CN106096724B - 基于elm神经网络的转炉炼钢工艺成本控制方法及系统 - Google Patents
基于elm神经网络的转炉炼钢工艺成本控制方法及系统 Download PDFInfo
- Publication number
- CN106096724B CN106096724B CN201610450172.8A CN201610450172A CN106096724B CN 106096724 B CN106096724 B CN 106096724B CN 201610450172 A CN201610450172 A CN 201610450172A CN 106096724 B CN106096724 B CN 106096724B
- Authority
- CN
- China
- Prior art keywords
- neural network
- value
- cost
- hidden layer
- control parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 111
- 238000009628 steelmaking Methods 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 55
- 230000008569 process Effects 0.000 claims abstract description 27
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 23
- 238000012549 training Methods 0.000 claims abstract description 16
- 239000002245 particle Substances 0.000 claims description 42
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 30
- 210000002569 neuron Anatomy 0.000 claims description 30
- 229910052742 iron Inorganic materials 0.000 claims description 15
- 229910000831 Steel Inorganic materials 0.000 claims description 14
- 239000010959 steel Substances 0.000 claims description 14
- 230000004913 activation Effects 0.000 claims description 11
- 238000010276 construction Methods 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 8
- 238000005457 optimization Methods 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 238000010079 rubber tapping Methods 0.000 claims description 5
- 235000019738 Limestone Nutrition 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 4
- 239000010459 dolomite Substances 0.000 claims description 4
- 229910000514 dolomite Inorganic materials 0.000 claims description 4
- 239000006028 limestone Substances 0.000 claims description 4
- 230000036284 oxygen consumption Effects 0.000 claims description 4
- 238000010606 normalization Methods 0.000 abstract description 3
- 230000001537 neural effect Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000003723 Smelting Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 210000002364 input neuron Anatomy 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computational Linguistics (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Educational Administration (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Feedback Control In General (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610450172.8A CN106096724B (zh) | 2016-06-21 | 2016-06-21 | 基于elm神经网络的转炉炼钢工艺成本控制方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610450172.8A CN106096724B (zh) | 2016-06-21 | 2016-06-21 | 基于elm神经网络的转炉炼钢工艺成本控制方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106096724A CN106096724A (zh) | 2016-11-09 |
CN106096724B true CN106096724B (zh) | 2019-02-01 |
Family
ID=57238210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610450172.8A Active CN106096724B (zh) | 2016-06-21 | 2016-06-21 | 基于elm神经网络的转炉炼钢工艺成本控制方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106096724B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108009687A (zh) * | 2017-12-15 | 2018-05-08 | 华北理工大学 | 提高钢坯定重切割精度的预测方法 |
CN110083079A (zh) * | 2018-01-26 | 2019-08-02 | 阿里巴巴集团控股有限公司 | 工艺参数确定方法、装置及系统 |
CN109252009A (zh) * | 2018-11-20 | 2019-01-22 | 北京科技大学 | 基于正则化极限学习机的转炉炼钢终点锰含量预测方法 |
CN110009089A (zh) * | 2019-03-15 | 2019-07-12 | 重庆科技学院 | 一种基于pls-pso神经网络的自闭症拥抱机智能设计建模与决策参数优化方法 |
CN111125908A (zh) * | 2019-12-24 | 2020-05-08 | 重庆科技学院 | 基于极限学习机的面包生产建模及决策参数优化方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102206727A (zh) * | 2011-05-31 | 2011-10-05 | 湖南镭目科技有限公司 | 转炉炼钢终点判断方法及判断系统,控制方法及控制系统 |
CN104573854A (zh) * | 2014-12-23 | 2015-04-29 | 国家电网公司 | 钢铁用电量的预测方法及装置 |
-
2016
- 2016-06-21 CN CN201610450172.8A patent/CN106096724B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102206727A (zh) * | 2011-05-31 | 2011-10-05 | 湖南镭目科技有限公司 | 转炉炼钢终点判断方法及判断系统,控制方法及控制系统 |
CN104573854A (zh) * | 2014-12-23 | 2015-04-29 | 国家电网公司 | 钢铁用电量的预测方法及装置 |
Non-Patent Citations (1)
Title |
---|
基于实数编码遗传算法的神经网络成本预测模型及其应用;刘威 等;《控制理论与应用》;20040630;第21卷;第423-426页 |
Also Published As
Publication number | Publication date |
---|---|
CN106096724A (zh) | 2016-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106096788B (zh) | 基于pso_elm神经网络的转炉炼钢工艺成本控制方法及系统 | |
CN106096724B (zh) | 基于elm神经网络的转炉炼钢工艺成本控制方法及系统 | |
CN106119458B (zh) | 基于bp神经网络的转炉炼钢工艺成本控制方法及系统 | |
CN106019940B (zh) | 基于ukf神经网络的转炉炼钢工艺成本控制方法及系统 | |
Han et al. | Endpoint prediction model for basic oxygen furnace steel-making based on membrane algorithm evolving extreme learning machine | |
CN106054836B (zh) | 基于grnn的转炉炼钢工艺成本控制方法及系统 | |
Hu et al. | A multilevel prediction model of carbon efficiency based on the differential evolution algorithm for the iron ore sintering process | |
CN111353656A (zh) | 一种基于生产计划的钢铁企业氧气负荷预测方法 | |
CN113239482B (zh) | 一种转炉后吹碳含量动态预测方法及装置 | |
CN112100916A (zh) | 用于构建强化学习模型的方法、装置、电子设备及介质 | |
Hu et al. | Hybrid modeling and online optimization strategy for improving carbon efficiency in iron ore sintering process | |
CN106991507A (zh) | 一种SCR入口NOx浓度在线预测方法及装置 | |
CN109359320B (zh) | 基于多采样率自回归分布滞后模型的高炉指标预测方法 | |
CN117170229A (zh) | 一种基于模型的转炉氧枪枪位预测方法 | |
Zhang et al. | ABC-TLBO: A hybrid algorithm based on artificial bee colony and teaching-learning-based optimization | |
Wang et al. | A mnemonic shuffled frog leaping algorithm with cooperation and mutation | |
CN103276136A (zh) | 一种基于副枪系统的转炉炼钢钢水定磷方法 | |
CN113637819B (zh) | 一种基于深度强化学习的高炉布料方法及系统 | |
Zhang et al. | Precise burden charging operation during iron-making process in blast furnace | |
Wen et al. | Research on Prediction of Oxygen Consumption in Converter Steelmaking Based on IGWO-SVM Model | |
Pettersson et al. | Evolutionary neural network modeling of blast furnace burden distribution | |
CN110363276A (zh) | 一种模拟人工神经网络的基因电路及其构建方法 | |
CN114358142A (zh) | 一种基于人机结合策略学习的目标智能分配方法和系统 | |
Zhong et al. | Ranking-based hierarchical random mutation in differential evolution | |
Zhang et al. | Energy consumption prediction for steelmaking production using PSO-based BP neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhang Qianying Inventor after: Li Taifu Inventor after: Geng Xun Inventor after: Gu Xiaohua Inventor after: Wang Kan Inventor after: Tang Haihong Inventor before: Zhang Qianying Inventor before: Li Taifu Inventor before: Geng Xun Inventor before: Gu Xiaohua Inventor before: Wang Kan Inventor before: Tang Haihong |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |