CN1061090A - Displacement detection method and device using light sensing method - Google Patents
Displacement detection method and device using light sensing method Download PDFInfo
- Publication number
- CN1061090A CN1061090A CN 90108542 CN90108542A CN1061090A CN 1061090 A CN1061090 A CN 1061090A CN 90108542 CN90108542 CN 90108542 CN 90108542 A CN90108542 A CN 90108542A CN 1061090 A CN1061090 A CN 1061090A
- Authority
- CN
- China
- Prior art keywords
- light
- lattice plate
- coordinate
- displacement
- coordinate lattice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000001514 detection method Methods 0.000 title abstract description 10
- 238000003384 imaging method Methods 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims 1
- 238000003199 nucleic acid amplification method Methods 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000011960 computer-aided design Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
本发明涉及一种位移检测方法及装置,尤其是一种采用光传感方式的位移检测方法及装置。The invention relates to a displacement detection method and device, in particular to a displacement detection method and device using light sensing.
两维空间的位移检测技术在工业控制和电脑输出输入装置等的应用上已行之多年,且有成为必备品的趋势。相应装置的精度一向为企业界所追求与标榜,以电脑的日益普及为例,其系统的人机界面已逐渐舍弃传统上用键盘输入的方式,而采用以手在板面上移动,配合窗口(WINDOW)软件来完成电脑的光标(CURSOR)操控及下达操作指令的方式。实现这一功能的装置与软件除了在电脑辅助设计(CAD),绘图软件上展现威力之外,在商业、教育、家庭,甚到娱乐的软件上也逐渐普及,其原因在于该类装置可在使用上较为经济、实用及方便。Displacement detection technology in two-dimensional space has been used in industrial control and computer input and input devices for many years, and it has become a must-have. The precision of the corresponding devices has always been pursued and flaunted by the business community. Taking the increasing popularity of computers as an example, the human-machine interface of the system has gradually abandoned the traditional keyboard input method, and uses the hand to move on the board to cooperate with the window. (WINDOW) software to complete the computer cursor (CURSOR) control and the way to issue operation instructions. Devices and software that realize this function are not only showing their power in computer-aided design (CAD) and drawing software, but also in business, education, family, and even entertainment software. The reason is that such devices can be used in It is more economical, practical and convenient to use.
现有的常用装置多采用机械摩擦传动方式,其移动体内备有X、Y轴向的两组编码器(ENCODER),编码器为标准旋转式编码器(ROTARY ENCODER),其传动轴直接与板面摩擦,或由一球体传动;位移时,利用X、Y轴向的编码器给出位移信息。但这些技术有许多先天及后天的缺陷,因其必须具备多个传动机构,其结构复杂,且其机构配置上必须相当精密。The existing commonly used devices mostly adopt the mechanical friction transmission mode. There are two sets of encoders (ENCODER) in the X and Y axes in the moving body. The encoder is a standard rotary encoder (ROTARY ENCODER). The transmission shaft is directly connected to the plate. Surface friction, or transmission by a sphere; during displacement, the encoders in the X and Y axes are used to give displacement information. But these technologies have many congenital and acquired defects, because it must possess multiple transmission mechanisms, its structure is complex, and its mechanism configuration must be quite precise.
众所周知,旋转将造成摩擦,有摩擦必会产生间隙,也必定产生若干误差,因此,这种以摩擦传动方式的装置其精度自然降低。再者,任何材料都会磨损,致使其误差值将随使用次数而增加,即使机构上的问题得到克服,使用时,传动轴或球体会将板面上的灰尘及污垢携带至内部机构上,造成需要经常清洁和维护,严重时甚至完全无法操作,形成使用上的一大困扰。As we all know, rotation will cause friction, and if there is friction, there will be gaps and some errors. Therefore, the accuracy of this friction transmission device will naturally decrease. Furthermore, any material will be worn out, causing its error value to increase with the number of times of use. Even if the problem on the mechanism is overcome, the transmission shaft or the ball will carry the dust and dirt on the plate surface to the internal mechanism during use, causing Frequent cleaning and maintenance are required, and in severe cases, it is even completely inoperable, causing a major problem in use.
显然,已知的类似装置,其设计与制造方法实有待更新更好的方法来突破。发明人以多年类似装置的使用设计经验,并经多次的试验改良之后,终于产生出本发明。Apparently, the design and manufacturing methods of the known similar devices really need to be updated with better methods to break through. The inventor finally produces the present invention with years of experience in the use and design of similar devices, and after repeated experiments and improvements.
本发明的目的在于提供一种结构简单,无摩擦传动,高精度及高解析度的位移检测方法及其装置。The object of the present invention is to provide a displacement detection method and device thereof with simple structure, frictionless transmission, high precision and high resolution.
本发明的采用光传感方式的位移检测方法,主要通过以下方式实现其发明目的:一机体与一特定的座标格板做相对位移运动,将光源投射到座标格板上产生影像,利用成像透镜将影像放大后,经不同轴向的聚光透镜或反射镜使光线聚集,由光传感元件将各轴向的聚集光线转换为代表位移状态的电信号。The displacement detection method adopting the optical sensing method of the present invention mainly realizes the purpose of the invention in the following manner: a body and a specific coordinate grid plate do a relative displacement movement, project a light source onto the coordinate grid plate to generate an image, and utilize After the imaging lens magnifies the image, the light is collected by condenser lenses or reflectors in different axes, and the light sensing element converts the collected light in each axis into an electrical signal representing the displacement state.
另外,聚集光源的方式为利用透镜或反射镜,或两者同时交互使用。光源相对于光传感元件位于座标格板的同一侧或另一侧。座标格板至成像透镜中心的距离小于成像透镜中心至成像平面的距离,用其对影像的放大作用来提高解析度。座标格板为反光式或透光式。座标格板表面的垂直及水平座标线为等宽度且线宽与线间距相等。In addition, the way to collect the light source is to use lenses or reflectors, or use both of them in an interactive manner. The light source is located on the same side or another side of the grid relative to the light sensing element. The distance from the coordinate grid to the center of the imaging lens is smaller than the distance from the center of the imaging lens to the imaging plane, and its magnifying effect on the image is used to improve the resolution. The coordinate grid is reflective or translucent. The vertical and horizontal coordinate lines on the surface of the coordinate grid are of equal width and the line width and line spacing are equal.
本发明的采用光传感方式的位移检测装置主要通过以下方式实现其发明目的:The displacement detection device adopting the optical sensing mode of the present invention mainly realizes its object of the invention in the following ways:
一由具有反光或透光材料制成的、其表面标刻等宽度的垂直和水平标线且线宽与线间距相等的座标格板;A coordinate grid made of reflective or light-transmitting material, marked on its surface with vertical and horizontal markings of equal width, and the line width and line spacing are equal;
一与座标格板做相对位移的机体;1. The body that makes relative displacement with the coordinate grid;
一对应于反光或透光的座标格板而设于机体内或座标格板的另一侧面的光源;A light source installed in the body or on the other side of the coordinate grid corresponding to the reflective or light-transmitting grid;
一设于机体内用以将座标格板的座标放大的成像透镜;An imaging lens arranged in the body to magnify the coordinates of the coordinate grid;
一组设于机体内且位于成像透镜的成像平面,用以将来自成像透镜的不同轴向的光线分别聚焦的聚光透镜或反射镜;A group of condensing lenses or reflectors arranged in the body and on the imaging plane of the imaging lens to focus the rays from different axes of the imaging lens respectively;
设于机体内且至少与每一聚光透镜或一反射镜一一对应的光传感元件。The light sensing element is arranged in the body and at least one-to-one corresponding to each condensing lens or a reflecting mirror.
另外,聚光透镜或反射镜呈长方形,同一轴向的透镜或反射镜可相邻排列或相距一座标线间距的距离。In addition, the condensing lens or reflector is in the shape of a rectangle, and the lenses or reflectors on the same axis can be arranged adjacent to each other or separated by a distance between a marking line.
关于光学上光线可藉透镜折射、反射镜反射而予以导引、聚集、扩散等一般物理常识,在此不拟赘述,而任何电气设备所必备的已知配件如电源、信号传输用导线,等等,于此亦不赘述。General physical knowledge about optical light that can be guided, gathered, and diffused by lens refraction and mirror reflection, etc., is not going to be repeated here, and the known accessories necessary for any electrical equipment, such as power supply and signal transmission wires, Wait, I won't go into details here.
有关本发明的应用及实施上所使用的技术手段、元件及其功效,兹用实施例并配合相关附图详细说明于后。The technical means, elements and functions used in the application and implementation of the present invention will be described in detail below with examples and associated drawings.
说明书附图的说明如下:The description of the accompanying drawings in the manual is as follows:
图1是本发明采用聚光透镜组时的示意图。FIG. 1 is a schematic diagram of the present invention when a condenser lens group is used.
图2是本发明采用聚光透镜组时的横断面图。Fig. 2 is a cross-sectional view of the present invention when a condenser lens group is used.
