CN106074571B - 隐丹参酮在制备肿瘤药物中的应用 - Google Patents
隐丹参酮在制备肿瘤药物中的应用 Download PDFInfo
- Publication number
- CN106074571B CN106074571B CN201610543228.4A CN201610543228A CN106074571B CN 106074571 B CN106074571 B CN 106074571B CN 201610543228 A CN201610543228 A CN 201610543228A CN 106074571 B CN106074571 B CN 106074571B
- Authority
- CN
- China
- Prior art keywords
- cts
- igf
- shp2
- cell
- phosphorylation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- GVKKJJOMQCNPGB-JTQLQIEISA-N Cryptotanshinone Chemical compound O=C1C(=O)C2=C3CCCC(C)(C)C3=CC=C2C2=C1[C@@H](C)CO2 GVKKJJOMQCNPGB-JTQLQIEISA-N 0.000 title claims abstract description 14
- GVKKJJOMQCNPGB-UHFFFAOYSA-N Cryptotanshinone Natural products O=C1C(=O)C2=C3CCCC(C)(C)C3=CC=C2C2=C1C(C)CO2 GVKKJJOMQCNPGB-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 206010028980 Neoplasm Diseases 0.000 title abstract description 12
- 239000003814 drug Substances 0.000 title abstract description 6
- 102100033019 Tyrosine-protein phosphatase non-receptor type 11 Human genes 0.000 claims abstract description 29
- 101710116241 Tyrosine-protein phosphatase non-receptor type 11 Proteins 0.000 claims abstract description 29
- 230000000694 effects Effects 0.000 claims abstract description 22
- 239000000411 inducer Substances 0.000 claims 1
- 230000026731 phosphorylation Effects 0.000 abstract description 48
- 238000006366 phosphorylation reaction Methods 0.000 abstract description 48
- 238000012545 processing Methods 0.000 abstract description 18
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 abstract description 13
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 abstract description 13
- 230000002401 inhibitory effect Effects 0.000 abstract description 9
- 210000004881 tumor cell Anatomy 0.000 abstract description 6
- 230000002452 interceptive effect Effects 0.000 abstract description 2
- 230000001404 mediated effect Effects 0.000 abstract description 2
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 42
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 40
- 210000004027 cell Anatomy 0.000 description 30
- 230000004663 cell proliferation Effects 0.000 description 17
- 108020004459 Small interfering RNA Proteins 0.000 description 16
- 238000001262 western blot Methods 0.000 description 10
- 102000038030 PI3Ks Human genes 0.000 description 8
- 108091007960 PI3Ks Proteins 0.000 description 8
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 8
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 230000035755 proliferation Effects 0.000 description 8
- 231100000673 dose–response relationship Toxicity 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 5
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 5
- 101150018665 MAPK3 gene Proteins 0.000 description 5
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 5
- 102100039663 Receptor-type tyrosine-protein phosphatase F Human genes 0.000 description 5
- 101710138741 Receptor-type tyrosine-protein phosphatase F Proteins 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 102100031480 Dual specificity mitogen-activated protein kinase kinase 1 Human genes 0.000 description 4
- 101710146526 Dual specificity mitogen-activated protein kinase kinase 1 Proteins 0.000 description 4
- 102000001267 GSK3 Human genes 0.000 description 4
- 108060006662 GSK3 Proteins 0.000 description 4
- 229940124647 MEK inhibitor Drugs 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- NFVJNJQRWPQVOA-UHFFFAOYSA-N n-[2-chloro-5-(trifluoromethyl)phenyl]-2-[3-(4-ethyl-5-ethylsulfanyl-1,2,4-triazol-3-yl)piperidin-1-yl]acetamide Chemical compound CCN1C(SCC)=NN=C1C1CN(CC(=O)NC=2C(=CC=C(C=2)C(F)(F)F)Cl)CCC1 NFVJNJQRWPQVOA-UHFFFAOYSA-N 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 101000741929 Caenorhabditis elegans Serine/threonine-protein phosphatase 2A catalytic subunit Proteins 0.000 description 3
- 102100029458 Glutamate receptor ionotropic, NMDA 2A Human genes 0.000 description 3
- 101000617285 Homo sapiens Tyrosine-protein phosphatase non-receptor type 6 Proteins 0.000 description 3
- 102100021657 Tyrosine-protein phosphatase non-receptor type 6 Human genes 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 108091008634 hepatocyte nuclear factors 4 Proteins 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 208000032612 Glial tumor Diseases 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- 102000013275 Somatomedins Human genes 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003110 anti-inflammatory effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 230000020477 pH reduction Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000003757 reverse transcription PCR Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108010009306 Forkhead Box Protein O1 Proteins 0.000 description 1
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 1
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 238000000134 MTT assay Methods 0.000 description 1
- 231100000002 MTT assay Toxicity 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 102000001788 Proto-Oncogene Proteins c-raf Human genes 0.000 description 1
- 108010029869 Proto-Oncogene Proteins c-raf Proteins 0.000 description 1
- 102000004278 Receptor Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000873 Receptor Protein-Tyrosine Kinases Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 230000007783 downstream signaling Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000004089 microcirculation Effects 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009822 protein phosphorylation Effects 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/58—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了隐丹参酮在制备肿瘤药物中的应用,本发明发现了隐丹参酮(CTS)可以显著抑制肿瘤细胞IGF‑1R的磷酸化水平。这种抑制作用至少部分是通过磷酸酶SHP2介导的。干扰这些磷酸酶SHP2表达后,能够逆转CTS对IGF‑1R磷酸化水平的抑制作用。本发明还发现CTS能时间和剂量依赖性地增加SHP2的磷酸化水平;CTS处理后SHP2的磷酸酶活性增加,这些发现对肿瘤的有效治疗具有重要意义。
Description
技术领域
本发明涉及隐丹参酮在制备肿瘤药物中的应用。
背景技术
隐丹参酮(Cryptotanshinone,CTS)是活血化瘀类中药丹参的有效成分之一,其独特的化学结构和药动学特性使其逐渐成为人们关注的对象。它具有清除氧自由基、抗感染、改善微循环等广泛的药理作用,研究证实其在抗菌消炎、代谢紊乱性疾病及神经退行性疾病等方面显示出很好的前景,临床上主要用于抗炎及心血管系统疾病的治疗。近年来它的抗肿瘤活性也逐渐被认识,研究发现CTS对多种人类肿瘤如前列腺癌、神经胶质细胞瘤、淋巴细胞白血病等具有明显的抑制作用,引起了人们的广泛关注,但对其作用机制的研究还不是很多,尚需要从分子机制及对细胞信号通路的影响等方面深入探讨。
胰岛素样生长因子1(Insulin-like Growth Factor-1,IGF-1)是胰岛素样生长因子系统的重要成员,是一种作用于多种组织和器官的多功能细胞调控因子。对大多数细胞而言,IGF-1是一种强有力的有丝分裂原,可以促进细胞的存活,对抗凋亡。IGF-1生物学功能的发挥依赖于其高亲和力受体IGF-1R。IGF-1R属于酪氨酸激酶受体家族,在多种肿瘤细胞中高度表达。大量研究表明IGF-1R及其下游PI3K/Akt、Ras/Raf/MAPK信号通路的过度激活在肿瘤的发生、发展中发挥重要作用。因此抑制IGF-1R及下游促存活信号通路的活性已经成为抑制肿瘤生长的重要对策之一。
发明内容
为了解决上述存在的问题,本发明主要研究了CTS对IGF-1诱导的肿瘤细胞增殖的影响,研究IGF-1R信号通路调控的关键因子,并从细胞内信号转导角度研究其可能的作用机制,从进一步阐述CTS在治疗肿瘤中的应用。
本发明的目的在于提供隐丹参酮在制备肿瘤药物中的应用。
本发明所采取的技术方案是:
蛋白酪氨酸磷酸酶SHP2的活性诱导剂在制备肿瘤药物中的应用。
进一步的,上述活性诱导剂为隐丹参酮。
本发明的有益效果是:
本发明发现了CTS(隐丹参酮)可以显著抑制肿瘤细胞IGF-1R的磷酸化水平。这种抑制作用至少部分是通过磷酸酶SHP2介导的。干扰这些磷酸酶SHP2表达后,能够逆转CTS对IGF-1R磷酸化水平的抑制作用。本发明还发现CTS能时间和剂量依赖性地增加SHP2的磷酸化水平;CTS处理后SHP2的磷酸酶活性增加,这些发现对肿瘤的有效治疗具有重要意义。
附图说明
图1为不同浓度IGF-1处理对PC12细胞增殖的影响;CTL表示对照;
图2为不同浓度IGF-1处理对hRPE细胞增殖的影响;CTL表示对照;
图3为CTS对IGF-1诱导的PC12细胞增殖的影响;
图4为 CTS剂量依赖性降低IGF-1诱导的IGF-1R及其下游PI3K/Akt和Ras/Erk的磷酸化;
图5为CTS对IGF-1R下游PI3K/Akt及Ras/Erk级联信号通路的影响,A为CTS 对IGF-1R及其下游Akt、Foxo3a、GSK3β磷酸化水平的影响,B为CTS 在Raf / MEK1/2 / Erk1/2级联信号通路中对相关蛋白磷酸化水平的影响;
图6为磷酸酶CD45、SHP2、LAR siRNA干扰效率验证;
图7为转染蛋白磷酸酶siRNA对CTS抑制IGF-1R磷酸化的影响;
图8为不同CTS剂量对SHP2磷酸化水平的影响;
图9为CTS处理不同时间后对SHP2磷酸化水平的影响。
具体实施方式
下面结合具体实施例对本发明作进一步的说明,但并不局限于此。
实施例1 IGF-1诱导细胞增殖
分别加入终浓度为1、3、10、30、100 μg·L–1的IGF-1处理PC12细胞和hRPE细胞。每孔分别加入10 μL IGF-1,对照组加入相同体积的DMEM培养液。每个浓度设3-5个复孔。置于37℃,5% CO2细胞培养箱培养24 h后,吸去培养基,行MTT assay检测,测定IGF-1对PC12细胞、hRPE细胞增殖的影响。
MTT检测结果如图1和图2所示,从图1中可以看出,不同浓度的IGF-1作用于PC12细胞后,与空白组相比,IGF-1能显著地促进细胞的增殖,并呈剂量依赖性。IGF-1浓度为3 μg·L–1时已经对PC12细胞的增殖有促进作用(P<0.05),到10 μg·L–1时,对细胞增殖的促进作用已经极显著(P<0.01)。
从图1中可以看出,不同浓度的IGF-1作用于hRPE细胞后,与空白组相比, IGF-1能显著地促进细胞的增殖,并呈剂量依赖性。IGF-1浓度为10 μg·L–1时已经对hRPE细胞的增殖有促进作用(P<0.05),到100 μg·L–1时,对细胞增殖的促进作用已经非常显著(P<0.01),之后浓度增加,对细胞增殖的作用已不明显,提示已达到峰值。IGF-1剂量依赖性地促进hRPE细胞的增殖,与PC12细胞类似。
实施例2 隐丹参酮对IGF-1诱导的细胞增殖的抑制作用
为了考察CTS对IGF-1诱导PC12细胞增殖是否具有抑制作用,我们首先加入CTS(20μM)预处理PC12细胞40 min,之后加入IGF-1(10μg/L)共同作用于PC12细胞24 h,以MTT法检测CTS对IGF-1诱导的细胞增殖的影响。同时设置只用10 μg·L–1 IGF-1处理的对照组;只用CTS(20 μM)处理的对照组;以及无IGF-1和CTS条件下培养的对照组。每个浓度设3-5个复孔。置于37℃,5% CO2细胞培养箱培养24 h后,吸去培养基,进行MTT检测,考察CTS对IGF-1诱导的细胞增殖作用的影响。
MTT检测结果如图3所示,从中可以看出,与空白对照组相比,IGF-1处理组对PC12细胞的增殖有明显的促进作用(P<0.01),而CTS处理组则对PC12细胞的生长有显著的抑制作用(P<0.01)。CTS+IGF-1共同处理组与IGF-1组比较的结果,显示CTS能显著抑制IGF-1的促增殖作用,并使其恢复至与空白对照组相近的水平(P<0.01)。提示CTS可通过抑制IGF-1的增殖作用发挥抗细胞增殖的作用。
实施例3 隐丹参酮对I IGF-1R信号通路的抑制作用
1)CTS对IGF-1诱导的IGF-1R、PI3K/Akt及Ras/Erk蛋白磷酸化水平的影响
为了研究CTS对IGF-1刺激引起的IGF-1R及其下游PI3K/Akt和Ras/Erk的磷酸化的作用,我们用CTS干预PC12细胞,之后IGF-1处理10 min。收集样品,用Western Blot检测IGF-1R,Akt以及Erk的磷酸化水平,制备IGF-1R,Akt以及Erk磷酸化水平随CTS处理而改变的量效曲线和时效曲线。
Western Blot结果如图4所示,从中可以看出,使用不同浓度CTS处理PC12细胞40min,随着CTS浓度的增加,IGF-1R的磷酸化水平逐渐下降,呈剂量依赖性。其下游两条主要的信号通路:PI3K/Akt和Erk1/2的磷酸化水平也出现明显下降,而总Akt和总Erk的蛋白水平没有发生变化,表明CTS处理能剂量依赖性降低Akt、Erk的磷酸化水平。如图所示,CTS浓度为10-30 μM时即可明显降低磷酸化水平,故后续实验CTS以20 μM的剂量来进行。
2)CTS对IGF-1R下游级联信号通路的影响
前面的结果显示,CTS处理能影响IGF-1R下游Akt以及Erk的磷酸化水平,为了研究CTS在PI3K / Akt / GSK3β和Raf / MEK1/2 / Erk1/2级联信号通路中发挥的作用,开展了进一步的实验探讨。
使用20 μM的CTS预处理PC12细胞40 min后,再用10 μg·L–1 的IGF-1诱导10 min,如图2-6所示,10 μg·L–1 的IGF-1诱导能显著增强IGF-1R及其下游级联信号通路的磷酸化水平。在PI3K /Akt/ GSK3β级联信号通路中,CTS 20 μM预处理能够显著抑制IGF-1R的磷酸化水平,并能降低其下游Akt,Foxo3a,GSK3β的磷酸化水平,但对FoxO1(Ser256)的磷酸化作用不明显(图5A)。而在Raf / MEK1/2 / Erk1/2级联信号通路中,CTS能够降低c-Raf和Erk1/2的磷酸化水平,但对MEK1/2的磷酸化水平作用不明显(图5B)。
另外,本发明还在大鼠C6胶质瘤细胞中进行了上述实施例1~3中所述的实验,其结果也上述PC12细胞的结果类似,说明CTS在其他肿瘤细胞株中也具有抑制IGF-1R磷酸化的作用。
上述结果说明CTS能够剂量依赖性地抑制IGF-1诱导的PC12细胞增殖,并且能够剂量依赖性和时间依赖性地降低IGF-1R及其下游信号通路的磷酸化。在大鼠C6胶质瘤细胞中,CTS也能够剂量依赖性降低IGF-1诱导的IGF-1R磷酸化。CTS的抑制细胞增殖的作用可能是因为降低了IGF-1R信号通路的磷酸化水平。
实施例4隐丹参酮抑制IGF-1R磷酸化的机制研究
1)蛋白磷酸酶siRNA干扰效率验证
本发明从磷酸酶的角度探讨CTS抑制IGF-1R磷酸化以及细胞增殖的作用机制。
根据文献查阅以及相关研究,找出若干能与IGF-1R相互作用的蛋白磷酸酶,设计特异siRNA干扰这些蛋白磷酸酶,每种蛋白磷酸酶的siRNA各有两组。收集PC12细胞并进行电转染,转染各组磷酸酶的siRNA 及Negative control-siRNA(NC-siRNA)。待转染36 h,采用RT-PCR验证siRNA的干扰效率,筛选出有效的siRNA序列。
实验室前期研究结果表明,合成的磷酸酶siRNA序列均能有效地干扰相应蛋白磷酸酶的表达,能够满足后续实验的需求。从图6的RT-PCR检测结果中可知,转染siRNA之后,磷酸酶如CD45、SHP2、LAR与阴性对照相比,mRNA的表达显著被抑制。
2)作用于IGF-1R的几种磷酸酶对CTS抑制IGF-1R磷酸化的影响
前面的结果提示了CTS能够抑制IGF-1R的磷酸化,并能下调其下游Akt及Erk的磷酸化水平,呈剂量和时间依赖性。为了研究CTS是如何影响IGF-1R磷酸化的水平,合成作用于IGF-1R的几种蛋白磷酸酶的siRNA,并运用Western blot检测CTS处理对IGF-1R磷酸化水平的影响。
方法:收集PC12细胞并进行电转染,转染已经过干扰效率验证的蛋白磷酸酶的siRNA(SHP1、SHP2、PP2A、NR2A、CD45和LAR 的siRNA)及Negative control-siRNA,结束后接种于12孔板中,转染36 h后,加入20 μM的CTS处理40 min,再加入10 μg·L–1 的IGF-1干预10 min,迅速抽出细胞培养板中的培养基,用冰冷PBS润洗两次,采用Western Blot检测可能相关的蛋白的表达水平以及信号通路的变化情况,考察在以上蛋白磷酸酶的表达被干扰的情况下,CTS抑制IGF-1R磷酸化作用是否被逆转,并研究干扰哪种或是哪些特异磷酸酶可以逆转CTS的作用。
Western Blot检测结果如图7所示,从中可以看出,IGF-1处理未转染的PC12细胞,磷酸化水平做为阳性对照,较空白组显著增强;转染NC-siRNA做为阴性对照,CTS处理能降低IGF-1R的磷酸化水平;在转染的6种磷酸酶的siRNA(SHP1、SHP2、PP2A、NR2A、CD45和LAR的siRNA)中,转染SHP2-siRNA后,CTS对IGF-1R磷酸化水平的抑制作用被逆转。经分析,逆转后的磷酸化水平与转染SHP2-siRNA的IGF-1处理组的磷酸化水平并没有显著性差异(P>0.05),而转染SHP1、PP2A、NR2A、CD45、LAR的siRNA并没有得到类似的效果。
结果表明:SHP2被干扰后,CTS降低IGF-1R磷酸化水平的作用被抑制,提示蛋白磷酸酶SHP2在CTS抑制IGF-1R磷酸化从而抑制肿瘤细胞增殖的作用过程中扮演重要角色。
3)CTS剂量和时间处理对SHP2磷酸化水平的影响
为进一步考察蛋白磷酸酶SHP2在CTS降低IGF-1R磷酸化过程中的作用,以及CTS与SHP2之间的相互关系,采用Western blot检测CTS不同剂量以及不同时程处理对SHP2磷酸化水平的影响。
方法:更换不含血清的DMEM培养液1 h后,分别加入终浓度为1、3、10、30、100 μM的CTS干预细胞40 min,对照组加入相同体积的DMEM培养液。处理结束后,迅速抽出培养板中的培养基,用冰冷的PBS润洗两次,收集蛋白样品,采用Western Blot检测CTS剂量处理对上述特异磷酸酶的磷酸化水平的影响。
Western Blot检测结果如图8所示,随着CTS浓度的增加,SHP2的磷酸化水平逐渐增加,具有明显的剂量依赖性。
方法:更换不含血清的DMEM培养液1 h后,加入20 μM的CTS干预细胞,分别处理5、10、20、40、80 min,对照组加入相同体积的DMEM培养液。处理结束后,迅速抽出培养板中的培养基,用冰冷的PBS润洗两次,收集蛋白样品,采用Western Blot检测CTS时间处理对上述特异磷酸酶的磷酸化水平的影响。
Western Blot检测结果如图9所示,随着CTS作用时间的延长,SHP2的磷酸化水平逐渐增加,具有明显的时间依赖性。
综上所述,本发明从磷酸酶的角度探讨CTS抑制IGF-1R磷酸化的可能机制,发现SHP2可逆转CTS的抑制作用,提示CTS的作用经过SHP2的调控作用;本发明还发现CTS能诱导SHP2的活性,说明CTS的作用通过增加SHP2的活性而实现的。这些结果证明CTS降低IGF-1受体磷酸化水平从而抑制肿瘤细胞增殖的作用,至少部分是通过诱导蛋白酪氨酸磷酸酶SHP2的活化而实现的。
Claims (1)
1.隐丹参酮在制备实验用蛋白酪氨酸磷酸酶SHP2的活性诱导剂中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610543228.4A CN106074571B (zh) | 2016-07-11 | 2016-07-11 | 隐丹参酮在制备肿瘤药物中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610543228.4A CN106074571B (zh) | 2016-07-11 | 2016-07-11 | 隐丹参酮在制备肿瘤药物中的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106074571A CN106074571A (zh) | 2016-11-09 |
CN106074571B true CN106074571B (zh) | 2019-01-11 |
Family
ID=57219683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610543228.4A Expired - Fee Related CN106074571B (zh) | 2016-07-11 | 2016-07-11 | 隐丹参酮在制备肿瘤药物中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106074571B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113952343A (zh) * | 2017-12-11 | 2022-01-21 | 中山大学 | 隐丹参酮在抑制stat5蛋白磷酸化方面的应用 |
US11179397B2 (en) | 2018-10-03 | 2021-11-23 | Gilead Sciences, Inc. | Imidazopyrimidine derivatives |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101518538A (zh) * | 2009-01-14 | 2009-09-02 | 中国药科大学 | 丹参酮类化合物作为cyp1家族特异性抑制剂的用途 |
-
2016
- 2016-07-11 CN CN201610543228.4A patent/CN106074571B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101518538A (zh) * | 2009-01-14 | 2009-09-02 | 中国药科大学 | 丹参酮类化合物作为cyp1家族特异性抑制剂的用途 |
Non-Patent Citations (3)
Title |
---|
"Identification of Cryptotanshinone as an Inhibitor of Oncogenic Protein Tyrosine Phosphatase SHP2 (PTPN11)";Wei Liu et al.;《Journal of Medicinal Chemistry》;20130819;摘要 * |
"隐丹参酮对IGF-1促PC12细胞存活的作用及机制探讨";孟茜等;《中国实验方剂学杂志》;20130531;第19卷(第10期);摘要 * |
"隐丹参酮抑制恶性神经胶质瘤细胞C6增殖对JAK2-STAT3信号通路的影响";唐焕焕等;《安徽医科大学学报》;20160630;第51卷(第6期);摘要 * |
Also Published As
Publication number | Publication date |
---|---|
CN106074571A (zh) | 2016-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Tumor hypoxia enhances non-small cell lung cancer metastasis by selectively promoting macrophage M2 polarization through the activation of ERK signaling | |
Tang et al. | Long noncoding RNA HOTAIR regulates autophagy via the miR-20b-5p/ATG7 axis in hepatic ischemia/reperfusion injury | |
Bi et al. | Effect of shikonin on spinal cord injury in rats via regulation of HMGB1/TLR4/NF-kB signaling pathway | |
Wang et al. | The unfolded protein response induces the angiogenic switch in human tumor cells through the PERK/ATF4 pathway | |
Wu et al. | microRNA-99a inhibiting cell proliferation, migration and invasion by targeting fibroblast growth factor receptor 3 in bladder cancer | |
Qiu et al. | TGF-β upregulates miR-182 expression to promote gallbladder cancer metastasis by targeting CADM1 | |
Wang et al. | MiR-31 downregulation protects against cardiac ischemia/reperfusion injury by targeting protein kinase C epsilon (PKCe) directly | |
McPhillips et al. | Association of c-Raf expression with survival and its targeting with antisense oligonucleotides in ovarian cancer | |
Fan et al. | Sesamin protects against cardiac remodeling via Sirt3/ROS pathway | |
Yan et al. | MiR-135a protects vascular endothelial cells against ventilator-induced lung injury by inhibiting PHLPP2 to activate PI3K/Akt pathway | |
Lan et al. | Lithium enhances TRAIL-induced apoptosis in human lung carcinoma A549 cells | |
Li et al. | Downregulation of microRNA-218 relieves neuropathic pain by regulating suppressor of cytokine signaling 3 | |
Wu et al. | miR-140-3p knockdown suppresses cell proliferation and fibrogenesis in hepatic stellate cells via PTEN-mediated AKT/mTOR signaling | |
CN106074571B (zh) | 隐丹参酮在制备肿瘤药物中的应用 | |
Dong et al. | Effects of miR-143 overexpression on proliferation, apoptosis, EGFR and downstream signaling pathways in PC9/GR cell line. | |
Liu et al. | RETRACTED ARTICLE: Long non-coding RNA SNHG16 reduces hydrogen peroxide-induced cell injury in PC-12 cells by up-regulating microRNA-423-5p | |
Wang et al. | Hsa-let-7c exerts an anti-tumor function by negatively regulating ANP32E in lung adenocarcinoma | |
Cui et al. | Tanshinone I inhibits metastasis of cervical cancer cells by inducing BNIP3/NIX-mediated mitophagy and reprogramming mitochondrial metabolism | |
Sun et al. | Oxymatrine attenuated isoproterenol-induced heart failure via the TLR4/NF-κB and MAPK pathways in vivo and in vitro | |
Baldanzi et al. | Diacylglycerol kinases are essential for hepatocyte growth factor‐dependent proliferation and motility of Kaposi’s sarcoma cells | |
Harb et al. | Nicorandil mitigates amiodarone‐induced pulmonary toxicity and fibrosis in association with the inhibition of lung TGF‐β1/PI3K/Akt1‐p/mTOR axis in rats | |
Guo et al. | Bound polyphenols from insoluble dietary fiber of navel orange peel alleviates cellular inflammation by inhibiting LPS-induced NF-κB/JAK-STAT pathway in RAW264. 7 macrophages | |
Liu et al. | LncRNA Nron deficiency protects mice from diet-induced adiposity and hepatic steatosis | |
Kim et al. | Connexin 43 plays an important role in the transformation of cholangiocytes with Clonochis sinensis excretory-secretory protein and N-nitrosodimethylamine | |
Zhang et al. | Mechanism of action of lncRNA-NEAT1 in immune diseases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190111 Termination date: 20190711 |
|
CF01 | Termination of patent right due to non-payment of annual fee |