CN106082264A - A kind of multilevel hierarchy molecular sieve bar array, preparation method and applications - Google Patents
A kind of multilevel hierarchy molecular sieve bar array, preparation method and applications Download PDFInfo
- Publication number
- CN106082264A CN106082264A CN201610404840.3A CN201610404840A CN106082264A CN 106082264 A CN106082264 A CN 106082264A CN 201610404840 A CN201610404840 A CN 201610404840A CN 106082264 A CN106082264 A CN 106082264A
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- aao
- sio
- bar array
- sieve bar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 168
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 165
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000013078 crystal Substances 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 13
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000011701 zinc Substances 0.000 claims abstract description 7
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 76
- 229910001868 water Inorganic materials 0.000 claims description 59
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 36
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 32
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 30
- 239000011734 sodium Substances 0.000 claims description 27
- 229910052708 sodium Inorganic materials 0.000 claims description 26
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- 239000008367 deionised water Substances 0.000 claims description 17
- 229910021641 deionized water Inorganic materials 0.000 claims description 17
- 230000032683 aging Effects 0.000 claims description 15
- 238000011068 loading method Methods 0.000 claims description 6
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 claims description 6
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 claims description 6
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 claims description 6
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 16
- 229910052681 coesite Inorganic materials 0.000 claims 10
- 229910052906 cristobalite Inorganic materials 0.000 claims 10
- 239000000377 silicon dioxide Substances 0.000 claims 10
- 229910052682 stishovite Inorganic materials 0.000 claims 10
- 229910052905 tridymite Inorganic materials 0.000 claims 10
- 238000002425 crystallisation Methods 0.000 claims 4
- 230000008025 crystallization Effects 0.000 claims 4
- 230000015572 biosynthetic process Effects 0.000 claims 3
- 238000001816 cooling Methods 0.000 claims 3
- 238000001914 filtration Methods 0.000 claims 3
- 238000010438 heat treatment Methods 0.000 claims 3
- 238000007654 immersion Methods 0.000 claims 3
- 238000005342 ion exchange Methods 0.000 claims 3
- 229910017604 nitric acid Inorganic materials 0.000 claims 3
- 230000008595 infiltration Effects 0.000 claims 2
- 238000001764 infiltration Methods 0.000 claims 2
- 229910003243 Na2SiO3·9H2O Inorganic materials 0.000 claims 1
- 239000006227 byproduct Substances 0.000 claims 1
- 238000002242 deionisation method Methods 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 239000011159 matrix material Substances 0.000 claims 1
- 229910001388 sodium aluminate Inorganic materials 0.000 claims 1
- 238000009736 wetting Methods 0.000 claims 1
- -1 at 450-500 ° C Chemical compound 0.000 abstract description 21
- 238000003491 array Methods 0.000 abstract description 3
- 239000002073 nanorod Substances 0.000 abstract description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 60
- 239000000203 mixture Substances 0.000 description 32
- 239000011148 porous material Substances 0.000 description 16
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 15
- 239000004810 polytetrafluoroethylene Substances 0.000 description 15
- 238000003756 stirring Methods 0.000 description 15
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 8
- 239000000243 solution Substances 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- 229910004806 Na2 SiO3.9H2 O Inorganic materials 0.000 description 4
- 239000012528 membrane Substances 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000002149 hierarchical pore Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/36—Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
- C01B39/38—Type ZSM-5
- C01B39/40—Type ZSM-5 using at least one organic template directing agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/405—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/617—500-1000 m2/g
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/04—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/20—Faujasite type, e.g. type X or Y
- C01B39/24—Type Y
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
- C07C1/24—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/14—After treatment, characterised by the effect to be obtained to alter the inside of the molecular sieve channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/183—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/50—Agglomerated particles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
一种多级结构分子筛棒状阵列、制备方法及其应用,分子筛纳米棒的直径为0.1‑5μm,长度为1‑500μm,每个棒状结构由20‑100nm的纳米分子筛堆积而成,比表面积为200‑1000m2/g,包含有微孔、介孔和大孔三部分孔道,多级结构分子筛棒状阵列的种类包括:ZSM‑5型分子筛棒状阵列结构、β型分子筛棒状阵列结构及Y型分子筛棒状阵列结构中的任意一种或多种,制备方法采用晶种导向与蒸汽辅助,方法简单,适应范围广,应用是负载3%锌后,在450‑500℃下,甲醇重量空速0.5‑50h‑1下,反应40小时内,甲醇平均转化率95‑100%,芳烃总碳基质量收率75‑80%。
A molecular sieve rod array with multi-level structure, preparation method and application thereof, molecular sieve nanorods have a diameter of 0.1-5 μm and a length of 1-500 μm, and each rod-like structure is formed by stacking nano-molecular sieves of 20-100 nm, with a specific surface area of 200 ‑1000m 2 /g, including micropores, mesopores and macropores. The types of multi-level molecular sieve rod arrays include: ZSM‑5 molecular sieve rod array structure, β-type molecular sieve rod array structure and Y-type molecular sieve rod array structure Any one or more of the array structures, the preparation method adopts seed crystal orientation and steam assistance, the method is simple, and the application range is wide. The application is to load 3% zinc, at 450-500 ° C, methanol weight space velocity 0.5-50h -1 , within 40 hours of reaction, the average conversion rate of methanol is 95-100%, and the total carbon-based mass yield of aromatics is 75-80%.
Description
技术领域technical field
本发明涉及多级结构分子筛技术领域,具体涉及一种多级结构分子筛棒状阵列、制备方法及其应用。The invention relates to the technical field of multi-level molecular sieves, in particular to a rod-shaped array of multi-level molecular sieves, a preparation method and an application thereof.
背景技术Background technique
对于普通的微孔分子筛来讲,反应物和产物分子在微孔孔道内受到严重的传质限制,因此极大限制了其在工业中的应用。研究者们通过合成超笼分子筛、纳米分子筛以及有序介孔分子筛来克服常规分子筛的不足。但是,这些材料的使用都具有其自身固有的缺陷。例如,尽管12圆环分子筛有效的缓解了传质限制问题,但是其孔道热稳定性、有机模板剂的昂贵价格严重限制了它们的实际应用。纳米分子筛需要复杂的离心洗涤过程,并且产率较低,在实际应用过程中受到限制。有序介孔分子筛的缺点在于其骨架酸性不足,并且骨架的无定型结构使其水热稳定性较差。For ordinary microporous molecular sieves, the reactant and product molecules are severely limited in mass transfer in the micropore channel, which greatly limits its application in industry. Researchers have overcome the shortcomings of conventional molecular sieves by synthesizing supercage molecular sieves, nanomolecular sieves, and ordered mesoporous molecular sieves. However, the use of these materials has its own inherent drawbacks. For example, although 12-ring molecular sieves effectively alleviate the problem of mass transfer limitation, their thermal stability and the high price of organic templates severely limit their practical applications. Nano-molecular sieves require a complex centrifugal washing process, and the yield is low, which is limited in practical application. The disadvantage of ordered mesoporous molecular sieves is that their framework is not acidic enough, and the amorphous structure of the framework makes it less hydrothermally stable.
比较而言,多级结构分子筛由于能够为大分子提供有效的扩散通道,避免快速的积碳失活,能够有效地解决大孔分子筛、纳米分子筛以及介孔分子筛所固有的问题,具有更广泛的应用。为了能够充分利用催化过程中多级结构的优势,多级孔之间的连接至关重要。所以,多级分子筛的设计不仅需要引入各级孔道,更重要的是各级孔道之间需要充分连接。到目前为止,制备具有合理结构以及高酸性强度的多级结构分子筛仍然是一项挑战。In comparison, multi-level molecular sieves can effectively solve the inherent problems of macroporous molecular sieves, nano-molecular sieves and mesoporous molecular sieves because they can provide effective diffusion channels for macromolecules and avoid rapid carbon deposition and deactivation. application. In order to be able to take full advantage of the advantages of the hierarchical structure in the catalytic process, the connection between the hierarchical pores is crucial. Therefore, the design of multi-stage molecular sieves not only needs to introduce channels at all levels, but more importantly, the channels at all levels need to be fully connected. So far, the preparation of hierarchical molecular sieves with rational structures and high acidic strengths remains a challenge.
发明内容Contents of the invention
为了克服上述现有技术的缺点,本发明的目的在于提供一种多级结构分子筛棒状阵列、制备方法及其应用,制备方法适应范围广,可以制备得到ZSM-5、β型及Y型的分子筛;可有效地提高传质,对于受到扩散限制的分子极易进入孔道和活性位发生作用。In order to overcome the above-mentioned shortcomings of the prior art, the object of the present invention is to provide a multi-level structured molecular sieve rod array, a preparation method and its application. The preparation method has a wide range of applications, and ZSM-5, β-type and Y-type molecular sieves can be prepared. ; It can effectively improve the mass transfer, and it is very easy for molecules limited by diffusion to enter the pores and active sites.
为达到以上目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种多级结构分子筛棒状阵列,分子筛纳米棒的直径为0.1-5μm,长度为1-500μm,每个棒状结构由20-100nm的纳米分子筛堆积而成。A molecular sieve rod array with a multi-level structure, the molecular sieve nanorods have a diameter of 0.1-5 μm and a length of 1-500 μm, and each rod-like structure is formed by stacking nanometer molecular sieves of 20-100 nm.
所述的多级结构分子筛棒状阵列结构,比表面积为200-1000m2/g,包含有微孔、介孔和大孔三部分孔道。The molecular sieve rod-like array structure with a multi-level structure has a specific surface area of 200-1000m 2 /g, and includes three channels of micropores, mesopores and macropores.
所述的多级结构分子筛棒状阵列的种类包括:ZSM-5型分子筛棒状阵列结构、β型分子筛棒状阵列结构及Y型分子筛棒状阵列结构中的任意一种或多种,其中,ZSM-5型分子筛棒状阵列结构的Si/Al的摩尔比范围为8:1-50:1;β型分子筛棒状阵列结构的Si/Al的摩尔比范围为10:1-50:1;Y型分子筛棒状阵列结构的Si/Al的摩尔比范围为4:1-30:1。The types of the multi-level structure molecular sieve rod arrays include: any one or more of the ZSM-5 molecular sieve rod array structure, the β-type molecular sieve rod array structure and the Y-type molecular sieve rod array structure, wherein the ZSM-5 type The Si/Al molar ratio range of molecular sieve rod array structure is 8:1-50:1; the Si/Al molar ratio range of β-type molecular sieve rod-like array structure is 10:1-50:1; the Y-type molecular sieve rod-like array structure The Si/Al molar ratio ranges from 4:1-30:1.
所述的ZSM-5分子筛棒状阵列结构的制备方法,包括如下步骤:The preparation method of described ZSM-5 molecular sieve rod-like array structure comprises the steps:
1)将乙醇、0.3mol·L-1的HNO3和正硅酸乙酯以质量比例(1-20):(0.2-5):(1-30)混合,室温搅拌形成溶胶,将AAO膜浸渍到溶胶当中浸润;然后老化、焙烧,在AAO孔壁上形成SiO2空心管SiO2/AAO;1) Mix ethanol, 0.3mol L -1 HNO 3 and ethyl orthosilicate in a mass ratio of (1-20):(0.2-5):(1-30), stir at room temperature to form a sol, and impregnate the AAO membrane Infiltrated into the sol; then aged and baked to form SiO 2 hollow tube SiO 2 /AAO on the AAO pore wall;
2)将10wt%-50wt%四丙基氢氧化铵溶液与正硅酸乙酯以质量比例1:0.3~5混合,加热预晶化,得到ZSM-5分子筛晶种;2) Mix 10wt%-50wt% tetrapropylammonium hydroxide solution with ethyl orthosilicate at a mass ratio of 1:0.3-5, heat and pre-crystallize to obtain ZSM-5 molecular sieve seed crystals;
3)将ZSM-5分子筛晶种、SiO2空心管SiO2/AAO与偏铝酸钠以质量比例(0.1~1):(5~50):(0.04~1.7)混合,烘干,得到样品;3) Mix the ZSM-5 molecular sieve seed crystal, SiO 2 hollow tube SiO 2 /AAO and sodium metaaluminate in the mass ratio (0.1~1):(5~50):(0.04~1.7), and dry to obtain the sample ;
4)在一个带聚四氟乙烯内衬的水热釜中放置一个支架,并倒入水,控制水的加入量只淹入支架,在支架上方放置一个小容器,将步骤3)所得样品放入小容器中,使水不与样品直接接触;在100-200℃下晶化,冷却、过滤;将产品洗涤、干燥、焙烧;使用HCl溶解AAO,去离子水洗涤,得到钠型ZSM-5多级结构分子筛棒状阵列;4) Place a support in a hydrothermal kettle with a polytetrafluoroethylene liner, and pour water, control the amount of water added to only submerge the support, place a small container above the support, and put the sample obtained in step 3) Put it into a small container so that the water does not come into direct contact with the sample; crystallize at 100-200°C, cool, and filter; wash, dry, and roast the product; dissolve AAO with HCl, wash with deionized water, and obtain sodium ZSM-5 Multi-level structure molecular sieve rod array;
5)将钠型ZSM-5多级结构分子筛棒状阵列用NH4NO3离子交换,焙烧,最终得到ZSM-5分子筛棒状阵列结构。5) The sodium-type ZSM-5 molecular sieve rod-like array with multi-level structure is ion-exchanged with NH 4 NO 3 and calcined to finally obtain the ZSM-5 molecular sieve rod-like array structure.
所述β型分子筛棒状阵列结构的制备方法,包括如下步骤:The preparation method of the rod-like array structure of the β-type molecular sieve comprises the following steps:
1)将乙醇、0.3mol·L-1的HNO3和正硅酸乙酯以质量比例(1-20):(0.2-5):(1-30)混合,室温搅拌形成溶胶,将AAO膜浸渍到溶胶当中浸润;然后老化、焙烧,在AAO孔壁上形成SiO2空心管SiO2/AAO;1) Mix ethanol, 0.3mol L -1 HNO 3 and ethyl orthosilicate in a mass ratio of (1-20):(0.2-5):(1-30), stir at room temperature to form a sol, and impregnate the AAO membrane Infiltrated into the sol; then aged and baked to form SiO 2 hollow tube SiO 2 /AAO on the AAO pore wall;
2)将四乙基氢氧化铵、Al(NO3)3·9H2O和正硅酸乙酯以质量比例(50-100):(0-5):(50-100)混合,加热干燥,得到β型分子筛晶种;2) Mix tetraethylammonium hydroxide, Al(NO 3 ) 3 9H 2 O and ethyl orthosilicate in mass ratio (50-100):(0-5):(50-100), heat and dry, Obtain β-type molecular sieve seed crystals;
3)将β型分子筛晶种、SiO2空心管SiO2/AAO与偏铝酸钠以质量比例(0.02~1):(5~50):(0.003~1.5)混合,烘干,得到样品;3) Mix β-type molecular sieve seed crystals, SiO 2 hollow tube SiO 2 /AAO and sodium metaaluminate at a mass ratio of (0.02-1):(5-50):(0.003-1.5), and dry to obtain a sample;
4)在一个带聚四氟乙烯内衬的水热釜中放置一个支架,并倒入水,控制水的加入量只淹入支架,在支架上方放置一个小容器,将步骤3)所得样品放入小容器中,使水不与样品直接接触;在100-200℃下晶化,冷却、过滤、干燥、焙烧,使用HCl溶解AAO,去离子水洗涤,得到钠型β型分子筛棒状阵列;4) Place a support in a hydrothermal kettle with a polytetrafluoroethylene liner, and pour water, control the amount of water added to only submerge the support, place a small container above the support, and put the sample obtained in step 3) Put it into a small container so that the water does not come into direct contact with the sample; crystallize at 100-200°C, cool, filter, dry, and roast, dissolve AAO with HCl, wash with deionized water, and obtain a rod-shaped array of sodium-type β-type molecular sieves;
5)将钠型β型分子筛棒状阵列与NH4NO3离子交换,焙烧,得到β型分子筛棒状阵列结构。5) The sodium-type β-type molecular sieve rod-like array is ion-exchanged with NH 4 NO 3 , and calcined to obtain a β-type molecular sieve rod-like array structure.
所述的Y型分子筛棒状阵列结构的制备方法,包括如下步骤:The preparation method of the Y-type molecular sieve rod-like array structure comprises the following steps:
1)将乙醇、0.3mol·L-1的HNO3和正硅酸乙酯以质量比例(1-20):(0.2-5):(1-30)混合,室温搅拌形成溶胶,将AAO膜浸渍到溶胶当中完全浸润;然后老化、焙烧,在AAO孔壁上形成SiO2空心管SiO2/AAO;1) Mix ethanol, 0.3mol L -1 HNO 3 and ethyl orthosilicate in a mass ratio of (1-20):(0.2-5):(1-30), stir at room temperature to form a sol, and impregnate the AAO membrane Completely infiltrated into the sol; then aged and baked to form SiO 2 hollow tube SiO 2 /AAO on the AAO pore wall;
2)将NaOH、NaAlO2、Na2SiO3·9H2O与H2O以质量比例(1-2):(2-4):(70-90):(40-80)混合,干燥处理,得到Y分子筛晶种;2) Mix NaOH, NaAlO 2 , Na 2 SiO 3 ·9H 2 O and H 2 O in mass ratio (1-2):(2-4):(70-90):(40-80) and dry them , to obtain Y molecular sieve seed crystals;
3)将Y分子筛晶种、SiO2空心管SiO2/AAO与偏铝酸钠以质量比例(0.02~1):(5~50):(0.02~1)混合,烘干,得到样品;3) Mix Y molecular sieve seed crystals, SiO 2 hollow tube SiO 2 /AAO and sodium metaaluminate at a mass ratio of (0.02-1):(5-50):(0.02-1), and dry to obtain a sample;
4)在一个带聚四氟乙烯内衬的水热釜中放置一个支架,并倒入水,控制水的加入量只淹入支架,在支架上方放置一个小容器,将步骤3)所得样品放入小容器中,使水不与样品直接接触;在100-200℃下晶化,冷却、过滤、干燥、焙烧;使用HCl溶解AAO,去离子水洗涤,得到钠型Y分子筛棒状阵列;4) Place a support in a hydrothermal kettle with a polytetrafluoroethylene liner, and pour water, control the amount of water added to only submerge the support, place a small container above the support, and put the sample obtained in step 3) Put it into a small container so that the water does not directly contact with the sample; crystallize at 100-200 ° C, cool, filter, dry, and roast; use HCl to dissolve AAO, wash with deionized water, and obtain a sodium-type Y molecular sieve rod-shaped array;
5)将钠型Y分子筛棒状阵列与NH4NO3离子交换,焙烧,最终得到Y型分子筛棒状阵列结构。5) The sodium-type Y molecular sieve rod array is ion-exchanged with NH 4 NO 3 and calcined to finally obtain the Y-type molecular sieve rod-like array structure.
所述的多级结构分子筛棒状阵列转化甲醇制备芳烃的方法,负载3%锌后,在450-500℃下,甲醇重量空速0.5-50h-1下,反应40小时内,所得甲醇平均转化率95-100%,芳烃总碳基质量收率75-80%。In the method for preparing aromatics by converting methanol into aromatics with a rod-shaped array of molecular sieves with a multi-level structure, after loading 3% zinc, at 450-500°C and at a methanol weight space velocity of 0.5-50h -1 , the average conversion rate of methanol obtained within 40 hours of reaction is 95-100%, and the total carbon-based mass yield of aromatic hydrocarbons is 75-80%.
本发明的有益效果为:The beneficial effects of the present invention are:
本发明使用的晶种导向与蒸汽辅助的方法简单,适应范围广,可以制备得到ZSM-5型棒状阵列结构、β型分子筛棒状阵列结构及Y型分子筛棒状阵列结构,比目前在水溶液中制备相应分子筛的方法成本低60-80%。The seed crystal guiding and steam-assisted methods used in the present invention are simple and widely applicable, and can prepare ZSM-5 rod-shaped array structures, β-type molecular sieve rod-shaped array structures, and Y-type molecular sieve rod-shaped array structures, which are better than those prepared in aqueous solution at present. The molecular sieve approach costs 60-80% less.
本发明是以AAO作为模板,所形成的分子筛具有三维有序大孔结构。The invention uses AAO as a template, and the formed molecular sieve has a three-dimensional ordered macropore structure.
本发明所用AAO模板大孔之间相互联通,所形成的分子筛棒状结构之间能够实现有效的连接,构成一个整体式结构。The macropores of the AAO template used in the present invention are interconnected, and the formed molecular sieve rod-like structures can be effectively connected to form an integral structure.
与原来的各类多级结构分子筛的制备方法相比,本发明可以制备硅铝比更低的多级结构,具有更强的酸性,使用范围更广。Compared with the original preparation methods of various molecular sieves with multi-level structures, the present invention can prepare multi-level structures with lower silicon-aluminum ratio, has stronger acidity and wider application range.
附图说明Description of drawings
图1为实施例1制备的ZSM-5分子筛棒状阵列结构。Fig. 1 is the ZSM-5 molecular sieve rod array structure prepared in Example 1.
具体实施方式detailed description
下面结合实施例对本发明做详细描述。The present invention will be described in detail below in conjunction with the embodiments.
实施例1Example 1
ZSM-5分子筛棒状阵列结构的制备方法,包括如下步骤:The preparation method of ZSM-5 molecular sieve rod-like array structure comprises the steps:
1)将乙醇、0.3mol·L-1的HNO3和正硅酸乙酯以质量比例1:0.2:1混合,室温搅拌形成溶胶,将AAO膜浸渍到溶胶当中完全浸润;然后老化、焙烧,在AAO孔壁上形成SiO2空心管SiO2/AAO;1) Mix ethanol, 0.3mol L -1 HNO 3 and ethyl orthosilicate at a mass ratio of 1:0.2:1, stir at room temperature to form a sol, and soak the AAO film into the sol to completely infiltrate; then aging, roasting, and A SiO 2 hollow tube SiO 2 /AAO is formed on the AAO pore wall;
2)将10wt%四丙基氢氧化铵溶液与正硅酸乙酯以质量比例1:0.3混合,加热预晶化,得到ZSM-5分子筛晶种;2) Mix 10wt% tetrapropylammonium hydroxide solution with ethyl orthosilicate at a mass ratio of 1:0.3, heat and precrystallize to obtain ZSM-5 molecular sieve seed crystals;
3)将ZSM-5分子筛晶种、SiO2空心管SiO2/AAO与偏铝酸钠以质量比例0.1:5:0.04混合,烘干,得到样品;3) Mix ZSM-5 molecular sieve seed crystals, SiO 2 hollow tube SiO 2 /AAO and sodium metaaluminate at a mass ratio of 0.1:5:0.04, and dry to obtain a sample;
4)在一个带聚四氟乙烯内衬的水热釜中放置一个支架,并倒入水,控制水的加入量只淹入支架,在支架上方放置一个小容器,将步骤3)所得样品放入小容器中,使水不与样品直接接触;在100℃下晶化,冷却、过滤;将产品洗涤、干燥、焙烧;使用HCl溶解AAO,去离子水洗涤,得到钠型ZSM-5多级结构分子筛棒状阵列。4) Place a support in a hydrothermal kettle with a polytetrafluoroethylene liner, and pour water, control the amount of water added to only submerge the support, place a small container above the support, and put the sample obtained in step 3) Put it into a small container so that the water does not come into direct contact with the sample; crystallize at 100°C, cool, and filter; wash, dry, and roast the product; dissolve AAO with HCl, wash with deionized water, and obtain sodium ZSM-5 multi-stage Structural molecular sieve rod arrays.
5)将钠型ZSM-5多级结构分子筛棒状阵列用NH4NO3离子交换,焙烧,最终得到ZSM-5分子筛棒状阵列结构,如图1所示。5) The sodium-type ZSM-5 molecular sieve rod array with multi-level structure was ion-exchanged with NH 4 NO 3 and calcined to finally obtain the ZSM-5 molecular sieve rod array structure, as shown in FIG. 1 .
本实施例的有益效果:所得ZSM-5分子筛棒状阵列结构,在ZSM-5空心分子筛上负载3%锌后,在475℃下,甲醇重量空速0.8h-1下,反应60小时内,所得甲醇平均转化率95%,芳烃总碳基质量收率60%,对二甲苯收率15%。Beneficial effects of this embodiment: the obtained ZSM-5 molecular sieve rod-like array structure, after loading 3% zinc on the ZSM-5 hollow molecular sieve, at 475 ° C, under the methanol weight space velocity of 0.8h -1 , react within 60 hours, the obtained The average conversion rate of methanol is 95%, the total carbon-based mass yield of aromatics is 60%, and the yield of p-xylene is 15%.
实施例2Example 2
ZSM-5分子筛棒状阵列结构的制备方法,包括如下步骤:The preparation method of ZSM-5 molecular sieve rod-like array structure comprises the steps:
1)将乙醇、0.3mol·L-1的HNO3和正硅酸乙酯以质量比例20:5:30混合,室温搅拌形成溶胶,将AAO膜浸渍到溶胶当中完全浸润;然后老化、焙烧,在AAO孔壁上形成SiO2空心管SiO2/AAO;1) Mix ethanol, 0.3mol L -1 HNO 3 and ethyl orthosilicate at a mass ratio of 20:5:30, stir at room temperature to form a sol, and soak the AAO film into the sol to completely infiltrate; then aging, roasting, and A SiO 2 hollow tube SiO 2 /AAO is formed on the AAO pore wall;
2)将50wt%四丙基氢氧化铵溶液与正硅酸乙酯以质量比例1:5混合,加热预晶化,得到ZSM-5分子筛晶种;2) Mix 50wt% tetrapropylammonium hydroxide solution and ethyl orthosilicate at a mass ratio of 1:5, heat and precrystallize to obtain ZSM-5 molecular sieve seed crystals;
3)将ZSM-5分子筛晶种、SiO2空心管SiO2/AAO与偏铝酸钠以质量比例1:50:1.7混合,烘干,得到样品;3) Mix ZSM-5 molecular sieve seed, SiO 2 hollow tube SiO 2 /AAO and sodium metaaluminate at a mass ratio of 1:50:1.7, and dry to obtain a sample;
4)在一个带聚四氟乙烯内衬的水热釜中放置一个支架,并倒入水,控制水的加入量只淹入支架,在支架上方放置一个小容器,将步骤3)所得样品放入小容器中,使水不与样品直接接触;在120℃下晶化,冷却、过滤;将产品洗涤、干燥、焙烧;使用HCl溶解AAO,去离子水洗涤,得到钠型ZSM-5多级结构分子筛棒状阵列;4) Place a support in a hydrothermal kettle with a polytetrafluoroethylene liner, and pour water, control the amount of water added to only submerge the support, place a small container above the support, and put the sample obtained in step 3) Put it into a small container so that the water does not come into direct contact with the sample; crystallize at 120°C, cool, and filter; wash, dry, and roast the product; dissolve AAO with HCl, wash with deionized water, and obtain sodium ZSM-5 multistage Structural molecular sieve rod array;
5)将钠型ZSM-5多级结构分子筛棒状阵列用NH4NO3离子交换,焙烧,最终得到ZSM-5分子筛棒状阵列结构。5) The sodium-type ZSM-5 molecular sieve rod-like array with multi-level structure is ion-exchanged with NH 4 NO 3 and calcined to finally obtain the ZSM-5 molecular sieve rod-like array structure.
本实施例的有益效果:在ZSM-5空心分子筛上负载3%锌后,在475℃下,甲醇重量空速0.8h-1下,反应60小时内,所得甲醇平均转化率95%,芳烃总碳基质量收率60%,对二甲苯收率15%。Beneficial effects of this embodiment: after loading 3% zinc on the ZSM-5 hollow molecular sieve, at 475°C, under the methanol weight space velocity of 0.8h -1 , within 60 hours of reaction, the average conversion rate of methanol obtained is 95%, and the total aromatics The mass yield of carbon base is 60%, and the yield of p-xylene is 15%.
实施例3Example 3
ZSM-5分子筛棒状阵列结构的制备方法,包括如下步骤:The preparation method of ZSM-5 molecular sieve rod-like array structure comprises the steps:
1)将乙醇、0.3mol·L-1的HNO3和正硅酸乙酯以质量比例5:4:5混合,室温搅拌形成溶胶,将AAO膜浸渍到溶胶当中完全浸润;然后老化、焙烧,在AAO孔壁上形成SiO2空心管SiO2/AAO;1) Mix ethanol, 0.3mol L -1 HNO 3 and ethyl orthosilicate at a mass ratio of 5:4:5, stir at room temperature to form a sol, and soak the AAO film into the sol to completely infiltrate; then aging, roasting, and A SiO 2 hollow tube SiO 2 /AAO is formed on the AAO pore wall;
2)将20wt%四丙基氢氧化铵溶液与正硅酸乙酯以质量比例1:1混合,加热预晶化,得到ZSM-5分子筛晶种;2) Mix 20wt% tetrapropylammonium hydroxide solution and ethyl orthosilicate at a mass ratio of 1:1, heat and precrystallize to obtain ZSM-5 molecular sieve seed crystals;
3)将ZSM-5分子筛晶种、SiO2空心管SiO2/AAO与偏铝酸钠以质量比例0.2:10:0.2混合,烘干,得到样品;3) Mix ZSM-5 molecular sieve seed crystals, SiO 2 hollow tube SiO 2 /AAO and sodium metaaluminate at a mass ratio of 0.2:10:0.2, and dry to obtain a sample;
4)在一个带聚四氟乙烯内衬的水热釜中放置一个支架,并倒入水,控制水的加入量只淹入支架,在支架上方放置一个小容器,将步骤3)所得样品放入小容器中,使水不与样品直接接触;在160℃下晶化,冷却、过滤;将产品洗涤、干燥、焙烧;使用HCl溶解AAO,去离子水洗涤,得到钠型ZSM-5多级结构分子筛棒状阵列;4) Place a support in a hydrothermal kettle with a polytetrafluoroethylene liner, and pour water, control the amount of water added to only submerge the support, place a small container above the support, and put the sample obtained in step 3) Put it into a small container, so that the water does not directly contact with the sample; crystallize at 160 ° C, cool, filter; wash, dry, and roast the product; dissolve AAO with HCl, wash with deionized water, and obtain sodium ZSM-5 multi-stage Structural molecular sieve rod array;
5)将钠型ZSM-5多级结构分子筛棒状阵列用NH4NO3离子交换,焙烧,最终得到ZSM-5分子筛棒状阵列结构。5) The sodium-type ZSM-5 molecular sieve rod-like array with multi-level structure is ion-exchanged with NH 4 NO 3 and calcined to finally obtain the ZSM-5 molecular sieve rod-like array structure.
本实施例的有益效果:在ZSM-5空心分子筛上负载3%锌后,在475℃下,甲醇重量空速0.8h-1下,反应60小时内,所得甲醇平均转化率95%,芳烃总碳基质量收率60%,对二甲苯收率15%。Beneficial effects of this embodiment: after loading 3% zinc on the ZSM-5 hollow molecular sieve, at 475°C, under the methanol weight space velocity of 0.8h -1 , within 60 hours of reaction, the average conversion rate of methanol obtained is 95%, and the total aromatics The mass yield of carbon base is 60%, and the yield of p-xylene is 15%.
实施例4Example 4
ZSM-5分子筛棒状阵列结构的制备方法,包括如下步骤:The preparation method of ZSM-5 molecular sieve rod-like array structure comprises the steps:
1)将乙醇、0.3mol·L-1的HNO3和正硅酸乙酯以质量比例15:0.5:25混合,室温搅拌形成溶胶,将AAO膜浸渍到溶胶当中完全浸润;然后老化、焙烧,在AAO孔壁上形成SiO2空心管SiO2/AAO;1) Mix ethanol, 0.3mol L -1 HNO 3 and ethyl orthosilicate at a mass ratio of 15:0.5:25, stir at room temperature to form a sol, and soak the AAO film into the sol to completely infiltrate; then aging, roasting, A SiO 2 hollow tube SiO 2 /AAO is formed on the AAO pore wall;
2)将40wt%四丙基氢氧化铵溶液与正硅酸乙酯以质量比例1:3混合,加热预晶化,得到ZSM-5分子筛晶种;2) Mix 40wt% tetrapropylammonium hydroxide solution and ethyl orthosilicate at a mass ratio of 1:3, heat and precrystallize to obtain ZSM-5 molecular sieve seed crystals;
3)将ZSM-5分子筛晶种、SiO2空心管SiO2/AAO与偏铝酸钠以质量比例0.5:25:1.5混合,烘干,得到样品;3) Mix ZSM-5 molecular sieve seed crystals, SiO 2 hollow tube SiO 2 /AAO and sodium metaaluminate at a mass ratio of 0.5:25:1.5, and dry to obtain a sample;
4)在一个带聚四氟乙烯内衬的水热釜中放置一个支架,并倒入水,控制水的加入量只淹入支架,在支架上方放置一个小容器,将步骤3)所得样品放入小容器中,使水不与样品直接接触;在200℃下晶化,冷却、过滤;将产品洗涤、干燥、焙烧;使用HCl溶解AAO,去离子水洗涤,得到钠型ZSM-5多级结构分子筛棒状阵列;4) Place a support in a hydrothermal kettle with a polytetrafluoroethylene liner, and pour water, control the amount of water added to only submerge the support, place a small container above the support, and put the sample obtained in step 3) Put it into a small container so that the water does not come into direct contact with the sample; crystallize at 200 ° C, cool, and filter; wash, dry, and roast the product; dissolve AAO with HCl, wash with deionized water, and obtain sodium ZSM-5 multi-stage Structural molecular sieve rod array;
5)将钠型ZSM-5多级结构分子筛棒状阵列用NH4NO3离子交换,焙烧,最终得到ZSM-5分子筛棒状阵列结构。5) The sodium-type ZSM-5 molecular sieve rod-like array with multi-level structure is ion-exchanged with NH 4 NO 3 and calcined to finally obtain the ZSM-5 molecular sieve rod-like array structure.
本实施例的有益效果:在ZSM-5空心分子筛上负载3%锌后,在475℃下,甲醇重量空速0.8h-1下,反应60小时内,所得甲醇平均转化率95%,芳烃总碳基质量收率60%,对二甲苯收率15%。Beneficial effects of this embodiment: after loading 3% zinc on the ZSM-5 hollow molecular sieve, at 475°C, under the methanol weight space velocity of 0.8h -1 , within 60 hours of reaction, the average conversion rate of methanol obtained is 95%, and the total aromatics The mass yield of carbon base is 60%, and the yield of p-xylene is 15%.
实施例5Example 5
β型分子筛棒状阵列结构的制备方法,包括如下步骤:A method for preparing a rod-like array structure of a β-type molecular sieve, comprising the steps of:
1)将乙醇、0.3mol·L-1的HNO3和正硅酸乙酯以质量比例1:0.2:1混合,室温搅拌形成溶胶,将AAO膜浸渍到溶胶当中完全浸润;然后老化、焙烧,在AAO孔壁上形成SiO2空心管SiO2/AAO;1) Mix ethanol, 0.3mol L -1 HNO 3 and ethyl orthosilicate at a mass ratio of 1:0.2:1, stir at room temperature to form a sol, and soak the AAO film into the sol to completely infiltrate; then aging, roasting, and A SiO 2 hollow tube SiO 2 /AAO is formed on the AAO pore wall;
2)将四乙基氢氧化铵、Al(NO3)3.9H2O和正硅酸乙酯以质量比例50:0:50混合,加热干燥,得到β型分子筛晶种;2) Mix tetraethylammonium hydroxide, Al(NO 3 ) 3 .9H 2 O and ethyl orthosilicate at a mass ratio of 50:0:50, heat and dry to obtain β-type molecular sieve seed crystals;
3)将β型分子筛晶种、SiO2空心管SiO2/AAO与偏铝酸钠以质量比例0.02:5:0.003混合,烘干,得到样品;3) Mix β-type molecular sieve seed crystals, SiO 2 hollow tube SiO 2 /AAO and sodium metaaluminate at a mass ratio of 0.02:5:0.003, and dry to obtain a sample;
4)在一个带聚四氟乙烯内衬的水热釜中放置一个支架,并倒入水,控制水的加入量只淹入支架,在支架上方放置一个小容器,将步骤3)所得样品放入小容器中,使水不与样品直接接触;在130℃下晶化,冷却、过滤、干燥、焙烧,使用HCl溶解AAO,去离子水洗涤,得到钠型β型分子筛棒状阵列;4) Place a support in a hydrothermal kettle with a polytetrafluoroethylene liner, and pour water, control the amount of water added to only submerge the support, place a small container above the support, and put the sample obtained in step 3) Put it into a small container so that the water does not come into direct contact with the sample; crystallize at 130°C, cool, filter, dry, and roast, dissolve AAO with HCl, and wash with deionized water to obtain a rod-shaped array of sodium-type β-type molecular sieves;
5)将钠型β型分子筛棒状阵列与NH4NO3离子交换,焙烧,得到β型分子筛棒状阵列结构。5) The sodium-type β-type molecular sieve rod-like array is ion-exchanged with NH 4 NO 3 , and calcined to obtain a β-type molecular sieve rod-like array structure.
实施例6Example 6
β型分子筛棒状阵列结构的制备方法,包括如下步骤:A method for preparing a rod-like array structure of a β-type molecular sieve, comprising the steps of:
1)将乙醇、0.3mol·L-1的HNO3和正硅酸乙酯以质量比例20:5:30混合,室温搅拌形成溶胶,将AAO膜浸渍到溶胶当中完全浸润;然后老化、焙烧,在AAO孔壁上形成SiO2空心管SiO2/AAO;1) Mix ethanol, 0.3mol L -1 HNO 3 and ethyl orthosilicate at a mass ratio of 20:5:30, stir at room temperature to form a sol, and soak the AAO film into the sol to completely infiltrate; then aging, roasting, and A SiO 2 hollow tube SiO 2 /AAO is formed on the AAO pore wall;
2)将四乙基氢氧化铵、Al(NO3)3.9H2O和正硅酸乙酯以质量比例100:5:100混合,加热干燥,得到β型分子筛晶种;2) Mix tetraethylammonium hydroxide, Al(NO 3 ) 3 .9H 2 O and ethyl orthosilicate at a mass ratio of 100:5:100, heat and dry to obtain β-type molecular sieve seed crystals;
3)将β型分子筛晶种、SiO2空心管SiO2/AAO与偏铝酸钠以质量比例1:50:1.5混合,烘干,得到样品;3) Mix β-type molecular sieve seed crystals, SiO 2 hollow tube SiO 2 /AAO and sodium metaaluminate at a mass ratio of 1:50:1.5, and dry to obtain a sample;
4)在一个带聚四氟乙烯内衬的水热釜中放置一个支架,并倒入水,控制水的加入量只淹入支架,在支架上方放置一个小容器,将步骤3)所得样品放入小容器中,使水不与样品直接接触;在180℃下晶化,冷却、过滤、干燥、焙烧,使用HCl溶解AAO,去离子水洗涤,得到钠型β型分子筛棒状阵列;4) Place a support in a hydrothermal kettle with a polytetrafluoroethylene liner, and pour water, control the amount of water added to only submerge the support, place a small container above the support, and put the sample obtained in step 3) Put it into a small container so that the water does not come into direct contact with the sample; crystallize at 180°C, cool, filter, dry, and roast, dissolve AAO with HCl, and wash with deionized water to obtain a rod-shaped array of sodium-type β-type molecular sieves;
5)将钠型β型分子筛棒状阵列与NH4NO3离子交换,焙烧,得到β型分子筛棒状阵列结构。5) The sodium-type β-type molecular sieve rod-like array is ion-exchanged with NH 4 NO 3 , and calcined to obtain a β-type molecular sieve rod-like array structure.
实施例7Example 7
β型分子筛棒状阵列结构的制备方法,包括如下步骤:A method for preparing a rod-like array structure of a β-type molecular sieve, comprising the steps of:
1)将乙醇、0.3mol·L-1的HNO3和正硅酸乙酯以质量比例5:4:2混合,室温搅拌形成溶胶,将AAO膜浸渍到溶胶当中完全浸润;然后老化、焙烧,在AAO孔壁上形成SiO2空心管SiO2/AAO;1) Mix ethanol, 0.3mol L -1 HNO 3 and ethyl orthosilicate at a mass ratio of 5:4:2, stir at room temperature to form a sol, and soak the AAO film into the sol to completely infiltrate; then aging, roasting, and A SiO 2 hollow tube SiO 2 /AAO is formed on the AAO pore wall;
2)将四乙基氢氧化铵、Al(NO3)3.9H2O和正硅酸乙酯以质量比例60:1:70混合,加热干燥,得到β型分子筛晶种;2) Mix tetraethylammonium hydroxide, Al(NO 3 ) 3 .9H 2 O and ethyl orthosilicate at a mass ratio of 60:1:70, heat and dry to obtain β-type molecular sieve seed crystals;
3)将β型分子筛晶种、SiO2空心管SiO2/AAO与偏铝酸钠以质量比例0.1:40:0.012混合,烘干,得到样品;3) Mix β-type molecular sieve seed crystals, SiO 2 hollow tube SiO 2 /AAO and sodium metaaluminate at a mass ratio of 0.1:40:0.012, and dry to obtain a sample;
4)在一个带聚四氟乙烯内衬的水热釜中放置一个支架,并倒入水,控制水的加入量只淹入支架,在支架上方放置一个小容器,将步骤3)所得样品放入小容器中,使水不与样品直接接触;在150℃下晶化,冷却、过滤、干燥、焙烧,使用HCl溶解AAO,去离子水洗涤,得到钠型β型分子筛棒状阵列;4) Place a support in a hydrothermal kettle with a polytetrafluoroethylene liner, and pour water, control the amount of water added to only submerge the support, place a small container above the support, and put the sample obtained in step 3) Put it into a small container so that the water does not come into direct contact with the sample; crystallize at 150°C, cool, filter, dry, and roast, dissolve AAO with HCl, and wash with deionized water to obtain a rod-shaped array of sodium-type β-type molecular sieves;
5)将钠型β型分子筛棒状阵列与NH4NO3离子交换,焙烧,得到β型分子筛棒状阵列结构。5) The sodium-type β-type molecular sieve rod-like array is ion-exchanged with NH 4 NO 3 , and calcined to obtain a β-type molecular sieve rod-like array structure.
实施例8Example 8
β型分子筛棒状阵列结构的制备方法,包括如下步骤:A method for preparing a rod-like array structure of a β-type molecular sieve, comprising the steps of:
1)将乙醇、0.3mol·L-1的HNO3和正硅酸乙酯以质量比例15:1:20混合,室温搅拌形成溶胶,将AAO膜浸渍到溶胶当中完全浸润;然后老化、焙烧,在AAO孔壁上形成SiO2空心管SiO2/AAO;1) Mix ethanol, 0.3mol L -1 HNO 3 and ethyl orthosilicate at a mass ratio of 15:1:20, stir at room temperature to form a sol, and soak the AAO film into the sol to completely infiltrate; then aging, roasting, and A SiO 2 hollow tube SiO 2 /AAO is formed on the AAO pore wall;
2)将四乙基氢氧化铵、Al(NO3)3.9H2O和正硅酸乙酯以质量比例80:4:80混合,加热干燥,得到β型分子筛晶种;2) Mix tetraethylammonium hydroxide, Al(NO 3 ) 3 .9H 2 O and ethyl orthosilicate at a mass ratio of 80:4:80, heat and dry to obtain β-type molecular sieve seed crystals;
3)将β型分子筛晶种、SiO2空心管SiO2/AAO与偏铝酸钠以质量比例0.8:40:1.0混合,烘干,得到样品;3) Mix β-type molecular sieve seed crystals, SiO 2 hollow tube SiO 2 /AAO and sodium metaaluminate at a mass ratio of 0.8:40:1.0, and dry to obtain a sample;
4)在一个带聚四氟乙烯内衬的水热釜中放置一个支架,并倒入水,控制水的加入量只淹入支架,在支架上方放置一个小容器,将步骤3)所得样品放入小容器中,使水不与样品直接接触;在160℃下晶化,冷却、过滤、干燥、焙烧,使用HCl溶解AAO,去离子水洗涤,得到钠型β型分子筛棒状阵列;4) Place a support in a hydrothermal kettle with a polytetrafluoroethylene liner, and pour water, control the amount of water added to only submerge the support, place a small container above the support, and put the sample obtained in step 3) Put it into a small container so that the water does not come into direct contact with the sample; crystallize at 160°C, cool, filter, dry, and roast, dissolve AAO with HCl, and wash with deionized water to obtain a rod-shaped array of sodium-type β-type molecular sieves;
5)将钠型β型分子筛棒状阵列与NH4NO3离子交换,焙烧,得到β型分子筛棒状阵列结构。5) The sodium-type β-type molecular sieve rod-like array is ion-exchanged with NH 4 NO 3 , and calcined to obtain a β-type molecular sieve rod-like array structure.
实施例9Example 9
Y型分子筛棒状阵列结构的制备方法,包括如下步骤:A method for preparing a Y-type molecular sieve rod-like array structure, comprising the steps of:
1)将乙醇、0.3mol·L-1的HNO3和正硅酸乙酯以质量比例1:0.2:1混合,室温搅拌形成溶胶,将AAO膜浸渍到溶胶当中完全浸润;然后老化、焙烧,在AAO孔壁上形成SiO2空心管SiO2/AAO;1) Mix ethanol, 0.3mol L -1 HNO 3 and ethyl orthosilicate at a mass ratio of 1:0.2:1, stir at room temperature to form a sol, and soak the AAO film into the sol to completely infiltrate; then aging, roasting, and A SiO 2 hollow tube SiO 2 /AAO is formed on the AAO pore wall;
2)将NaOH、NaAlO2、Na2SiO3·9H2O与H2O以质量比例1:2:70:40混合,干燥处理,得到Y分子筛晶种;2) NaOH, NaAlO 2 , Na 2 SiO 3 .9H 2 O and H 2 O were mixed in a mass ratio of 1:2:70:40, and dried to obtain Y molecular sieve seed crystals;
3)将Y分子筛晶种、SiO2空心管SiO2/AAO与偏铝酸钠以质量比例0.02:5:0.02混合,烘干,得到样品;3) Mix Y molecular sieve seed crystals, SiO 2 hollow tube SiO 2 /AAO and sodium metaaluminate at a mass ratio of 0.02:5:0.02, and dry to obtain a sample;
4)在一个带聚四氟乙烯内衬的水热釜中放置一个支架,并倒入水,控制水的加入量只淹入支架,在支架上方放置一个小容器,将步骤3)所得样品放入小容器中,使水不与样品直接接触;在100℃下晶化,冷却、过滤、干燥、焙烧;使用HCl溶解AAO,去离子水洗涤,得到钠型Y分子筛棒状阵列;4) Place a support in a hydrothermal kettle with a polytetrafluoroethylene liner, and pour water, control the amount of water added to only submerge the support, place a small container above the support, and put the sample obtained in step 3) Put it into a small container so that the water does not come into direct contact with the sample; crystallize at 100°C, cool, filter, dry, and roast; dissolve AAO with HCl, wash with deionized water, and obtain a rod-shaped array of sodium Y molecular sieves;
5)将钠型Y分子筛棒状阵列与NH4NO3离子交换,焙烧,最终得到Y型分子筛棒状阵列结构。5) The sodium-type Y molecular sieve rod array is ion-exchanged with NH 4 NO 3 and calcined to finally obtain the Y-type molecular sieve rod-like array structure.
实施例10Example 10
Y型分子筛棒状阵列结构的制备方法,包括如下步骤:A method for preparing a Y-type molecular sieve rod-like array structure, comprising the steps of:
1)将乙醇、0.3mol·L-1的HNO3和正硅酸乙酯以质量比例20:5:30混合,室温搅拌形成溶胶,将AAO膜浸渍到溶胶当中完全浸润;然后老化、焙烧,在AAO孔壁上形成SiO2空心管SiO2/AAO;1) Mix ethanol, 0.3mol L -1 HNO 3 and ethyl orthosilicate at a mass ratio of 20:5:30, stir at room temperature to form a sol, and soak the AAO film into the sol to completely infiltrate; then aging, roasting, and A SiO 2 hollow tube SiO 2 /AAO is formed on the AAO pore wall;
2)将NaOH、NaAlO2、Na2SiO3·9H2O与H2O以质量比例2:4:90:80混合,干燥处理,得到Y分子筛晶种;2) NaOH, NaAlO 2 , Na 2 SiO 3 .9H 2 O and H 2 O were mixed in a mass ratio of 2:4:90:80, and dried to obtain Y molecular sieve seed crystals;
3)将Y分子筛晶种、SiO2空心管SiO2/AAO与偏铝酸钠以质量比例1:50:1混合,烘干,得到样品;3) Mix Y molecular sieve seed crystals, SiO 2 hollow tube SiO 2 /AAO and sodium metaaluminate at a mass ratio of 1:50:1, and dry to obtain a sample;
4)在一个带聚四氟乙烯内衬的水热釜中放置一个支架,并倒入水,控制水的加入量只淹入支架,在支架上方放置一个小容器,将步骤3)所得样品放入小容器中,使水不与样品直接接触;在130℃下晶化,冷却、过滤、干燥、焙烧;使用HCl溶解AAO,去离子水洗涤,得到钠型Y分子筛棒状阵列;4) Place a support in a hydrothermal kettle with a polytetrafluoroethylene liner, and pour water, control the amount of water added to only submerge the support, place a small container above the support, and put the sample obtained in step 3) Put it into a small container so that the water does not come into direct contact with the sample; crystallize at 130 ° C, cool, filter, dry, and roast; use HCl to dissolve AAO, wash with deionized water, and obtain a sodium-type Y molecular sieve rod-shaped array;
5)将钠型Y分子筛棒状阵列与NH4NO3离子交换,焙烧,最终得到Y型分子筛棒状阵列结构。5) The sodium-type Y molecular sieve rod array is ion-exchanged with NH 4 NO 3 and calcined to finally obtain the Y-type molecular sieve rod-like array structure.
实施例11Example 11
Y型分子筛棒状阵列结构的制备方法,包括如下步骤:A method for preparing a Y-type molecular sieve rod-like array structure, comprising the steps of:
1)将乙醇、0.3mol·L-1的HNO3和正硅酸乙酯以质量比例1:4:5混合,室温搅拌形成溶胶,将AAO膜浸渍到溶胶当中完全浸润;然后老化、焙烧,在AAO孔壁上形成SiO2空心管SiO2/AAO;1) Mix ethanol, 0.3mol L -1 HNO 3 and ethyl orthosilicate at a mass ratio of 1:4:5, stir at room temperature to form a sol, and soak the AAO film into the sol to completely infiltrate; then aging, roasting, and A SiO 2 hollow tube SiO 2 /AAO is formed on the AAO pore wall;
2)将NaOH、NaAlO2、Na2SiO3·9H2O与H2O以质量比例1.5:3:75:50混合,干燥处理,得到Y分子筛晶种;2) NaOH, NaAlO 2 , Na 2 SiO 3 .9H 2 O and H 2 O were mixed at a mass ratio of 1.5:3:75:50, and dried to obtain Y molecular sieve seed crystals;
3)将Y分子筛晶种、SiO2空心管SiO2/AAO与偏铝酸钠以质量比例0.05:10:0.1混合,烘干,得到样品;3) Mix Y molecular sieve seed crystals, SiO 2 hollow tube SiO 2 /AAO and sodium metaaluminate at a mass ratio of 0.05:10:0.1, and dry to obtain a sample;
4)在一个带聚四氟乙烯内衬的水热釜中放置一个支架,并倒入水,控制水的加入量只淹入支架,在支架上方放置一个小容器,将步骤3)所得样品放入小容器中,使水不与样品直接接触;在150℃下晶化,冷却、过滤、干燥、焙烧;使用HCl溶解AAO,去离子水洗涤,得到钠型Y分子筛棒状阵列;4) Place a support in a hydrothermal kettle with a polytetrafluoroethylene liner, and pour water, control the amount of water added to only submerge the support, place a small container above the support, and put the sample obtained in step 3) Put it into a small container so that the water does not come into direct contact with the sample; crystallize at 150°C, cool, filter, dry, and roast; dissolve AAO with HCl, wash with deionized water, and obtain a rod-shaped array of sodium Y molecular sieves;
5)将钠型Y分子筛棒状阵列与NH4NO3离子交换,焙烧,最终得到Y型分子筛棒状阵列结构。5) The sodium-type Y molecular sieve rod array is ion-exchanged with NH 4 NO 3 and calcined to finally obtain the Y-type molecular sieve rod-like array structure.
实施例12Example 12
Y型分子筛棒状阵列结构的制备方法,包括如下步骤:A method for preparing a Y-type molecular sieve rod-like array structure, comprising the steps of:
1)将乙醇、0.3mol·L-1的HNO3和正硅酸乙酯以质量比例15:4:25混合,室温搅拌形成溶胶,将AAO膜浸渍到溶胶当中完全浸润;然后老化、焙烧,在AAO孔壁上形成SiO2空心管SiO2/AAO;1) Mix ethanol, 0.3mol L -1 HNO 3 and ethyl orthosilicate at a mass ratio of 15:4:25, stir at room temperature to form a sol, and soak the AAO film into the sol to completely infiltrate; then aging, roasting, and A SiO 2 hollow tube SiO 2 /AAO is formed on the AAO pore wall;
2)将NaOH、NaAlO2、Na2SiO3·9H2O与H2O以质量比例1.5:3.5:85:70混合,干燥处理,得到Y分子筛晶种;2) NaOH, NaAlO 2 , Na 2 SiO 3 .9H 2 O and H 2 O were mixed at a mass ratio of 1.5:3.5:85:70, and dried to obtain Y molecular sieve seed crystals;
3)将Y分子筛晶种、SiO2空心管SiO2/AAO与偏铝酸钠以质量比例0.8:48:0.8混合,烘干,得到样品;3) Mix Y molecular sieve seed crystals, SiO 2 hollow tube SiO 2 /AAO and sodium metaaluminate at a mass ratio of 0.8:48:0.8, and dry to obtain a sample;
4)在一个带聚四氟乙烯内衬的水热釜中放置一个支架,并倒入水,控制水的加入量只淹入支架,在支架上方放置一个小容器,将步骤3)所得样品放入小容器中,使水不与样品直接接触;在200℃下晶化,冷却、过滤、干燥、焙烧;使用HCl溶解AAO,去离子水洗涤,得到钠型Y分子筛棒状阵列;4) Place a support in a hydrothermal kettle with a polytetrafluoroethylene liner, and pour water, control the amount of water added to only submerge the support, place a small container above the support, and put the sample obtained in step 3) Put it into a small container so that the water does not come into direct contact with the sample; crystallize at 200°C, cool, filter, dry, and roast; dissolve AAO with HCl, wash with deionized water, and obtain a rod-shaped array of sodium Y molecular sieves;
5)将钠型Y分子筛棒状阵列与NH4NO3离子交换,焙烧,最终得到Y型分子筛棒状阵列结构。5) The sodium-type Y molecular sieve rod array is ion-exchanged with NH 4 NO 3 and calcined to finally obtain the Y-type molecular sieve rod-like array structure.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610404840.3A CN106082264A (en) | 2016-06-08 | 2016-06-08 | A kind of multilevel hierarchy molecular sieve bar array, preparation method and applications |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610404840.3A CN106082264A (en) | 2016-06-08 | 2016-06-08 | A kind of multilevel hierarchy molecular sieve bar array, preparation method and applications |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106082264A true CN106082264A (en) | 2016-11-09 |
Family
ID=57228344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610404840.3A Pending CN106082264A (en) | 2016-06-08 | 2016-06-08 | A kind of multilevel hierarchy molecular sieve bar array, preparation method and applications |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106082264A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109354037A (en) * | 2018-11-30 | 2019-02-19 | 太原理工大学 | A kind of HZSM-5 molecular sieve with nanorod binding structure and its preparation method and application |
CN112624142A (en) * | 2021-01-19 | 2021-04-09 | 吉林大学 | Preparation method of nano hierarchical pore Beta molecular sieve |
CN114210212A (en) * | 2021-12-21 | 2022-03-22 | 江西师范大学 | A kind of L-type molecular sieve membrane and its preparation method and application in desalination |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101389374A (en) * | 2006-02-21 | 2009-03-18 | 香港科技大学 | Molecular sieve and zeolite microneedles and preparation thereof |
US20090243103A1 (en) * | 2008-02-15 | 2009-10-01 | Interuniversitair Microelektronica Centrum Vzw (Imec) | Synthesis of zeolite crystals and formation of carbon nanostructures in patterned structures |
CN103979570A (en) * | 2014-05-14 | 2014-08-13 | 武汉理工大学 | Synthetic method of novel ordered macroporous-mesoporous-microporous hierarchical porous silicon-aluminium molecular sieve |
CN105271285A (en) * | 2015-09-21 | 2016-01-27 | 清华大学 | Multi-stage structure molecular sieve hollow microsphere, preparation methods and application |
-
2016
- 2016-06-08 CN CN201610404840.3A patent/CN106082264A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101389374A (en) * | 2006-02-21 | 2009-03-18 | 香港科技大学 | Molecular sieve and zeolite microneedles and preparation thereof |
US20090243103A1 (en) * | 2008-02-15 | 2009-10-01 | Interuniversitair Microelektronica Centrum Vzw (Imec) | Synthesis of zeolite crystals and formation of carbon nanostructures in patterned structures |
CN103979570A (en) * | 2014-05-14 | 2014-08-13 | 武汉理工大学 | Synthetic method of novel ordered macroporous-mesoporous-microporous hierarchical porous silicon-aluminium molecular sieve |
CN105271285A (en) * | 2015-09-21 | 2016-01-27 | 清华大学 | Multi-stage structure molecular sieve hollow microsphere, preparation methods and application |
Non-Patent Citations (1)
Title |
---|
NING WANG ET AL: "Fabrication and catalytic properties of three-dimensional ordered zeolite arrays with interconnected micro-meso-macroporous structure", 《JOURNAL OF MATERIALS CHEMISTRY A》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109354037A (en) * | 2018-11-30 | 2019-02-19 | 太原理工大学 | A kind of HZSM-5 molecular sieve with nanorod binding structure and its preparation method and application |
CN109354037B (en) * | 2018-11-30 | 2021-09-24 | 太原理工大学 | A kind of HZSM-5 molecular sieve with nanorod binding structure and its preparation method and application |
CN112624142A (en) * | 2021-01-19 | 2021-04-09 | 吉林大学 | Preparation method of nano hierarchical pore Beta molecular sieve |
CN114210212A (en) * | 2021-12-21 | 2022-03-22 | 江西师范大学 | A kind of L-type molecular sieve membrane and its preparation method and application in desalination |
CN114210212B (en) * | 2021-12-21 | 2023-10-27 | 江西师范大学 | L-shaped molecular sieve membrane, preparation method thereof and application thereof in desalination |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103979570B (en) | The synthetic method of a kind of novel ordered big hole-mesoporous-micropore multi-stage porous Si-Al molecular sieve | |
CN102530980A (en) | Hierarchical zeolite, preparation and application thereof | |
CN108002402B (en) | A kind of medium and micro double-hole MFI nano-molecular sieve with layer cake shape and its preparation method and application | |
CN104043477B (en) | ZSM-5/MCM-48 composite molecular sieve, preparation method and application thereof | |
CN103880036B (en) | Method for synthesizing mesoporous mordenite | |
CN113694961B (en) | A kind of nanometer hierarchical BETA structure molecular sieve catalyst and its preparation method and application | |
CN109850906B (en) | Method for preparing hierarchical pore molecular sieve with nanoparticle close-packed structure by adopting silicon dioxide nano colloidal crystal solid phase conversion method | |
CN105271285B (en) | A kind of multilevel hierarchy molecular sieve tiny balloon, preparation method and applications | |
CN107640776A (en) | A kind of preparation method with micro- meso-hole structure MFI molecular sieves | |
CN106082264A (en) | A kind of multilevel hierarchy molecular sieve bar array, preparation method and applications | |
CN110330029A (en) | A kind of multi-stage porous ZSM-5 zeolite and the preparation method and application thereof | |
CN107089669B (en) | A kind of synthetic method of c-axis oriented Zn-ZSM-5 molecular sieve under the action of external magnetic field | |
CN102976412B (en) | Method for preparing mesoporous LaFeO3 by taking mesoporous carbon and mesoporous silicon dioxide as hard templates | |
CN106904635A (en) | It is a kind of to be aided in by amino acid under dense gel rubber system and be segmented method of the crystallization coordinate system for nano molecular sieve | |
CN106829999A (en) | A kind of bivalve layer molecular sieves of ZSM 5 and preparation method thereof | |
CN103781727A (en) | Process for forming zeolites from homogeneous amorphous silica-alumina | |
CN103922308B (en) | The preparation method of the ordered porous carbon material of N doping honeycomb | |
CN103964458B (en) | Beta zeolite of a kind of high silica alumina ratio multistage pore canal and preparation method thereof | |
CN104828837B (en) | A kind of method of synthesizing submicron NaA molecular sieve | |
CN110372000A (en) | A kind of synthetic method of hierarchical porous structure zeolite nanometer sheet | |
CN107628630B (en) | A kind of hollow B-ZSM-5 molecular sieve and its preparation method and application | |
CN106276957B (en) | A kind of mesoporous multi-stage porous pure silicon molecular sieve Silicalite-1 monocrystalline of ordered big hole-with opal structural and its synthetic method | |
CN106395856B (en) | The method for preparing the hollow molecular sieves of ZSM-5 by hydrothermal recrystallization method | |
CN100406380C (en) | Method for synthesizing ordered mesoporous silica with cationic alkyl glycoside as template | |
CN105621452A (en) | Multistage pore ZSM-5 catalyst for preparing acrolein by glycerol dehydration and preparation method of catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20161109 |
|
WD01 | Invention patent application deemed withdrawn after publication |