图3是本发明的座标格局部放大顶视图。Fig. 3 is a partially enlarged top view of the coordinate grid of the present invention.
图4是本发明的聚像区的放大示意图。Fig. 4 is an enlarged schematic view of the focusing area of the present invention.
图5是说明本发明的单轴向位移信号变化情形。FIG. 5 is a diagram illustrating the variation of the uniaxial displacement signal of the present invention.
图6是说明本发明的双轴复合位移信号变化情形。FIG. 6 illustrates the variation of the biaxial composite displacement signal of the present invention.
图7是本发明采用反射镜组时的示意图。Fig. 7 is a schematic diagram of the present invention when a mirror group is used.
图8是本发明采用反射镜组时的横断面图。Fig. 8 is a cross-sectional view of the present invention when a mirror group is used.
图9是本发明的应用设计例一。Fig. 9 is an application design example 1 of the present invention.
图10是本发明的应用设计例二。Fig. 10 is the second application design example of the present invention.
如图1,本发明采用聚光透镜时,其主要元件包含光源10(或者10'),此光源主要是用来投射于座标格板11,其颜色、波长、材料、形状等均无特殊要求,本例以常用的发光二极管(LED)为例。本发明所使用的座标格板11可利用反光板加印座标格,或用如胶片、玻璃等透光材料并在其表面加印座标格来实现,当座标格板使用反光材料时,光源10固定于机体20内,投射于成像透镜12的物像区内。成像透镜12为成像镜,具有较佳的聚光性,可将透镜前方任何方向的入射光线聚于中心,而于成像透镜12的后方成像。As shown in Figure 1, when the present invention uses a condenser lens, its main components include a light source 10 (or 10'), which is mainly used to project on the
透过成像透镜12后,光线可在截面13、13'、15、15'上成像,依光学放大率M(放大倍数)=P(像距)/S(物距),令P(即成像面13、13'、15、15'与成像透镜12中心的间距)大于物距(即透镜中心到座标格板11表面的距离),依此,可将座标格板的刻度予以放大。如图3及图4所示,斜线区17为座标刻度线的阴影,空白区18为座标刻度线的间隔,由光源10、10'投射形成亮块,座标线宽与间隔可设定为完全相等的宽度,而设计成长方形的聚光透镜13、13'及15、15'所覆盖的影像面积如图4所示,同一轴向的聚光透镜可相邻排列,亦可相距一个格区。现定义每块聚光镜所覆盖的面积为”集光面”,且每一块聚光镜的聚焦处必对应一个以上的光传感元件。如图1,聚光透镜13、13'将其所覆盖的集光面上所有的光线聚焦到光传感元件14、14'上,透镜15、15'则聚焦于元件16、16'上。由图4所示的聚焦情形可看出,光传感元件14、14'、16、16'均因其对应的集光面13、13'15、15'无任何亮块或仅有相当微小部份的集光面有亮块,如果表面未接收到任何光线或光线太微弱,此时,定义其输出为“0”信号,而光传感元件16'因其对应集光面有1/2受到光照射,因此可以改变光传感元件16'的状态,此状态定义为“1”信号。After passing through the
如图2,在本发明采用聚光透镜的实施例中,将成像透镜12、聚光透镜组13、13'、15、15'及光传感元件14、14'、16、16'与电子电路等必要元件19及导线21全部组装于一机体20内,令机体20与座标格板11脱离成两个独立体。当机体20与座标格板11之间有相对位移时,必形成成像透镜12前方的物像变化,因此,图4所示的集光面与座标格明、暗影像的关系亦必改变,现举X轴方向位移详加说明。As shown in Fig. 2, in the embodiment that the present invention adopts condensing lens,
图5所示为本发明作单轴向位移时的位移检测原理,机体20与座标格板11之间仅做水平(X轴)方向位移,并依次产生A、B、C、D等连续信号,其间或为机体20右移,或为座标格板11左移。Figure 5 shows the displacement detection principle of the present invention when performing uniaxial displacement. Only horizontal (X-axis) displacement is performed between the
根据上述将光传感元件接收的明、暗影像定义为1,0信号,则集光面13、13'位移时,可从光传感元件14、14'得到下面的信号组合,若位移变化为由状态A转变为状态B,则其组合由[0,0]变化为[0,1],依此类推,若由状态D再继续向右位移,则又恢复到状态A,其间变化成周期性关系,将其组合状态整理、排列之后,可得如下关系式:According to the above, the light and dark images received by the light sensing element are defined as 1, 0 signals, then when the
