高,间隔2小时挤压试样的力学性能差小于6%,这将有利于大批量、小尺寸口腔医学材料的稳定生产。增强颗粒尺寸细小,分布均匀,组织稳定性高,与在镁合金基体结合良好。材料的室温韧性、硬度和耐磨性能显著提高,尤其适合于人体骨骼植入物等医学材料的应用,还可应用于要求高强度和高耐磨性的零部件,如高端跑车镁合金轮毂。(1) The toughness, wear resistance, and strength are significantly improved, and the difference in mechanical properties of the squeezed samples at intervals of 2 hours is less than 6%, which will be conducive to the stable production of large-volume and small-sized oral medical materials. The reinforced particles are small in size, evenly distributed, high in structural stability, and well combined with the magnesium alloy matrix. The room temperature toughness, hardness and wear resistance of the material are significantly improved, especially suitable for the application of medical materials such as human bone implants, and can also be applied to parts requiring high strength and high wear resistance, such as high-end sports car magnesium alloy wheels.
(2)合金组织稳定性好,不会分解有毒气体或有毒溶解物,对顾客的身体健康有好处,本发明因增强颗粒是与镁合金颗粒在真空中原位反应生成,生产的工艺稳定性高。(2) The alloy structure has good stability and will not decompose toxic gas or toxic dissolved substances, which is good for the health of customers. In the present invention, because the reinforcing particles are formed by in-situ reaction with magnesium alloy particles in vacuum, the production process has high stability. .
具体实施方式detailed description
下面给出本发明的最佳实施例:按镁合金基体材料的化学成分及重量百分比为:C:0.2%,Nd:3%,Mn :0.5%,Zn: 0.4%,Zr:0.7%,其余为Mg:95.2%的比例配制镁合金基体材料,将按比例配制的镁合金粉末加无水乙醇于球磨机中进行机械化球磨24小时,获得具有50-150μm晶粒尺寸超细粉末。将氧化钛-碳化钛晶须前驱体材料化学成分为:TiO2,C,Mn,NaCl,其质量配比为: 47:46:0.3:6.7。将按比例配制的能够生成氧化钛-碳化钛晶须的先驱体复合粉末加无水乙醇于球磨机中进行机械化球磨24小时,获得具有200-800nm晶粒尺寸超细先驱体复合粉末。将氧化钛-碳化钛晶须与镁合金基体材料按重量百分比为8:92的比例配制为氧化钛-碳化钛晶须增韧镁合金生物医用材料粉末。然后采用机械混合法使镁合金基体粉末与氧化钛-碳化钛晶须粉末均匀混合,混合粉末冷压实后在10-6托真空条件下逐步加热除气,然后在550℃,100Mpa条件下真空烧结2小时,热压锭在350℃通过模具通道拐角为90o的等通道弯角挤压(ECAP)变形。然后进行T6处理,并进行性能测试。该工艺下可获得高强度中等塑性镁合金( 抗拉强度为411MPa,屈服强度为370MPa,延伸率为6.3%)。在模拟体液环境下的腐蚀速率为0.27mm/year。可满足骨科内植入材料接骨板、骨钉等的要求。The best embodiment of the present invention is provided below: by the chemical composition of magnesium alloy base material and percent by weight: C: 0.2%, Nd: 3%, Mn: 0.5%, Zn: 0.4%, Zr: 0.7%, all the other The magnesium alloy matrix material is prepared for the ratio of Mg:95.2%, and the magnesium alloy powder prepared according to the ratio is added with absolute ethanol to perform mechanical ball milling in a ball mill for 24 hours to obtain an ultrafine powder with a grain size of 50-150 μm. The chemical composition of the titanium oxide-titanium carbide whisker precursor material is: TiO 2 , C, Mn, NaCl, and its mass ratio is: 47:46:0.3:6.7. The precursor composite powder capable of generating titanium oxide-titanium carbide whiskers prepared in proportion plus absolute ethanol is mechanized ball milled in a ball mill for 24 hours to obtain an ultrafine precursor composite powder with a grain size of 200-800nm. The titania-titanium carbide whisker and the magnesium alloy base material are formulated into the titanium oxide-titanium carbide whisker toughened magnesium alloy biomedical material powder at a ratio of 8:92 by weight. Then use the mechanical mixing method to uniformly mix the magnesium alloy matrix powder and titanium oxide-titanium carbide whisker powder. After cold compaction, the mixed powder is gradually heated and degassed under the vacuum condition of 10 -6 Torr, and then vacuumed at 550°C and 100Mpa. After sintering for 2 hours, the hot-pressed ingot was deformed at 350 °C by equal channel angular pressing (ECAP) with a die channel corner of 90 ° . T6 treatment is then carried out, and performance testing is carried out. High-strength medium-plasticity magnesium alloy (tensile strength 411MPa, yield strength 370MPa, elongation 6.3%) can be obtained under this process. The corrosion rate in the simulated body fluid environment is 0.27mm/year. It can meet the requirements of orthopedic implant materials such as bone plates and bone screws.
