CN106075403A - A kind of oral insulin selenium nanometer formulation and preparation method thereof - Google Patents
A kind of oral insulin selenium nanometer formulation and preparation method thereof Download PDFInfo
- Publication number
- CN106075403A CN106075403A CN201610410740.1A CN201610410740A CN106075403A CN 106075403 A CN106075403 A CN 106075403A CN 201610410740 A CN201610410740 A CN 201610410740A CN 106075403 A CN106075403 A CN 106075403A
- Authority
- CN
- China
- Prior art keywords
- insulin
- selenium
- preparation
- chitosan
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011669 selenium Substances 0.000 title claims abstract description 125
- 229910052711 selenium Inorganic materials 0.000 title claims abstract description 125
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 title claims abstract description 124
- 238000002360 preparation method Methods 0.000 title claims abstract description 84
- 239000000203 mixture Substances 0.000 title claims abstract description 7
- 238000009472 formulation Methods 0.000 title abstract description 4
- 229940125395 oral insulin Drugs 0.000 title abstract 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims abstract description 352
- 229940125396 insulin Drugs 0.000 claims abstract description 176
- 102000004877 Insulin Human genes 0.000 claims abstract description 175
- 108090001061 Insulin Proteins 0.000 claims abstract description 175
- 229920001661 Chitosan Polymers 0.000 claims abstract description 62
- 239000002105 nanoparticle Substances 0.000 claims abstract description 40
- 239000000725 suspension Substances 0.000 claims abstract description 19
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 18
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 13
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical group OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 claims description 28
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 19
- 229960003180 glutathione Drugs 0.000 claims description 14
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 claims description 9
- 229930003268 Vitamin C Natural products 0.000 claims description 9
- 230000002378 acidificating effect Effects 0.000 claims description 9
- 235000019154 vitamin C Nutrition 0.000 claims description 9
- 239000011718 vitamin C Substances 0.000 claims description 9
- 108010024636 Glutathione Proteins 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 6
- 239000002244 precipitate Substances 0.000 claims description 6
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 claims description 6
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 4
- 235000018417 cysteine Nutrition 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 150000007522 mineralic acids Chemical class 0.000 claims description 3
- 150000007524 organic acids Chemical class 0.000 claims description 3
- 229940082569 selenite Drugs 0.000 claims description 3
- MCAHWIHFGHIESP-UHFFFAOYSA-L selenite(2-) Chemical compound [O-][Se]([O-])=O MCAHWIHFGHIESP-UHFFFAOYSA-L 0.000 claims description 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims description 2
- 150000001336 alkenes Chemical class 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims description 2
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 claims description 2
- 150000008442 polyphenolic compounds Chemical class 0.000 claims description 2
- 235000013824 polyphenols Nutrition 0.000 claims description 2
- QYHFIVBSNOWOCQ-UHFFFAOYSA-N selenic acid Chemical group O[Se](O)(=O)=O QYHFIVBSNOWOCQ-UHFFFAOYSA-N 0.000 claims description 2
- MCAHWIHFGHIESP-UHFFFAOYSA-N selenous acid Chemical compound O[Se](O)=O MCAHWIHFGHIESP-UHFFFAOYSA-N 0.000 claims description 2
- 150000007513 acids Chemical class 0.000 claims 1
- 150000004676 glycans Chemical class 0.000 claims 1
- 229920005862 polyol Polymers 0.000 claims 1
- 150000003077 polyols Chemical class 0.000 claims 1
- 229920001282 polysaccharide Polymers 0.000 claims 1
- 239000005017 polysaccharide Substances 0.000 claims 1
- 230000002218 hypoglycaemic effect Effects 0.000 abstract description 21
- 206010012601 diabetes mellitus Diseases 0.000 abstract description 18
- 210000004369 blood Anatomy 0.000 abstract description 17
- 239000008280 blood Substances 0.000 abstract description 17
- 239000003814 drug Substances 0.000 abstract description 11
- 210000001035 gastrointestinal tract Anatomy 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 abstract description 3
- 239000008103 glucose Substances 0.000 abstract description 3
- 230000003064 anti-oxidating effect Effects 0.000 abstract description 2
- 230000004071 biological effect Effects 0.000 abstract description 2
- 201000010099 disease Diseases 0.000 abstract description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 2
- 241001197925 Theila Species 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 94
- 229940091258 selenium supplement Drugs 0.000 description 91
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 33
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 23
- 239000011734 sodium Substances 0.000 description 16
- 238000010521 absorption reaction Methods 0.000 description 15
- 241000700159 Rattus Species 0.000 description 11
- 235000011054 acetic acid Nutrition 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 238000011534 incubation Methods 0.000 description 9
- 229940079593 drug Drugs 0.000 description 8
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- PMYDPQQPEAYXKD-UHFFFAOYSA-N 3-hydroxy-n-naphthalen-2-ylnaphthalene-2-carboxamide Chemical compound C1=CC=CC2=CC(NC(=O)C3=CC4=CC=CC=C4C=C3O)=CC=C21 PMYDPQQPEAYXKD-UHFFFAOYSA-N 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 230000002496 gastric effect Effects 0.000 description 5
- 210000004051 gastric juice Anatomy 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 229960001881 sodium selenate Drugs 0.000 description 5
- 239000011655 sodium selenate Substances 0.000 description 5
- 235000018716 sodium selenate Nutrition 0.000 description 5
- 238000010254 subcutaneous injection Methods 0.000 description 5
- 239000007929 subcutaneous injection Substances 0.000 description 5
- 102000057297 Pepsin A Human genes 0.000 description 4
- 108090000284 Pepsin A Proteins 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 229940111202 pepsin Drugs 0.000 description 4
- 230000002195 synergetic effect Effects 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000004153 glucose metabolism Effects 0.000 description 3
- 230000002608 insulinlike Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229940045110 chitosan Drugs 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 239000011573 trace mineral Substances 0.000 description 2
- 235000013619 trace mineral Nutrition 0.000 description 2
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 108091005682 Receptor kinases Proteins 0.000 description 1
- 206010039921 Selenium deficiency Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- BVTBRVFYZUCAKH-UHFFFAOYSA-L disodium selenite Chemical compound [Na+].[Na+].[O-][Se]([O-])=O BVTBRVFYZUCAKH-UHFFFAOYSA-L 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000003209 gene knockout Methods 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000003914 insulin secretion Effects 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 239000002539 nanocarrier Substances 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 239000006070 nanosuspension Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000002357 osmotic agent Substances 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 230000004108 pentose phosphate pathway Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000007180 physiological regulation Effects 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 229960001471 sodium selenite Drugs 0.000 description 1
- 239000011781 sodium selenite Substances 0.000 description 1
- 235000015921 sodium selenite Nutrition 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000032895 transmembrane transport Effects 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/28—Insulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/04—Sulfur, selenium or tellurium; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1652—Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/167—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Diabetes (AREA)
- Inorganic Chemistry (AREA)
- Endocrinology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
技术领域technical field
本发明属于药物制剂技术领域,特别涉及一种能够促进胰岛素口服吸收兼具硒协同降血糖效应的胰岛素口服硒纳米制剂及其制备方法。The invention belongs to the technical field of pharmaceutical preparations, and in particular relates to an oral selenium nano-preparation for insulin capable of promoting oral absorption of insulin and having synergistic hypoglycemic effect of selenium and a preparation method thereof.
背景技术Background technique
糖尿病(diabetes)是严重危害人类健康的常见病、多发病。近年来,糖尿病发病率呈上升趋势,据WTO评估成年人糖尿病发病率高达9%。胰岛素是治疗胰岛素依赖性I型糖尿病的一线药物,也是II型糖尿病中晚期治疗的辅助用药。目前,皮下注射是胰岛素的最基本给药方式。然而,皮下注射途径给药存在诸多弊端,如给药次数频繁、注射疼痛、病人血糖波动大、易产生胰岛素血症和注射部位器质病变。因此,研究和开发胰岛素非注射途径给药制剂对糖尿病治疗具有十分重要的临床意义。Diabetes is a common and frequently-occurring disease that seriously endangers human health. In recent years, the incidence of diabetes has been on the rise. According to WTO estimates, the incidence of diabetes in adults is as high as 9%. Insulin is the first-line drug for the treatment of insulin-dependent type I diabetes, and it is also the adjuvant drug for the treatment of advanced type II diabetes. At present, subcutaneous injection is the most basic way of administering insulin. However, there are many disadvantages in administration via subcutaneous injection, such as frequent administration, painful injections, large blood sugar fluctuations, prone to insulinemia, and organic lesions at the injection site. Therefore, the research and development of insulin non-injection drug delivery preparations has very important clinical significance for the treatment of diabetes.
在各种非注射给药途径中,口服给药是最方便也是最能被病人接受的给药方式。近年来,国内外研究机构和医药公司投入了大量的人力物力从事胰岛素口服给药制剂的研发工作。但由于胰岛素为生物大分子治疗剂,存在(1)胃肠道中不稳定,易被胃肠道中胃蛋白酶和胰蛋白酶消化降解;(2)分子量大、生物膜渗透性差,难以透过胃肠道上皮吸收的问题。因此,口服生物利用度极低,难以通过口服给药达到治疗目的。为改善胰岛素口服给药的生物利用度,各种技术手段被尝试和运用了。常用的改善胰岛素口服吸收的方法有:(1)对胰岛素进行结构修饰提高其胃肠道稳定性,如接入PEG链;(2)采用渗透剂和酶抑制剂与胰岛素供给药,以减少胰岛素的降解和提高其口服吸收量;(3)将胰岛素包封于纳米载体中,如纳米球、纳米囊、脂质体减少胰岛素暴露和改善胃肠道吸收;(4)使用配体或穿膜肽修饰载胰岛素纳米粒,改善胃肠道稳定性和口服吸收。然而,这些制剂手段由于制备复杂或技术缺陷或成本较高,未能取得满意的研究结果。此外,单纯的胰岛素给药仅能起到降血糖效果,不能逆转和修复受损的胰岛β细胞,对糖尿病治疗仅停留在治标的层面。亟需一种既能够实现胰岛素口服传递,又能够起到平衡体内血糖水平,达到糖尿病标本兼治的药物制剂。Among various non-injection routes of administration, oral administration is the most convenient and most accepted by patients. In recent years, domestic and foreign research institutions and pharmaceutical companies have invested a lot of manpower and material resources in the research and development of insulin oral preparations. However, because insulin is a biomacromolecular therapeutic agent, it is (1) unstable in the gastrointestinal tract and easily digested and degraded by pepsin and trypsin in the gastrointestinal tract; (2) has a large molecular weight and poor biofilm permeability, making it difficult to penetrate the gastrointestinal tract The problem of epithelial absorption. Therefore, oral bioavailability is extremely low, and it is difficult to achieve therapeutic purposes through oral administration. To improve the bioavailability of orally administered insulin, various technical means have been tried and used. Commonly used methods to improve the oral absorption of insulin include: (1) modifying the structure of insulin to improve its gastrointestinal stability, such as adding PEG chains; (2) using osmotic agents, enzyme inhibitors and insulin supply drugs to reduce insulin degradation and increase its oral absorption; (3) encapsulate insulin in nanocarriers, such as nanospheres, nanocapsules, liposomes to reduce insulin exposure and improve gastrointestinal absorption; (4) use ligands or transmembrane Peptide-modified insulin-loaded nanoparticles for improved gastrointestinal stability and oral absorption. However, due to the complicated preparation or technical defects or high cost of these preparations, satisfactory research results have not been obtained. In addition, simple insulin administration can only lower blood sugar, but cannot reverse and repair damaged islet β cells, and the treatment of diabetes only stays at the palliative level. There is an urgent need for a pharmaceutical preparation that can not only realize the oral delivery of insulin, but also balance the blood sugar level in the body to treat both the symptoms and root causes of diabetes.
人体内的微量元素与糖尿病之间存在着某种内在联系。研究表明,硒表现出胰岛素受体后激酶抑制作用,具有一定的生理胰岛素样效应,对糖代谢存在调节作用。硒缺乏可引起胰岛β细胞分泌功能改变,胰岛素分泌和储备减少。II型糖尿病患者血清硒均值明显低于健康人,而补硒后血糖水平下降明显。硒是GSH-Px酶系的组成成分,在糖代谢的磷酸戊糖途径中,恢复糖尿病患者肝组织中的GSH-Px活性,从而维护肝的糖代谢平衡。GSH-Px的过氧化物分解功能还可阻止自由基和过氧化物对胰岛素A/B肽间的二硫键破坏,起到增敏胰岛素的作用。因此,将胰岛素与硒剂型化,开发具有促进胰岛素口服吸收和补硒功能的治疗剂对糖尿病的防治具有潜在的应用前景。There is a certain intrinsic connection between trace elements in the human body and diabetes. Studies have shown that selenium exhibits a post-insulin receptor kinase inhibitory effect, has a certain physiological insulin-like effect, and has a regulatory effect on glucose metabolism. Selenium deficiency can cause changes in the secretory function of pancreatic β cells, and reduce insulin secretion and reserves. The mean value of serum selenium in patients with type II diabetes was significantly lower than that of healthy people, and the blood sugar level decreased significantly after selenium supplementation. Selenium is a component of the GSH-Px enzyme system. In the pentose phosphate pathway of glucose metabolism, it restores the GSH-Px activity in the liver tissue of diabetic patients, thereby maintaining the balance of glucose metabolism in the liver. The peroxide decomposition function of GSH-Px can also prevent free radicals and peroxides from destroying the disulfide bond between insulin A/B peptides, and play a role in sensitizing insulin. Therefore, the formulation of insulin and selenium, and the development of therapeutic agents that can promote the oral absorption of insulin and supplement selenium have potential application prospects in the prevention and treatment of diabetes.
发明内容Contents of the invention
为了克服上述现有技术中胰岛素口服生物利用度低、降糖作用弱等缺点与不足,本发明的首要目的在于提供一种能够促进胰岛素口服吸收兼具硒协同降血糖效应的胰岛素口服硒纳米制剂。In order to overcome the disadvantages and deficiencies of low oral bioavailability and weak hypoglycemic effect of insulin in the above-mentioned prior art, the primary purpose of the present invention is to provide an oral selenium nano-preparation of insulin that can promote the oral absorption of insulin and has synergistic hypoglycemic effect of selenium .
本发明的胰岛素口服硒纳米制剂由胰岛素、壳聚糖和硒组成,其中,胰岛素包封于由壳聚糖和硒形成的纳米粒中。The insulin oral selenium nano preparation of the present invention consists of insulin, chitosan and selenium, wherein the insulin is encapsulated in the nano particles formed by the chitosan and selenium.
本发明另一目的在于提供一种上述能够促进胰岛素口服吸收兼具硒协同降血糖效应的胰岛素口服硒纳米制剂的制备方法。Another object of the present invention is to provide a preparation method of the oral selenium nano-preparation of insulin which can promote the oral absorption of insulin and has synergistic hypoglycemic effect of selenium.
本发明制备方法通过将胰岛素于溶液中与壳聚糖通过静电复合形成粗分散物混悬液,加入可还原性含硒试剂在还原剂作用下生成低价硒,沉淀或附着于胰岛素/壳聚糖复合物上形成包衣纳米粒。该硒/壳聚糖纳米粒可有效包载胰岛素,实现了胰岛素的高包载、降低口服给药后其在胃肠道中的释放和暴露,从而提高胰岛素的胃肠道稳定性和口服生物利用度。本发明的载胰岛素硒纳米制剂除能够提高胰岛素的生物利用度外,还能够通过硒的胰岛素样作用协同降血糖。In the preparation method of the present invention, insulin is electrostatically compounded with chitosan in a solution to form a coarse dispersion suspension, and a reducible selenium-containing reagent is added to generate low-priced selenium under the action of a reducing agent, which precipitates or attaches to insulin/chitosan Coated nanoparticles are formed on the carbohydrate complex. The selenium/chitosan nanoparticles can effectively entrap insulin, realize high entrapment of insulin, reduce its release and exposure in the gastrointestinal tract after oral administration, thereby improving the gastrointestinal tract stability and oral bioavailability of insulin Spend. In addition to improving the bioavailability of insulin, the insulin-loaded selenium nano-preparation of the present invention can also synergistically lower blood sugar through the insulin-like effect of selenium.
本发明的目的通过下述方案实现:The object of the present invention is achieved through the following solutions:
一种能够促进胰岛素口服吸收兼具硒协同降血糖效应的胰岛素口服硒纳米制剂的制备方法,包括以下步骤:于胰岛素和壳聚糖的溶液或混悬液中加入含硒试剂,在还原剂作用下生成载胰岛素的硒/壳聚糖纳米粒。A method for preparing an oral selenium nano-preparation of insulin capable of promoting oral absorption of insulin and having a synergistic hypoglycemic effect of selenium, comprising the following steps: adding a selenium-containing reagent to the solution or suspension of insulin and chitosan; Generation of insulin-loaded selenium/chitosan nanoparticles.
上述制备方法通过将胰岛素于溶液中与壳聚糖通过静电复合形成粗分散物混悬液,加入可还原性含硒试剂在还原剂作用下生成低价硒,沉淀或附着于胰岛素/壳聚糖复合物上形成包衣纳米粒。其中,胰岛素包载于硒与壳聚糖形成的纳米骨架或贮库中。In the above preparation method, insulin and chitosan are electrostatically compounded to form a coarse dispersion suspension, and a reducible selenium-containing reagent is added to generate low-priced selenium under the action of a reducing agent, which precipitates or attaches to insulin/chitosan Coated nanoparticles are formed on the complex. Wherein, the insulin is encapsulated in the nano-skeleton or reservoir formed by selenium and chitosan.
上述制备方法中,所述胰岛素、壳聚糖和含硒试剂的用量比为1:(0.25~10):(0.5~20)。In the above preparation method, the dosage ratio of the insulin, chitosan and selenium-containing reagent is 1:(0.25-10):(0.5-20).
上述制备方法中,所述含硒试剂与还原剂化学计量比为1:0.1~1:50。In the above preparation method, the stoichiometric ratio of the selenium-containing reagent to the reducing agent is 1:0.1˜1:50.
上述制备方法中,所述的含硒试剂为可还原性含硒试剂,可选自含+6价硒或+4价硒的化合物和单质硒中的至少一种,优选为硒酸、亚硒酸、硒酸盐、亚硒酸盐和灰黑色单质硒中的至少一种,更优选为亚硒酸和亚硒酸盐中的至少一种。In the above preparation method, the selenium-containing reagent is a reducible selenium-containing reagent, which can be selected from at least one of compounds containing +6-valent selenium or +4-valent selenium and elemental selenium, preferably selenic acid, selenium At least one of selenium acid, selenate, selenite and gray-black elemental selenium, more preferably at least one of selenous acid and selenite.
上述制备方法中,所述的壳聚糖可选自低分子壳聚糖、高分子壳聚糖及壳聚糖衍生物中的至少一种,优选为低分子壳聚糖。In the above preparation method, the chitosan may be selected from at least one of low-molecular-weight chitosan, high-molecular-weight chitosan and chitosan derivatives, preferably low-molecular-weight chitosan.
上述制备方法中,所述的还原剂可选自谷胱甘肽、维生素C(抗坏血酸)、巯基乙醇、半胱氨酸、多酚或多羟基化合物、不饱和烯烃或芳烃中的至少一种,优选为谷胱甘肽和维生素C中的至少一种。In the above preparation method, the reducing agent can be selected from at least one of glutathione, vitamin C (ascorbic acid), mercaptoethanol, cysteine, polyphenols or polyhydroxy compounds, unsaturated olefins or aromatics, Preferably it is at least one of glutathione and vitamin C.
上述制备方法中,所述胰岛素和壳聚糖优选分别配成溶液后再混合得到溶液或混悬液。优选使用酸性介质分别溶解胰岛素和壳聚糖获得胰岛素溶液和壳聚糖溶液。In the above preparation method, the insulin and chitosan are preferably prepared into solutions respectively and then mixed to obtain a solution or suspension. Preferably, an acidic medium is used to dissolve insulin and chitosan respectively to obtain an insulin solution and a chitosan solution.
所述酸性介质可选自无机酸、有机酸或其混合酸溶液。所述的无机酸可为盐酸、硫酸等;所述的有机酸可为一元酸、二元酸或多元酸,如甲酸、醋酸、乙二酸等。所述的酸性介质优选为盐酸、硫酸、甲酸、醋酸和乙二酸中的至少一种。更优选溶解壳聚糖的酸性介质为醋酸,溶解胰岛素的酸性介质为盐酸。The acidic medium may be selected from inorganic acids, organic acids or mixed acid solutions thereof. The inorganic acid can be hydrochloric acid, sulfuric acid, etc.; the organic acid can be monobasic acid, dibasic acid or polybasic acid, such as formic acid, acetic acid, oxalic acid, etc. The acidic medium is preferably at least one of hydrochloric acid, sulfuric acid, formic acid, acetic acid and oxalic acid. More preferably, the acidic medium for dissolving chitosan is acetic acid, and the acidic medium for dissolving insulin is hydrochloric acid.
上述制备方法具体包括以下步骤:Above-mentioned preparation method specifically comprises the following steps:
将壳聚糖溶液和胰岛素溶液混合,调节pH至胰岛素析出形成混悬液;加入含硒试剂和还原剂,反应,得到胰岛素口服硒纳米制剂。The chitosan solution and the insulin solution are mixed, and the pH is adjusted until the insulin precipitates to form a suspension; a selenium-containing reagent and a reducing agent are added for reaction to obtain an oral selenium nanometer preparation for insulin.
所述反应的时间可为0.5h至数天。The reaction time can range from 0.5 h to several days.
所述调节pH可调节至5.5~8.0。通过调节pH至胰岛素等电点以上,以降低胰岛素溶解度,使其析出与壳聚糖耦合。The pH adjustment can be adjusted to 5.5-8.0. By adjusting the pH to above the isoelectric point of insulin, the solubility of insulin is reduced, and its precipitation is coupled with chitosan.
为了更好地实现本发明,上述制备方法更具体包括以下步骤:In order to better realize the present invention, the above-mentioned preparation method more specifically comprises the following steps:
使用酸性介质溶解胰岛素和壳聚糖,分别配制胰岛素溶液和壳聚糖溶液;将胰岛素溶液和壳聚糖溶液混合,调节体系pH值至等电点以上,使胰岛素析出并与壳聚糖形成复合物;加入含硒试剂、还原剂反应,生成低价硒,形成胰岛素口服硒纳米制剂。Use an acidic medium to dissolve insulin and chitosan, and prepare insulin solution and chitosan solution respectively; mix the insulin solution and chitosan solution, adjust the pH value of the system to above the isoelectric point, and precipitate insulin and form a complex with chitosan Adding selenium-containing reagents and reducing agents to react to generate low-priced selenium and form oral selenium nano-preparations for insulin.
本发明提供上述制备方法得到的胰岛素口服硒纳米制剂,其胰岛素包封率为10~100%,载药量为1~50%。The invention provides the oral selenium nano preparation of insulin obtained by the above preparation method, the encapsulation rate of insulin is 10-100%, and the drug loading is 1-50%.
通过以上制备方法,胰岛素被包载于壳聚糖与硒形成的纳米粒中。该纳米粒制剂增强了胰岛素的胃肠道稳定性和口服吸收性能,也改善了硒的可吸收性和生物活性,从而可提高胰岛素和硒的生物利用度。此外,硒的加入使得该制剂能够在降血糖的同时,还能够通过硒的抗氧化、血糖调节和胰岛素样作用重构机体功能,实现糖尿病标本兼治的作用,是一种极具开发前景的制剂。Through the above preparation method, the insulin is entrapped in the nanoparticle formed by chitosan and selenium. The nanoparticle preparation enhances the gastrointestinal tract stability and oral absorption performance of insulin, and also improves the absorbability and biological activity of selenium, thereby improving the bioavailability of insulin and selenium. In addition, the addition of selenium enables the preparation to not only lower blood sugar, but also reconstruct body functions through selenium’s anti-oxidation, blood sugar regulation and insulin-like effects, so as to achieve the effect of treating both symptoms and root causes of diabetes. It is a very promising preparation .
本发明进行了体外稳定性和体内降血糖实验。结果表明,本发明制备的胰岛素口服硒纳米制剂在模拟人工胃液中稳定性良好,口服后可显著降低正常和糖尿病大鼠血糖水平,且维持时间相对皮下注射胰岛素组较长。The present invention has carried out in vitro stability and in vivo hypoglycemic experiments. The results show that the oral selenium nano-preparation of insulin prepared by the present invention has good stability in simulated artificial gastric juice, and can significantly reduce the blood sugar levels of normal and diabetic rats after oral administration, and the maintenance time is longer than that of the subcutaneous insulin injection group.
本发明相对于现有技术,具有如下的优点及有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:
(1)本发明制剂具有高的胰岛素载药量,通常纳米粒对胰岛素载药量低于30%,本发明制备的载胰岛素硒纳米粒载药率可达到45%以上;(1) The preparation of the present invention has a high insulin drug loading capacity. Usually, the drug loading rate of nanoparticles to insulin is lower than 30%, and the drug loading rate of the insulin-loaded selenium nanoparticles prepared by the present invention can reach more than 45%;
(2)本发明制剂对胰岛素具有极高的胃肠道保护作用,可显著降低胰岛素口服给药后的酶或体液降解;(2) The preparation of the present invention has a very high gastrointestinal protective effect on insulin, and can significantly reduce the enzyme or body fluid degradation of insulin after oral administration;
(3)本发明制剂可促进胰岛素口服吸收,凭借纳米粒的纳米尺度效应提高了胰岛素的跨胃肠上皮吸收量,从而提高了胰岛素的口服生物利用度;(3) The preparation of the present invention can promote the oral absorption of insulin, and by virtue of the nanoscale effect of nanoparticles, the absorption of insulin across the gastrointestinal epithelium is improved, thereby improving the oral bioavailability of insulin;
(4)本发明制剂含有微量元素硒,在实现胰岛素口服吸收降糖的同时,还能够利用硒在糖尿病治疗上的生理调节作用,实现糖尿病标本兼治的功能。(4) The preparation of the present invention contains the trace element selenium. While realizing the oral absorption of insulin to lower blood sugar, the physiological regulation effect of selenium in the treatment of diabetes can also be utilized to realize the function of treating both the symptoms and root causes of diabetes.
附图说明Description of drawings
图1是胰岛素硒纳米制剂的粒径分布图。Fig. 1 is the particle size distribution figure of insulin selenium nano-preparation.
图2是胰岛素硒纳米制剂与胰岛素溶液在模拟人工胃液中的稳定性比较图。Fig. 2 is a graph comparing the stability of insulin selenium nano-preparation and insulin solution in simulated artificial gastric juice.
图3是胰岛素硒纳米制剂在正常大鼠体内的降血糖效果图。Fig. 3 is a graph showing the hypoglycemic effect of the insulin selenium nano-preparation in normal rats.
图4是胰岛素硒纳米制剂在糖尿病大鼠体内的降血糖效果图。Fig. 4 is a diagram of the hypoglycemic effect of insulin selenium nano-preparation in diabetic rats.
具体实施方式detailed description
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be further described in detail below with reference to the examples and drawings, but the implementation of the present invention is not limited thereto.
下列实施例中的试剂均可从商业渠道获得。The reagents in the following examples are all available from commercial sources.
实施例1:胰岛素口服硒纳米制剂的制备Example 1: Preparation of Oral Selenium Nano-Preparation for Insulin
将胰岛素溶解于pH 2的盐酸溶液中,配制浓度为5mg/mL胰岛素溶液;再将壳聚糖溶解于1%醋酸溶液中,使其浓度为5mg/mL;然后,配制2.5mg/mL的亚硒酸钠(Na2SeO3)溶液和10mg/mL的谷胱甘肽(GSH)溶液。取壳聚糖溶液10mL,搅拌下缓慢滴加胰岛素溶液5mL,孵育15min。然后,缓慢加入Na2SeO3溶液5mL,继续孵育1h。再缓慢加入GSH溶液5mL,反应1h,即得红色透明带乳光的载胰岛素硒纳米粒悬液。Dissolve insulin in hydrochloric acid solution at pH 2 to prepare a 5 mg/mL insulin solution; then dissolve chitosan in 1% acetic acid solution to make the concentration 5 mg/mL; then prepare 2.5 mg/mL sub Sodium selenate (Na 2 SeO 3 ) solution and 10 mg/mL glutathione (GSH) solution. Take 10 mL of chitosan solution, slowly add 5 mL of insulin solution dropwise under stirring, and incubate for 15 min. Then, 5 mL of Na 2 SeO 3 solution was slowly added, and the incubation was continued for 1 h. Then slowly add 5 mL of GSH solution and react for 1 hour to obtain a red transparent and opalescent insulin-loaded selenium nanoparticle suspension.
实施例2:胰岛素口服硒纳米制剂的制备Example 2: Preparation of Oral Selenium Nano-Preparation for Insulin
将胰岛素溶解于pH 2的盐酸溶液中,配制浓度为5mg/mL胰岛素溶液;再将壳聚糖溶解于1%醋酸溶液中,使其浓度为5mg/mL;然后,配制2.5mg/mL的硒酸钠(Na2SeO4)溶液和10mg/mL的谷胱甘肽(GSH)溶液。取壳聚糖溶液10mL,搅拌下缓慢滴加胰岛素溶液5mL,孵育15min。然后,缓慢加入Na2SeO4溶液5mL,继续孵育1h。再缓慢加入GSH溶液5mL,反应1h,即得红色透明带乳光的载胰岛素硒纳米粒悬液。Dissolve insulin in hydrochloric acid solution at pH 2 to prepare a 5 mg/mL insulin solution; then dissolve chitosan in 1% acetic acid solution to make the concentration 5 mg/mL; then prepare 2.5 mg/mL selenium Na 2 SeO 4 ) solution and 10 mg/mL glutathione (GSH) solution. Take 10 mL of chitosan solution, slowly add 5 mL of insulin solution dropwise under stirring, and incubate for 15 min. Then, 5 mL of Na 2 SeO 4 solution was slowly added, and the incubation was continued for 1 h. Then slowly add 5 mL of GSH solution and react for 1 hour to obtain a red transparent and opalescent insulin-loaded selenium nanoparticle suspension.
实施例3:胰岛素口服硒纳米制剂的制备Example 3: Preparation of Oral Selenium Nano-Preparation for Insulin
将胰岛素溶解于pH 2的盐酸溶液中,配制浓度为5mg/mL胰岛素溶液;再将壳聚糖溶解于1%醋酸溶液中,使其浓度为5mg/mL;然后,配制2.5mg/mL的亚硒酸钠(Na2SeO3)溶液和10mg/mL的维生素C溶液。取壳聚糖溶液10mL置于磁力搅拌器上,缓慢滴加胰岛素溶液5mL,孵育15min。然后,缓慢加入Na2SeO3溶液5mL,继续孵育1h。再缓慢加入维生素C溶液5mL,反应1h,即得红色透明带乳光的载胰岛素硒纳米粒悬液。Dissolve insulin in hydrochloric acid solution with pH 2 to prepare insulin solution with a concentration of 5 mg/mL; then dissolve chitosan in 1% acetic acid solution to make its concentration 5 mg/mL; then, prepare 2.5 mg/mL sub Sodium selenate (Na 2 SeO 3 ) solution and 10 mg/mL vitamin C solution. Take 10 mL of chitosan solution and place it on a magnetic stirrer, slowly add 5 mL of insulin solution dropwise, and incubate for 15 min. Then, 5 mL of Na 2 SeO 3 solution was slowly added, and the incubation was continued for 1 h. Slowly add 5 mL of vitamin C solution and react for 1 hour to obtain a red transparent and opalescent insulin-loaded selenium nanoparticle suspension.
实施例4:胰岛素口服硒纳米制剂的制备Example 4: Preparation of Oral Selenium Nano-Preparation for Insulin
将胰岛素溶解于pH 2的盐酸溶液中,配制浓度为5mg/mL胰岛素溶液;再将壳聚糖溶解于1%醋酸溶液中,使其浓度为5mg/mL;然后,配制2.5mg/mL的硒酸钠(Na2SeO4)溶液和10mg/mL的维生素C溶液。取壳聚糖溶液10mL置于磁力搅拌器上,缓慢滴加胰岛素溶液5mL,孵育15min。然后,缓慢加入Na2SeO4溶液5mL,继续孵育1h。再缓慢加入维生素C溶液5mL,反应1h,即得红色透明带乳光的载胰岛素硒纳米粒悬液。Dissolve insulin in hydrochloric acid solution at pH 2 to prepare a 5 mg/mL insulin solution; then dissolve chitosan in 1% acetic acid solution to make the concentration 5 mg/mL; then prepare 2.5 mg/mL selenium Na 2 SeO 4 ) solution and 10 mg/mL vitamin C solution. Take 10 mL of chitosan solution and place it on a magnetic stirrer, slowly add 5 mL of insulin solution dropwise, and incubate for 15 min. Then, 5 mL of Na 2 SeO 4 solution was slowly added, and the incubation was continued for 1 h. Slowly add 5 mL of vitamin C solution and react for 1 hour to obtain a red transparent and opalescent insulin-loaded selenium nanoparticle suspension.
实施例5:胰岛素口服硒纳米制剂的制备Example 5: Preparation of Oral Selenium Nano-Preparation for Insulin
将胰岛素溶解于pH 2的盐酸溶液中,配制浓度为5mg/mL胰岛素溶液;再将壳聚糖溶解于1%醋酸溶液中,使其浓度为5mg/mL;然后,配制2.5mg/mL的亚硒酸钠(Na2SeO3)溶液和10%的2-巯基乙醇溶液(v/v)。取壳聚糖溶液10mL置于磁力搅拌器上,缓慢滴加胰岛素溶液5mL,孵育15min。然后,缓慢加入Na2SeO3溶液5mL,继续孵育1h。再缓慢加入2-巯基乙醇溶液5mL,反应1h,即得红色透明带乳光的载胰岛素硒纳米粒悬液。Dissolve insulin in hydrochloric acid solution with pH 2 to prepare insulin solution with a concentration of 5 mg/mL; then dissolve chitosan in 1% acetic acid solution to make its concentration 5 mg/mL; then, prepare 2.5 mg/mL sub Sodium selenate (Na 2 SeO 3 ) solution and 10% 2-mercaptoethanol solution (v/v). Take 10 mL of chitosan solution and place it on a magnetic stirrer, slowly add 5 mL of insulin solution dropwise, and incubate for 15 min. Then, 5 mL of Na 2 SeO 3 solution was slowly added, and the incubation was continued for 1 h. Slowly add 5 mL of 2-mercaptoethanol solution and react for 1 hour to obtain a red transparent and opalescent insulin-loaded selenium nanoparticle suspension.
实施例6:胰岛素口服硒纳米制剂的制备Example 6: Preparation of Oral Selenium Nano-Preparation for Insulin
将胰岛素溶解于pH 2的盐酸溶液中,配制浓度为5mg/mL胰岛素溶液;再将壳聚糖溶解于1%醋酸溶液中,使其浓度为5mg/mL;然后,配制2.5mg/mL的亚硒酸钠(Na2SeO3)溶液和10mg/mL的半胱氨酸溶液。取壳聚糖溶液10mL置于磁力搅拌器上,缓慢滴加胰岛素溶液5mL,孵育15min。然后,缓慢加入Na2SeO3溶液5mL,继续孵育1h。再缓慢加入半胱氨酸溶液5mL,反应1h,即得红色透明带乳光的载胰岛素硒纳米粒悬液。Dissolve insulin in hydrochloric acid solution at pH 2 to prepare a 5 mg/mL insulin solution; then dissolve chitosan in 1% acetic acid solution to make the concentration 5 mg/mL; then prepare 2.5 mg/mL sub Sodium selenate (Na 2 SeO 3 ) solution and 10 mg/mL cysteine solution. Take 10 mL of chitosan solution and place it on a magnetic stirrer, slowly add 5 mL of insulin solution dropwise, and incubate for 15 min. Then, 5 mL of Na 2 SeO 3 solution was slowly added, and the incubation was continued for 1 h. Then slowly add 5 mL of cysteine solution, and react for 1 hour to obtain a red transparent and opalescent insulin-loaded selenium nanoparticle suspension.
实施例7:胰岛素口服硒纳米制剂的制备Example 7: Preparation of Oral Selenium Nano-Preparation for Insulin
将胰岛素溶解于pH 2的盐酸溶液中,配制浓度为5mg/mL胰岛素溶液;再将壳聚糖溶解于1%醋酸溶液中,使其浓度为2.5mg/mL;然后,配制5mg/mL的亚硒酸钠(Na2SeO3)溶液和5mg/mL的GSH溶液。取壳聚糖溶液10mL置于磁力搅拌器上,缓慢滴加胰岛素溶液5mL,孵育30min。然后,缓慢加入Na2SeO3溶液2.5mL,继续孵育4h。再缓慢加入GSH溶液10mL,反应12h,即得红色透明带乳光的载胰岛素硒纳米粒悬液。Dissolve insulin in hydrochloric acid solution at pH 2 to prepare a 5 mg/mL insulin solution; then dissolve chitosan in 1% acetic acid solution to make its concentration 2.5 mg/mL; then prepare 5 mg/mL sub Sodium selenate (Na 2 SeO 3 ) solution and 5 mg/mL GSH solution. Take 10 mL of chitosan solution and place it on a magnetic stirrer, slowly add 5 mL of insulin solution dropwise, and incubate for 30 min. Then, 2.5 mL of Na 2 SeO 3 solution was slowly added, and the incubation was continued for 4 h. Then slowly add 10 mL of GSH solution and react for 12 hours to obtain a red transparent and opalescent insulin-loaded selenium nanoparticle suspension.
实施例8:胰岛素口服硒纳米制剂的制备Example 8: Preparation of Oral Selenium Nano-Preparation for Insulin
将胰岛素溶解于pH 2的盐酸溶液中,配制浓度为2.5mg/mL胰岛素溶液;再将壳聚糖溶解于1%醋酸溶液中,使其浓度为2.5mg/mL;然后,配制10mg/mL的亚硒酸钠(Na2SeO3)溶液、10mg/mL的维生素C溶液和10mg/mL的GSH溶液。取壳聚糖溶液10mL置于磁力搅拌器上,缓慢滴加胰岛素溶液10mL,孵育30min。然后,缓慢加入Na2SeO3溶液5mL,继续孵育8h。再缓慢加入维生素C和GSH溶液各50mL,反应24h,即得红色透明带乳光的载胰岛素硒纳米粒悬液。Dissolve insulin in hydrochloric acid solution at pH 2 to prepare a 2.5mg/mL insulin solution; then dissolve chitosan in 1% acetic acid solution to make the concentration 2.5mg/mL; then prepare 10mg/mL insulin Sodium selenite (Na 2 SeO 3 ) solution, 10 mg/mL vitamin C solution and 10 mg/mL GSH solution. Take 10 mL of chitosan solution and place it on a magnetic stirrer, slowly add 10 mL of insulin solution dropwise, and incubate for 30 min. Then, slowly add Na 2 SeO 3 solution 5mL and continue to incubate for 8h. Slowly add 50 mL each of vitamin C and GSH solutions, and react for 24 hours to obtain a red transparent and opalescent insulin-loaded selenium nanoparticle suspension.
实施例9:胰岛素硒纳米粒粒径及体外稳定性Embodiment 9: Particle size and in vitro stability of insulin selenium nanoparticles
粒径测定:取实施例1中的胰岛素硒纳米粒悬液,采用动态光散射技术测定胰岛素硒纳米粒的粒径。具体操作为:量取实例1中的胰岛素硒纳米粒10μL,去离子水稀释到1mL,置于粒径测定样品池中,25℃下平衡120s,仪器自动优化测量参数,由内嵌软件直接读取Z-average粒径作为胰岛素硒纳米粒的平均粒径。其粒径分布结果如图1所示。由图可见,制备的载胰岛素硒纳米粒粒径在120nm左右。小粒径的纳米粒子可有效通过胃肠道粘膜层和粘膜上stagnant层,从而提高所载药物的跨膜转运量。本发明制备的载胰岛素硒纳米粒粒径较小,为胰岛素的跨膜吸收创造了有利条件。Particle size measurement: the insulin-selenium nanoparticle suspension in Example 1 was taken, and the particle size of the insulin-selenium nanoparticle was measured by dynamic light scattering technique. The specific operation is: measure 10 μL of insulin-selenium nanoparticles in Example 1, dilute to 1 mL with deionized water, place in the sample cell for particle size determination, and equilibrate for 120 s at 25 ° C. The instrument automatically optimizes the measurement parameters and is directly read by the embedded software. Take the Z-average particle size as the average particle size of the insulin selenium nanoparticles. The particle size distribution results are shown in Figure 1. It can be seen from the figure that the particle size of the prepared insulin-loaded selenium nanoparticles is about 120nm. Nanoparticles with small particle size can effectively pass through the mucosal layer of the gastrointestinal tract and the stagnant layer on the mucosa, thereby increasing the transmembrane transport of the loaded drug. The particle size of the insulin-loaded selenium nanoparticles prepared by the invention is small, which creates favorable conditions for the transmembrane absorption of insulin.
稳定性考察:配制模拟人工胃液(SGF,含0.32%胃蛋白酶,pH 1.2),称取3.2g胃蛋白酶,加入pH 1.2的稀盐酸使之溶解,并定容至1000mL,即得。取胰岛素溶液或实施例1中的胰岛素硒纳米粒悬液1mL加入到4mL人工胃液中,37℃下100rpm振荡孵育。在设定的时间点(5、15、30、60、120和240min)取样200μL,立即用0.1M NaOH 200μL终止降解反应。样品随后用甲醇-水溶液处理释放出被包封的胰岛素,通过HPLC测定残留的胰岛素浓度,并绘制残留胰岛素浓度对孵育时间曲线,以评价硒纳米粒对胰岛素稳定化作用。结果如图2所示。由图可见,游离胰岛素在模拟人工胃液中降解极快,在5分钟内即降解完全;而本发明制备的载胰岛素硒纳米粒可显著抵抗胃蛋白酶的降解作用,孵育4小时其累计降解百分数少于20%。硒纳米粒显著地提高了胰岛素在胃肠道的稳定性,从而解决了胰岛素胃肠道降解失活不能口服的给药难题。Stability test: Prepare simulated artificial gastric juice (SGF, containing 0.32% pepsin, pH 1.2), weigh 3.2g of pepsin, add dilute hydrochloric acid with pH 1.2 to dissolve it, and dilute to 1000mL to get ready. Take 1 mL of the insulin solution or the insulin-selenium nanoparticle suspension in Example 1 and add it to 4 mL of artificial gastric juice, and incubate at 37° C. with shaking at 100 rpm. At the set time points (5, 15, 30, 60, 120 and 240 min), 200 μL of samples were taken, and the degradation reaction was immediately terminated with 200 μL of 0.1M NaOH. The sample was then treated with methanol-water solution to release the encapsulated insulin, the residual insulin concentration was measured by HPLC, and the residual insulin concentration versus incubation time was plotted to evaluate the stabilizing effect of selenium nanoparticles on insulin. The result is shown in Figure 2. It can be seen from the figure that free insulin degrades very quickly in the simulated artificial gastric juice, and is completely degraded within 5 minutes; while the insulin-loaded selenium nanoparticles prepared by the present invention can significantly resist the degradation of pepsin, and the cumulative degradation percentage after incubation for 4 hours is small at 20%. Selenium nanoparticles can significantly improve the stability of insulin in the gastrointestinal tract, thereby solving the problem of insulin being degraded and inactivated in the gastrointestinal tract and unable to be administered orally.
实施例10:胰岛素硒纳米粒体内降血糖作用Example 10: Hypoglycemic effect of insulin selenium nanoparticles in vivo
(1)正常SD大鼠口服给药后的降血糖作用(1) Hypoglycemic effect after oral administration in normal SD rats
SD大鼠12只,实验前禁食12h,禁食期间允许自由饮水。实验时随机分为四组,每组6只。第一组皮下注射给予剂量1IU/kg的胰岛素溶液作为阳性对照(s.c);第二组口服给予剂量50IU/kg胰岛素溶液(溶解于pH 7.4缓冲液)作为阴性对照(i.g);第三组取实施例1中的胰岛素硒纳米粒制剂,口服给予剂量50IU/kg胰岛素硒纳米悬液(i.g);第四组口服给予生理盐水作空白对照组。给药前,通过尾静脉取血250μL。皮下注射组给药后,于0.15、0.25、1、2、3、4、6、8和10h时间点通过尾静脉取血250μL。灌胃组给药后,分别于0.25、0.5、1、2、3、4、6、8、10和12h通过尾静脉取血250μL。血样取出后立即用5000g离心力离心10min,分离上清血浆。通过葡萄糖氧化酶法测定血浆中葡萄糖浓度,测定结果如图3所示。由图可见,与对照组相比,胰岛素溶液组口服基本无降糖作用,而载胰岛素硒纳米粒组具有显著的降血糖效应,其降血糖效应在程度上接近于胰岛素皮下注射组。值得注意的是,载胰岛素硒纳米粒组的降血糖作用可维持较长时间,这是皮下注射胰岛素溶液所并不具备的优势。这种降糖效应既可减少了给药次数,又可避免血糖波动引起的病人不适。Twelve SD rats were fasted for 12 hours before the experiment, and allowed to drink water freely during the fasting period. During the experiment, they were randomly divided into four groups with 6 rats in each group. The first group subcutaneously injected insulin solution with a dose of 1IU/kg as a positive control (s.c); the second group orally administered a dose of 50IU/kg insulin solution (dissolved in pH 7.4 buffer) as a negative control (i.g); the third group took The insulin-selenium nanoparticle preparation in Example 1 was orally administered with a dose of 50 IU/kg insulin-selenium nanosuspension (i.g); the fourth group was orally administered with normal saline as a blank control group. Before administration, 250 μL of blood was drawn from the tail vein. After administration in the subcutaneous injection group, 250 μL of blood was collected from the tail vein at 0.15, 0.25, 1, 2, 3, 4, 6, 8 and 10 hours. After intragastric administration, 250 μL of blood was collected through the tail vein at 0.25, 0.5, 1, 2, 3, 4, 6, 8, 10 and 12 hours, respectively. Immediately after the blood sample was taken out, it was centrifuged with a centrifugal force of 5000g for 10min, and the supernatant plasma was separated. The glucose concentration in the plasma was measured by the glucose oxidase method, and the measurement results are shown in FIG. 3 . It can be seen from the figure that compared with the control group, oral administration of the insulin solution group basically has no hypoglycemic effect, while the insulin-loaded selenium nanoparticles group has a significant hypoglycemic effect, and its hypoglycemic effect is close to that of the insulin subcutaneous injection group. It is worth noting that the hypoglycemic effect of the insulin-loaded selenium nanoparticles group can last for a long time, which is an advantage that subcutaneous injection of insulin solution does not have. This hypoglycemic effect can not only reduce the number of administrations, but also avoid discomfort to patients caused by fluctuations in blood sugar.
(2)GK糖尿病大鼠口服给药后的降血糖作用(2) Hypoglycemic effect after oral administration in GK diabetic rats
使用基因敲除大鼠依照前述(1)中相同方法进行实验,糖尿病大鼠口服给予不同胰岛素制剂后血糖随时间变化如图4所示。由图可见,载胰岛素硒纳米粒在糖尿病大鼠上的降血糖效应类似于在正常大鼠上获得的结果,同样具有显著和持久的降血糖作用。本发明的载胰岛素硒纳米粒在两种动物模型上均获得了显著的降血糖效果,显示本发明述及的胰岛素硒纳米粒制剂极具应用前景和开发潜力。The experiment was carried out in the same manner as in (1) above using gene knockout rats, and the changes in blood glucose over time after oral administration of different insulin preparations to diabetic rats are shown in Figure 4 . It can be seen from the figure that the hypoglycemic effect of insulin-loaded selenium nanoparticles on diabetic rats is similar to that obtained on normal rats, and also has a significant and lasting hypoglycemic effect. The insulin-loaded selenium nanoparticles of the present invention have achieved significant hypoglycemic effects in two animal models, which shows that the insulin-selenium nanoparticle preparations mentioned in the present invention have great application prospects and development potential.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610410740.1A CN106075403A (en) | 2016-06-12 | 2016-06-12 | A kind of oral insulin selenium nanometer formulation and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610410740.1A CN106075403A (en) | 2016-06-12 | 2016-06-12 | A kind of oral insulin selenium nanometer formulation and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106075403A true CN106075403A (en) | 2016-11-09 |
Family
ID=57845237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610410740.1A Pending CN106075403A (en) | 2016-06-12 | 2016-06-12 | A kind of oral insulin selenium nanometer formulation and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106075403A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108125978A (en) * | 2017-12-29 | 2018-06-08 | 广州润虹医药科技股份有限公司 | A kind of chitin fiber composition and preparation method thereof |
CN116333302A (en) * | 2023-03-31 | 2023-06-27 | 中南大学 | A stable and long-lasting antioxidant nanodot and its application in type 2 diabetes |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102083419A (en) * | 2008-07-01 | 2011-06-01 | 日东电工株式会社 | Pharmaceutical composition containing surface-coated microparticles |
CN102120781A (en) * | 2011-03-16 | 2011-07-13 | 中国药科大学 | Preparation and application of novel oral insulin nanoparticles |
CN102302769A (en) * | 2011-08-15 | 2012-01-04 | 西安交通大学 | Blood-sugar-reducing composition and application thereof |
CN102380103A (en) * | 2011-10-28 | 2012-03-21 | 复旦大学 | Mannose-modified thiolated chitosan quaternary ammonium salt nanoparticle, preparing method and application thereof |
CN103371973A (en) * | 2012-04-27 | 2013-10-30 | 复旦大学 | Externally coated nanometer multiple emulsion for promoting oral absorption of insulin |
CN104739806A (en) * | 2015-04-17 | 2015-07-01 | 黑龙江大学 | Oral insulin complex micro-capsules and preparation method |
CN104758253A (en) * | 2006-01-24 | 2015-07-08 | 安迅生物制药公司 | Technology for preparation of macromolecular microspheres |
CN105056212A (en) * | 2015-07-14 | 2015-11-18 | 江西省药物研究所 | Chitosan nanoparticle for improving absorption of orally delivered insulin by colon and preparation method of chitosan nanoparticle |
-
2016
- 2016-06-12 CN CN201610410740.1A patent/CN106075403A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104758253A (en) * | 2006-01-24 | 2015-07-08 | 安迅生物制药公司 | Technology for preparation of macromolecular microspheres |
CN102083419A (en) * | 2008-07-01 | 2011-06-01 | 日东电工株式会社 | Pharmaceutical composition containing surface-coated microparticles |
CN102120781A (en) * | 2011-03-16 | 2011-07-13 | 中国药科大学 | Preparation and application of novel oral insulin nanoparticles |
CN102302769A (en) * | 2011-08-15 | 2012-01-04 | 西安交通大学 | Blood-sugar-reducing composition and application thereof |
CN102380103A (en) * | 2011-10-28 | 2012-03-21 | 复旦大学 | Mannose-modified thiolated chitosan quaternary ammonium salt nanoparticle, preparing method and application thereof |
CN103371973A (en) * | 2012-04-27 | 2013-10-30 | 复旦大学 | Externally coated nanometer multiple emulsion for promoting oral absorption of insulin |
CN104739806A (en) * | 2015-04-17 | 2015-07-01 | 黑龙江大学 | Oral insulin complex micro-capsules and preparation method |
CN105056212A (en) * | 2015-07-14 | 2015-11-18 | 江西省药物研究所 | Chitosan nanoparticle for improving absorption of orally delivered insulin by colon and preparation method of chitosan nanoparticle |
CN105056212B (en) * | 2015-07-14 | 2018-06-15 | 江西省药物研究所 | A kind of chitosan nano and preparation method for improving oral insulin colonic absorption |
Non-Patent Citations (2)
Title |
---|
BO YU等: "Positive Surface Charge Enhances Selective Cellular Uptake and Anticancer Efficacy of Selenium Nanoparticles", 《INORGANIC CHEMISTRY》 * |
LEI RAO等: "Chitosan-decorated selenium nanoparticles as protein carriers to improve the in vivo half-life of the peptide therapeutic BAY 55-9837 for type 2 diabetes mellitus", 《INTERNATIONAL JOURNAL OF NANOMEDICINE》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108125978A (en) * | 2017-12-29 | 2018-06-08 | 广州润虹医药科技股份有限公司 | A kind of chitin fiber composition and preparation method thereof |
CN116333302A (en) * | 2023-03-31 | 2023-06-27 | 中南大学 | A stable and long-lasting antioxidant nanodot and its application in type 2 diabetes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Cp1-11 peptide/insulin complex loaded pH-responsive nanoparticles with enhanced oral bioactivity | |
CN103781489B (en) | For the oral delivery of the carrier of oxygen based on hemoglobin | |
CN110623918B (en) | Carboxymethyl chitosan/sodium alginate nano hydrogel and preparation method and application thereof | |
Babu et al. | Developments in polymeric devices for oral insulin delivery | |
CN107952072B (en) | Preparation method of drug-carrying oxygen-carrying hybrid protein nanoparticles, drug-carrying oxygen-carrying hybrid protein nanoparticles and application | |
JP6305555B2 (en) | Sustained sustained release liposome gel composition having active ingredient of hypoglycemic action and method for producing the same | |
CN102120781A (en) | Preparation and application of novel oral insulin nanoparticles | |
Zhang et al. | An oral polyphenol host-guest nanoparticle for targeted therapy of inflammatory bowel disease | |
Çelik et al. | Preparation of superoxide dismutase loaded chitosan microspheres: characterization and release studies | |
CN106075403A (en) | A kind of oral insulin selenium nanometer formulation and preparation method thereof | |
Ma et al. | Oral delivery of berberine by liver-targeted zwitterionic nanoparticles to overcome multi-intestinal barriers and extend insulin treatment duration | |
CN109200272B (en) | Oral exenatide nanoparticle preparation and preparation method and application thereof | |
CN113797177B (en) | Quercetin oral sustained-release preparation modified by ionic emulsifier chitosan nanoparticles and preparation method thereof | |
CN114209663B (en) | Preparation and application of phloretin-loaded soybean lecithin-chitosan nanoparticles for preventing diabetes | |
CN106138011A (en) | Calcium carbonate/hyaluronic acid combination drug carrier and preparation method thereof | |
A do Carmo et al. | Therapeutic nanosystems for oral administration of insulin | |
CN100400580C (en) | A kind of polyelectrolyte polysaccharide nanoparticle and preparation method thereof | |
CN112999194A (en) | Preparation method and application of oral insulin polypeptide nanocapsule | |
CN101721687B (en) | Insulin-hydroxyapatite nano compound, preparation method and application thereof | |
CN104138602B (en) | Type II diabetes resisting long-acing nano complex peptides and preparation method and application | |
CN118845807A (en) | A nano sustained-release preparation co-loaded with astragaloside IV and gallic acid and preparation method thereof | |
Picu et al. | Nanobased scientific and technological solutions for the management of diabetes mellitus | |
RU2753018C1 (en) | Nanostructured composition for oral delivery of insulin and method for production thereof | |
CN103845727B (en) | Nasal administration composition of recombination human ciliary neurotrophy factor and preparation method thereof | |
CN111870582B (en) | Ethyl orthosilicate-liraglutide composite microsphere preparation and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20161109 |