此组合关系即常用的标准位移检测器的输出信号。必须注意的是:此时机体20或座标格板11仅做单轴向位移,另一轴向状态将不会因此运动而有所影响。This combination relationship is the output signal of a commonly used standard displacement detector. It must be noted that at this time, the
当机体20与座标格板11在X、Y轴方向均有位移时,如图6所示,机体20由状态E到状态F可知为往右下方各做一个单位(UNIT)的位移,其X轴方向输出信号组合由[0,1]变化为[1,1],状态F到状态G时其组合由[1,1]变化为[1,0];同时Y轴方向输出信号组合由[0,0]变化为[0,1],状态F到状态G时其组合由[0,1]变化为[1,1]。此时,藉光传感元件由其X轴及Y轴方向的输出信号,可知其同时检测出的状况。When the
本发明的另一实施例为采用反射镜聚光,如图7及图8所示,其动作原理与上述实施例完全相同,亦包含光源30或30'、座标格板31、透镜32、光传感元件34、34'、36、36'及电路元件39、机体40,唯在此将聚光透镜改为上拱型反射镜33、33'、35、35'。Another embodiment of the present invention is to use reflectors to condense light, as shown in Figures 7 and 8, its operating principle is exactly the same as the above-mentioned embodiment, and also includes a light source 30 or 30', a coordinate
因光线既可由聚光透镜又可由反射镜引导而偏折至任何方向,所以本发明在应用时,并没有任何组合形状上的限制,如一轴向聚光透镜及一轴向反射聚光镜组合,或其他类似组合,其组合方式多达16种(42),采用透镜聚光法时,成像区在上方,较适合立式或长形设计,图9为此型应用的例子;而采用反射镜聚光时,则需稍大的横截面,而较适合卧式设计,图10为此形式应用的例子。Because the light can be deflected to any direction by both the condenser lens and the reflection mirror, so the present invention does not have any restrictions on the combination shape when applied, such as the combination of an axial condenser lens and an axial reflection condenser lens, or For other similar combinations, there are as many as 16 combinations (4 2 ). When the lens focusing method is used, the imaging area is on the top, which is more suitable for vertical or elongated designs. Figure 9 is an example of this type of application; When concentrating light, a slightly larger cross-section is required, and it is more suitable for a horizontal design. Figure 10 is an example of this form of application.
座标格板11的影像经放大之后,再由聚光透镜或反射镜聚焦于光传感元件上。考虑到经济成本,实际中,光传感元件可为光电晶体管(PHOTO-TRANSISTOR)或光电二极管(PHOTO-DIODE),其实际受光面积一般大约仅20密尔(MIL)见方,若影像的放大倍数为2,则放大后的线宽(要能覆盖两片聚光透镜或反射镜的宽度)只需有20密尔,即座标格板上的座标线宽为10密尔,间隔亦为10密尔,如此一来,每英寸内可有1000/20=50条(约20条/厘米)座标线,因座标线到座标线间可以检出4个点数(COUNTS),则如此设计可达每英寸200点(D、P、I)(约79点/厘米)的精确度,若光学放大倍数为12时,可达1200点(约472点/厘米),其精确度非常高,这是常用的位移检测器几乎无法精确地达到的。特别值得注意的是:座标格板并未特别精细,亦不需要特别的制造技术即可制成,若要将座标格板做精细刻度,以目前工业技术水准,用蒸镀或感光法都可以达到。After the image of the coordinate
本发明所提供的方法与装置具有结构简单、精确度高及解析度高的特点;更重要的是本发明所提供的输出为现有标准位移检测器的输出,但无任何复杂、费时的运算,不会降低位移检测器的反应速度。实为一极具实用价值的发明。The method and device provided by the present invention have the characteristics of simple structure, high precision and high resolution; more importantly, the output provided by the present invention is the output of the existing standard displacement detector, but without any complicated and time-consuming calculations , will not reduce the response speed of the displacement detector. It is an invention with great practical value.