Claims (3)
- A kind of 1. titanium oxide-titanium carbide crystal whisker toughened magnesium alloy bio-medical material, it is characterized in that by magnesium alloy substrate material powder End and the powder constituent of titanium oxide-titanium carbide crystal whisker, make magnesium alloy substrate powder and titanium oxide-titanium carbide using mechanical mixing Whisker powder uniformly mixes, vacuum-sintering after vacuum heating degasification after mixed-powder cold compaction, and hot pressing ingot is by waiting channel deformation Obtain titanium oxide-titanium carbide crystal whisker toughened magnesium alloy bio-medical material;(a)The chemical composition and percentage by weight of magnesium alloy substrate material be:C:0~0.2%, Nd:3~3.5%, Mn:0.2 ~0.6%, Zn:0.1~0.4%, Zr:0.6~0.8%, remaining is Mg;(b)10 after the cold reality of mixed-powder-6Degasification is progressively heated under support vacuum condition, then at 500-600 DEG C, 50-200MP a Under the conditions of vacuum-sintering 1-4 hours;(c)Hot pressing ingot is 90 by die channel turning at 300-400 DEG CoEqual channel angular pressing(ECAP)Deformation obtains.
- 2. a kind of titanium oxide according to claim 1-titanium carbide crystal whisker toughened magnesium alloy bio-medical material, it is characterized in that The precursor composite powder of titanium oxide-titanium carbide crystal whisker adds absolute ethyl alcohol to carry out mechanization ball milling in ball mill 24 hours, obtains There must be the ultra-fine precursor composite powder of 200-800nm crystallite dimensions.
- 3. a kind of titanium oxide according to claim 1-titanium carbide crystal whisker toughened magnesium alloy bio-medical material, its feature It is:Magnesium alloy powder adds absolute ethyl alcohol to carry out mechanization ball milling in ball mill 24 hours, and acquisition has 50-150 μm of crystal grain chi Very little superfines.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610482541.1A CN106119742B (en) | 2016-06-27 | 2016-06-27 | A kind of titanium carbide crystal whisker toughened magnesium alloy bio-medical material of titanium oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610482541.1A CN106119742B (en) | 2016-06-27 | 2016-06-27 | A kind of titanium carbide crystal whisker toughened magnesium alloy bio-medical material of titanium oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106119742A CN106119742A (en) | 2016-11-16 |
CN106119742B true CN106119742B (en) | 2017-12-29 |
Family
ID=57266643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610482541.1A Expired - Fee Related CN106119742B (en) | 2016-06-27 | 2016-06-27 | A kind of titanium carbide crystal whisker toughened magnesium alloy bio-medical material of titanium oxide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106119742B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107974567A (en) * | 2018-01-30 | 2018-05-01 | 山东建筑大学 | A kind of preparation process and method of controllable medical degraded magnesium alloy |
CN108179318B (en) * | 2018-02-01 | 2020-06-26 | 山东建筑大学 | Preparation method of high-strength degradable nano medical titanium-magnesium-silicon composite material |
CN108285987A (en) * | 2018-02-01 | 2018-07-17 | 山东建筑大学 | The preparation method of copper oxide-vanadium carbide particle enhancing antibacterial medical magnesium alloy materials |
CN108193071B (en) * | 2018-02-07 | 2020-05-08 | 山东建筑大学 | Continuous extrusion preparation method of titanium-based renewable porous nanocomposite |
CN111805306B (en) * | 2020-06-19 | 2022-04-22 | 佛山市逸合生物科技有限公司 | Polishing process of medical titanium implant |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1837392A (en) * | 2006-04-03 | 2006-09-27 | 重庆大学 | A kind of magnesium alloy composite material and preparation method thereof |
CN104689368A (en) * | 2015-02-25 | 2015-06-10 | 上海交通大学 | Degradable three-dimensional porous magnesium-based biomaterial and preparation method thereof |
CN104894419A (en) * | 2015-02-26 | 2015-09-09 | 南昌大学 | Method for reinforcing magnesium matrix composite by using magnesium oxide-coated graphene |
CN105063618A (en) * | 2015-08-22 | 2015-11-18 | 山东建筑大学 | Method for preparing hydroxyapatite film layer on magnesium alloy surface |
-
2016
- 2016-06-27 CN CN201610482541.1A patent/CN106119742B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1837392A (en) * | 2006-04-03 | 2006-09-27 | 重庆大学 | A kind of magnesium alloy composite material and preparation method thereof |
CN104689368A (en) * | 2015-02-25 | 2015-06-10 | 上海交通大学 | Degradable three-dimensional porous magnesium-based biomaterial and preparation method thereof |
CN104894419A (en) * | 2015-02-26 | 2015-09-09 | 南昌大学 | Method for reinforcing magnesium matrix composite by using magnesium oxide-coated graphene |
CN105063618A (en) * | 2015-08-22 | 2015-11-18 | 山东建筑大学 | Method for preparing hydroxyapatite film layer on magnesium alloy surface |
Also Published As
Publication number | Publication date |
---|---|
CN106119742A (en) | 2016-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106119742B (en) | A kind of titanium carbide crystal whisker toughened magnesium alloy bio-medical material of titanium oxide | |
CN1298874C (en) | Super elasticity low modulus titanium alloy and preparing and processing method | |
CN101899600B (en) | Orthopedic magnesium alloy implant material and preparation method thereof | |
CN101215655B (en) | Metastable beta type ti-nb-ta-zr-o alloy and preparation method thereof | |
CN110423933A (en) | A kind of bio-medical Ti-Zr-Hf-Nb-Ta system's high-entropy alloy and preparation method | |
CN102296220B (en) | Biomedical corrosion-proof magnesium alloy and preparation method thereof | |
CN105861966A (en) | Silver-titanium carbide-titanium boride whisker-toughened high-strength titanium alloy antibacterial medical material | |
CN103556085B (en) | Zr-Al-Cu-Fe-Nb bulk amorphous alloy and its preparation method | |
CN107557633B (en) | Micro-alloyed medical degradable magnesium alloy and preparation method thereof | |
CN103184369A (en) | Beta type Zr-Nb-Ti biomedical alloy and preparation method thereof | |
CN104674093B (en) | Medical high-toughness corrosion-resistant magnesium based composite material and preparation method thereof | |
CN108588520A (en) | Laser in-situ Strengthening and Toughening Mg-based nanocomposite bone implant and its manufacturing process | |
CN106521272A (en) | Corrosion-resistant biological magnesium alloy, and preparation method thereof | |
CN113234983B (en) | A kind of NbTaTiZr double equal atomic ratio high entropy alloy and preparation method thereof | |
CN103882274B (en) | Biological medical degradable Mg-Zn-Zr-Sc Alloy And Preparation Method | |
CN103343273B (en) | biomedical degradable corrosion-resistant Mg-Zn-Zr alloy and preparation method | |
CN1217022C (en) | Beta type titanium alloy for surgical implanting piece | |
CN109971997A (en) | A kind of high-strength high-elasticity titanium alloy and preparation method thereof | |
de Castro et al. | Mg-based composites for biomedical applications | |
CN104674041B (en) | A kind of preparation method of low oxygen content height recoverable strain Ti Nb memorial alloy | |
CN102443720A (en) | A novel hard tissue biomedical zirconium-based alloy and its preparation method | |
CN114277283B (en) | Omega-rich medical zirconium-based alloy and preparation method thereof | |
CN113136503B (en) | A kind of biomedical TiNb-based titanium alloy and preparation method thereof | |
Okazaki et al. | Effects of heat treatment on mechanical properties and corrosion fatigue strength in physiological saline solution of new titanium alloys for medical implants | |
CN115804872A (en) | Application of degradable magnesium-based metal wire in preparation of fat dissolving material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171229 |
|
CF01 | Termination of patent right due to non-payment of annual fee |