显然,本发明在不脱离其基本精神下,可为多种变换设计,即本发明的实施应超过上述详细说明的实施方式,因此,对熟悉此项技术者而言,该多种变换设计皆应包含于本发明的申请专利范围内。Obviously, the present invention can be designed in various transformations without departing from its basic spirit, that is, the implementation of the present invention should exceed the implementation mode described in detail above. Should be included in the patent application scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 90108542 CN1022776C (en) | 1990-10-25 | 1990-10-25 | Displacement detection method and device using light sensing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 90108542 CN1022776C (en) | 1990-10-25 | 1990-10-25 | Displacement detection method and device using light sensing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1061090A true CN1061090A (en) | 1992-05-13 |
CN1022776C CN1022776C (en) | 1993-11-17 |
Family
ID=4881035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 90108542 Expired - Lifetime CN1022776C (en) | 1990-10-25 | 1990-10-25 | Displacement detection method and device using light sensing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1022776C (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101183288B (en) * | 2006-11-15 | 2010-06-09 | 三星电机株式会社 | Optical sensor module |
CN101165455B (en) * | 2006-10-16 | 2010-09-15 | 美胜C&S检查株式会社 | Construction shift measuring device |
CN101073047B (en) * | 2004-04-15 | 2010-10-06 | 罗技欧洲公司 | Multi-light-source illumination system for optical pointing devices |
CN102155915A (en) * | 2010-12-31 | 2011-08-17 | 东莞康视达自动化科技有限公司 | Online multi-band optical size detection method and system |
CN105066902A (en) * | 2015-08-31 | 2015-11-18 | 湖南科技大学 | Solar concentrator reflection mirror shape detection device and method based on optical imaging |
CN105814408A (en) * | 2013-10-01 | 2016-07-27 | 瑞尼斯豪公司 | Measurement encoder |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7227124B2 (en) * | 2005-06-20 | 2007-06-05 | Mitutoyo Corporation | Illumination configuration for imaging-type optical encoders |
-
1990
- 1990-10-25 CN CN 90108542 patent/CN1022776C/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101073047B (en) * | 2004-04-15 | 2010-10-06 | 罗技欧洲公司 | Multi-light-source illumination system for optical pointing devices |
CN101165455B (en) * | 2006-10-16 | 2010-09-15 | 美胜C&S检查株式会社 | Construction shift measuring device |
CN101183288B (en) * | 2006-11-15 | 2010-06-09 | 三星电机株式会社 | Optical sensor module |
CN102155915A (en) * | 2010-12-31 | 2011-08-17 | 东莞康视达自动化科技有限公司 | Online multi-band optical size detection method and system |
CN102155915B (en) * | 2010-12-31 | 2013-01-23 | 东莞科视自动化科技有限公司 | Online multi-band optical size detection method and system |
CN105814408A (en) * | 2013-10-01 | 2016-07-27 | 瑞尼斯豪公司 | Measurement encoder |
CN105814408B (en) * | 2013-10-01 | 2018-06-12 | 瑞尼斯豪公司 | Encoder device and encoder head |
US10823587B2 (en) | 2013-10-01 | 2020-11-03 | Renishaw Plc | Measurement encoder |
CN105066902A (en) * | 2015-08-31 | 2015-11-18 | 湖南科技大学 | Solar concentrator reflection mirror shape detection device and method based on optical imaging |
CN105066902B (en) * | 2015-08-31 | 2017-06-06 | 湖南科技大学 | Solar concentrator reflecting mirror surface shape detection means and method based on optical imagery |
Also Published As
Publication number | Publication date |
---|---|
CN1022776C (en) | 1993-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5086197A (en) | Optical encoding method and device | |
US5051736A (en) | Optical stylus and passive digitizing tablet data input system | |
CN1928801A (en) | Position detection system using laser speckle | |
US4920260A (en) | Detector system for optical mouse | |
US7295329B2 (en) | Position detection system | |
EP0146843A2 (en) | Optical mouse | |
US7773070B2 (en) | Optical positioning device using telecentric imaging | |
US20070126700A1 (en) | Method and apparatus for sensing motion of a user interface mechanism using optical navigation technology | |
AU1040488A (en) | Detector system for optical mouse | |
CN1635541A (en) | Photoelectric detection positioning system and method for computer touch screen | |
WO1993003474A1 (en) | Apparatus to digitize graphic and scenic information and determine stylus position | |
CN1244044C (en) | Mouse optical signal treatment method and device | |
CN1360276A (en) | Optical mouse | |
CN1061090A (en) | Displacement detection method and device using light sensing method | |
CN1364279A (en) | Image reader | |
CN101118314B (en) | Light path system detecting touch article coordinate using MEMS microscope | |
GB2154734A (en) | Electro-optical mouse | |
JP2019506061A (en) | Contact image sensor and image scanning device | |
JP3473888B2 (en) | Input device | |
TWI648520B (en) | Optical encoding device | |
CN109631765B (en) | Image displacement sensor and measuring method thereof | |
CN102122221B (en) | Optical touch screen and display device | |
CN1712904A (en) | A Single Grating Displacement Sensor | |
WO2005114643A2 (en) | Optical positioning device using telecentric imaging | |
JP3517764B2 (en) | Linear scale |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee |