CN106054081A - A lithium battery modeling method for electric vehicle power battery SOC estimation - Google Patents
A lithium battery modeling method for electric vehicle power battery SOC estimation Download PDFInfo
- Publication number
- CN106054081A CN106054081A CN201610444271.5A CN201610444271A CN106054081A CN 106054081 A CN106054081 A CN 106054081A CN 201610444271 A CN201610444271 A CN 201610444271A CN 106054081 A CN106054081 A CN 106054081A
- Authority
- CN
- China
- Prior art keywords
- battery
- soc
- model
- parameter
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 19
- 230000007613 environmental effect Effects 0.000 claims abstract description 21
- 238000004364 calculation method Methods 0.000 claims abstract description 9
- 238000002474 experimental method Methods 0.000 claims abstract description 5
- 238000012360 testing method Methods 0.000 claims abstract description 5
- 230000010287 polarization Effects 0.000 claims description 13
- 238000013178 mathematical model Methods 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims 1
- 230000005611 electricity Effects 0.000 claims 1
- 238000012545 processing Methods 0.000 claims 1
- 238000011160 research Methods 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract 1
- 238000005070 sampling Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
Abstract
Description
技术领域technical field
本发明涉及电池SOC建模方法领域,具体是一种用于电动汽车动力电池SOC估计的锂电池建模方法。The invention relates to the field of battery SOC modeling methods, in particular to a lithium battery modeling method for estimating the SOC of an electric vehicle power battery.
背景技术Background technique
SOC,即state of charge,指的是电池剩余荷电状态,一般定义为当前电池剩余容量与标称容量的比值,直接影响动力电池组均衡控制的有效性以及电动汽车续航里程判断的可靠性。然而,电动汽车复杂的运行工况给SOC的精确估计带来了较大的困难,建立精确的锂电池模型是提高SOC估算精度的关键,目前常用的锂电池等效电路模型有Rint模型、RC模型、Thevenin模型和PNGV模型等,其中Thevenin模型具有物理意义明确、模型参数辨识实验容易执行等优点,被广泛应用于电池的数学建模中,但其参数固定,无法反映电池动态特性。SOC, that is, state of charge, refers to the remaining state of charge of the battery, generally defined as the ratio of the current remaining capacity of the battery to the nominal capacity, which directly affects the effectiveness of the balance control of the power battery pack and the reliability of the mileage judgment of the electric vehicle. However, the complex operating conditions of electric vehicles have brought great difficulties to the accurate estimation of SOC. Establishing an accurate lithium battery model is the key to improving the accuracy of SOC estimation. Currently, the commonly used lithium battery equivalent circuit models include Rint model, RC Among them, Thevenin model has the advantages of clear physical meaning and easy implementation of model parameter identification experiments. It is widely used in mathematical modeling of batteries, but its parameters are fixed and cannot reflect the dynamic characteristics of batteries.
现有的SOC估计方法中,对环境条件尤其是温度影响的考虑并不全面,实际上,电池模型的参数随环境温度的变化不断变化,其可用容量在不同温度条件下差别很大,因此温度在很大程度上影响着电池模型的精确度,进而影响着SOC的估计精度。而随着季节变化和纬度差异,电动汽车运行过程中存在较大的温度变化,所以单纯采用固定模型进行剩余容量估算会存在很大的误差,有算法提出通过温度补偿系数对SOC进行修正,或者直接通过安时积分结果对不同温度下估算的SOC进行换算。对于上述方法,温度的影响直接作为修正因子作用于SOC估计结果,其对电池模型的影响仍需进一步研究。In the existing SOC estimation methods, the consideration of environmental conditions, especially the influence of temperature is not comprehensive. In fact, the parameters of the battery model change continuously with the change of ambient temperature, and its available capacity varies greatly under different temperature conditions. Therefore, the temperature To a large extent, it affects the accuracy of the battery model, which in turn affects the estimation accuracy of SOC. With seasonal changes and latitude differences, there are large temperature changes during the operation of electric vehicles, so simply using a fixed model to estimate the remaining capacity will have a large error. Some algorithms propose to correct the SOC through the temperature compensation coefficient, or The estimated SOC at different temperatures is converted directly through the ampere-hour integration results. For the above method, the influence of temperature directly acts on the SOC estimation result as a correction factor, and its influence on the battery model still needs further study.
发明内容Contents of the invention
本发明的目的是提供一种用于电动汽车动力电池SOC估计的锂电池建模方法,以解决现有技术算法中模型适用范围局限性的问题。The purpose of the present invention is to provide a lithium battery modeling method for SOC estimation of electric vehicle power batteries, so as to solve the problem of the limitation of the scope of application of the model in the algorithm of the prior art.
为了达到上述目的,本发明所采用的技术方案为:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种用于电动汽车动力电池SOC估计的锂电池建模方法,其特征在于:综合考虑包括温度在内的SOC环境因素的影响,将锂电池Thevenin模型中各电气参数定义为环境变量的函数,并通过混合动力脉冲能力特性HPPC实验得到模型参数,首先通过测试和计算得到电池模型实际参数值,并以此为依据确定模型的 参数拟合方法;A lithium battery modeling method for electric vehicle power battery SOC estimation, characterized in that: comprehensively considering the influence of SOC environmental factors including temperature, defining each electrical parameter in the lithium battery Thevenin model as a function of environmental variables, And the model parameters are obtained through the HPPC experiment of the hybrid pulse capability characteristics. First, the actual parameter values of the battery model are obtained through testing and calculation, and the parameter fitting method of the model is determined based on this;
根据Thevenin模型,锂电池内部存在极化电容Cpol和极化电阻Rpol相并联,并与表征开路电压的直流电压源Uoc、欧姆内阻Rohm和其他内阻R0串联组合,其中极化电容Cpol、极化电阻Rpol、欧姆内阻Rohm均为可变参数,与电池SOC环境因素有关,对于模型中的各电气参数可以通过可实际检测到的参数进行计算,通过混合动力脉冲能力特性HPPC实验计算得到模型参数;According to the Thevenin model, there is a polarization capacitance Cpol and a polarization resistance Rpol in the lithium battery, which are connected in parallel, and are combined in series with the DC voltage source Uoc representing the open circuit voltage, the ohmic internal resistance Rohm and other internal resistances R0, where the polarization capacitance Cpol, pole The chemical resistance Rpol and the ohmic internal resistance Rohm are variable parameters, which are related to the battery SOC environmental factors. The electrical parameters in the model can be calculated through the parameters that can be actually detected, and the model is obtained through the HPPC experimental calculation of the hybrid power pulse capability characteristic. parameter;
分析实验数据获取不同环境因素点各电气参数值,利用离散数据曲线拟合方法,得到各电气参数与环境因素的函数关系;可以看出,在SOC小于30%的范围内,欧姆内阻Rohm会突然升高,而当SOC大于30%时,SOC对欧姆内阻Rohm的影响并不明显,而温度对SOC的影响是一个连续的过程,因此分析影响因素后对电池模型参数进行分段处理;Analyze the experimental data to obtain the electrical parameter values of different environmental factors, and use the discrete data curve fitting method to obtain the functional relationship between each electrical parameter and environmental factors; it can be seen that in the range where the SOC is less than 30%, the ohmic internal resistance Rohm It suddenly rises, and when the SOC is greater than 30%, the influence of SOC on the ohmic internal resistance Rohm is not obvious, and the influence of temperature on SOC is a continuous process, so after analyzing the influencing factors, the battery model parameters are segmented;
锂离子动力电池的数学模型是估算电池SOC的基础,通过所建立的模型能够得到电池的观测方程,观测方程描述了SOC、充放电电流、温度因素与电池端电压的函数关系;将电池实际容量设定为一个随温度变化的量,通过研究电池实际容量在不同温度下的变化规律,引入温度补偿系数ηT修正不同温度下电池实际容量与电池额定容量之间的误差。The mathematical model of the lithium-ion power battery is the basis for estimating the SOC of the battery. The observation equation of the battery can be obtained through the established model. The observation equation describes the functional relationship between the SOC, charge and discharge current, temperature factors and the battery terminal voltage; the actual capacity of the battery It is set as a quantity that changes with temperature, and by studying the change law of the actual battery capacity at different temperatures, the temperature compensation coefficient ηT is introduced to correct the error between the actual capacity of the battery and the rated capacity of the battery at different temperatures.
与原有技术相比,本发明的有益效果体现在:Compared with the prior art, the beneficial effects of the present invention are reflected in:
(1)在锂电池的Thevenin模型中,将欧姆内阻、极化内阻、极化电容等参数定义为环境变量的函数,并进行参数拟合,提高了电池模型的准确度,扩展了模型的适用范围。(1) In the Thevenin model of lithium batteries, parameters such as ohmic internal resistance, polarization internal resistance, and polarization capacitance are defined as functions of environmental variables, and parameter fitting is performed to improve the accuracy of the battery model and expand the model scope of application.
(2)所采用的参数辨识方法考虑到了锂电池的物理特性,测量结果准确,辨识得到的参数更加接近实际值。(2) The parameter identification method adopted takes into account the physical characteristics of lithium batteries, the measurement results are accurate, and the identified parameters are closer to the actual values.
附图说明Description of drawings
图1为本发明测定的Rohm和环境因素关系。Fig. 1 is the relationship between Rohm and environmental factors measured by the present invention.
图2为本发明具体实施例中采样环节硬件系统结构图。FIG. 2 is a structural diagram of the hardware system of the sampling link in a specific embodiment of the present invention.
图3为本发明具体实施例中对多节串联电池组的电压采样电路图。Fig. 3 is a circuit diagram of voltage sampling for a multi-series battery pack in a specific embodiment of the present invention.
图4为本发明具体实施例中温度采样电路图。Fig. 4 is a temperature sampling circuit diagram in a specific embodiment of the present invention.
具体实施方式detailed description
一种用于电动汽车动力电池SOC估计的锂电池建模方法,综合考虑包括温 度在内的SOC环境因素的影响,将锂电池Thevenin模型中各电气参数定义为环境变量的函数,并通过混合动力脉冲能力特性HPPC实验得到模型参数,首先通过测试和计算得到电池模型实际参数值,并以此为依据确定模型的参数拟合方法;A lithium battery modeling method for SOC estimation of electric vehicle power batteries, comprehensively considering the influence of SOC environmental factors including temperature, defining each electrical parameter in the lithium battery Thevenin model as a function of environmental variables, and through hybrid The model parameters are obtained from the HPPC experiment of pulse capability characteristics. First, the actual parameter values of the battery model are obtained through testing and calculation, and the parameter fitting method of the model is determined based on this;
根据Thevenin模型,锂电池内部存在极化电容Cpol和极化电阻Rpol相并联,并与表征开路电压的直流电压源Uoc、欧姆内阻Rohm和其他内阻R0串联组合,其中极化电容Cpol、极化电阻Rpol、欧姆内阻Rohm均为可变参数,与电池SOC环境因素有关,对于模型中的各电气参数可以通过可实际检测到的参数进行计算,通过混合动力脉冲能力特性HPPC实验计算得到模型参数;According to the Thevenin model, there is a polarization capacitance Cpol and a polarization resistance Rpol in the lithium battery, which are connected in parallel, and are combined in series with the DC voltage source Uoc representing the open circuit voltage, the ohmic internal resistance Rohm and other internal resistances R0, where the polarization capacitance Cpol, pole The chemical resistance Rpol and the ohmic internal resistance Rohm are variable parameters, which are related to the battery SOC environmental factors. The electrical parameters in the model can be calculated through the parameters that can be actually detected, and the model is obtained through the HPPC experimental calculation of the hybrid power pulse capability characteristic. parameter;
分析实验数据获取不同环境因素点各电气参数值,利用离散数据曲线拟合方法,得到各电气参数与环境因素的函数关系;可以看出,在SOC小于30%的范围内,欧姆内阻Rohm会突然升高,而当SOC大于30%时,SOC对欧姆内阻Rohm的影响并不明显,而温度对SOC的影响是一个连续的过程,因此分析影响因素后对电池模型参数进行分段处理;Analyze the experimental data to obtain the electrical parameter values of different environmental factors, and use the discrete data curve fitting method to obtain the functional relationship between each electrical parameter and environmental factors; it can be seen that in the range where the SOC is less than 30%, the ohmic internal resistance Rohm It suddenly rises, and when the SOC is greater than 30%, the influence of SOC on the ohmic internal resistance Rohm is not obvious, and the influence of temperature on SOC is a continuous process, so after analyzing the influencing factors, the battery model parameters are segmented;
锂离子动力电池的数学模型是估算电池SOC的基础,通过所建立的模型能够得到电池的观测方程,观测方程描述了SOC、充放电电流、温度因素与电池端电压的函数关系;The mathematical model of the lithium-ion power battery is the basis for estimating the SOC of the battery. The observation equation of the battery can be obtained through the established model. The observation equation describes the functional relationship between SOC, charge and discharge current, temperature factors and the battery terminal voltage;
在传统基于EKF的SOC估计方法中,电池的可用总容量Qreal被看作一个恒定的值,实际上,环境因素中的温度会影响Qreal,进而对SOC估计值的精度产生影响。In the traditional EKF-based SOC estimation method, the total available capacity Qreal of the battery is regarded as a constant value. In fact, the temperature in the environmental factors will affect Qreal, and then affect the accuracy of the SOC estimation value.
将电池实际容量设定为一个随温度变化的量,为探讨温度对Qreal的影响,通过研究电池实际容量在不同温度下的变化规律,引入温度补偿系数ηT修正不同温度下电池实际容量与电池额定容量之间的误差。The actual capacity of the battery is set as a quantity that changes with temperature. In order to explore the influence of temperature on Qreal, by studying the change law of the actual capacity of the battery at different temperatures, the temperature compensation coefficient ηT is introduced to correct the actual capacity of the battery at different temperatures. Error between rated capacities.
由于热管理系统和电池放电发热现象的存在,在电动汽车运行过程中电池温度会发生变化,在环境温度偏较低时,电池温度会随运行时间的增长而不断升高,因此电池实际可放出的电量不断升高,因此电池实际容量设定为一个随温度变化的量。Due to the existence of the thermal management system and the heat generated by battery discharge, the battery temperature will change during the operation of the electric vehicle. The power of the battery is constantly increasing, so the actual capacity of the battery is set as an amount that changes with temperature.
电池SOC估计分为两部分,第一部分为电池数学模型的建立,第二部分为硬件系统的设计。The battery SOC estimation is divided into two parts, the first part is the establishment of the battery mathematical model, and the second part is the design of the hardware system.
建模环节模型公式如下:The model formula of the modeling link is as follows:
Uoc=U1+RohmIB+UB (1)U oc =U 1 +R ohm I B +U B (1)
式中IB为电池的充放电电流,U1为Rpol和Cpol两端的电压。通过成组混合动力脉冲能力特性试验可以计算得到电池内阻与温度和SOC的关系,根据电池内阻与SOC变化的密切程度可以将电池内阻表达式分为两段:In the formula, IB is the charging and discharging current of the battery, and U1 is the voltage across Rpol and Cpol. The relationship between battery internal resistance, temperature and SOC can be calculated through the group hybrid pulse capability test, and the battery internal resistance expression can be divided into two sections according to the closeness of battery internal resistance and SOC changes:
Cpol=τ/Rpol (4)C pol =τ/R pol (4)
式中Rohm表示动力电池欧姆内阻,Rpol表示电池极化内阻,Cpol表示电池极化电容,T表示电池工作环境温度,SOC表示电池剩余电量。当电池剩余容量大于30%时,电池模型参数受电池SOC变化影响很小,可以简化为电池模型对环境温度的函数,降低算法复杂度;当电池剩余容量小于30%时,电池模型参数随电池SOC变化会有明显的改变,因此电池模型参数是与电池SOC和环境温度相关的二元关系式。In the formula, Rohm represents the ohmic internal resistance of the power battery, Rpol represents the internal resistance of the battery polarization, Cpol represents the polarization capacitance of the battery, T represents the working environment temperature of the battery, and SOC represents the remaining power of the battery. When the remaining capacity of the battery is greater than 30%, the battery model parameters are less affected by the change of battery SOC, which can be simplified as a function of the battery model to the ambient temperature to reduce the complexity of the algorithm; when the remaining capacity of the battery is less than 30%, the parameters of the battery model vary with the battery The change of SOC will change significantly, so the battery model parameters are binary relational expressions related to battery SOC and ambient temperature.
放电过程中SOC状态方程为The SOC state equation during the discharge process is
Qreal=Qfull/ηT (6)Q real = Q full /η T (6)
其中SOC(t)为t时刻的瞬时SOC值;SOC(0)为初始SOC值;i(t)为t时刻瞬时电流值;Qreal为电池可用总容量。Qfull为电池标称总容量,ηT为比例系数,用于补偿影响因素对电池总容量的影响。这是直接对电池放电进行安时积分,但是随时间积分误差会不断累加造成SOC估计误差偏大,因此采用扩展卡尔曼滤波算法(EKF)消除累积误差提高算法精度。in SOC(t) is the instantaneous SOC value at time t; SOC(0) is the initial SOC value; i(t) is the instantaneous current value at time t; Qreal is the total available capacity of the battery. Qfull is the nominal total capacity of the battery, and ηT is a proportional coefficient, which is used to compensate the influence of influencing factors on the total capacity of the battery. This is to directly integrate the ampere-hour of battery discharge, but the integration error will continue to accumulate over time, resulting in a large SOC estimation error. Therefore, the extended Kalman filter algorithm (EKF) is used to eliminate the accumulated error and improve the accuracy of the algorithm.
UB(SOC,T)=Uoc(SOC,T)-U1(SOC,T)-Rohm(SOC,T)·IB (7)U B (SOC, T) = U oc (SOC, T) - U 1 (SOC, T) - R ohm (SOC, T) · I B (7)
yk=Uoc(xk)-U1(xk,T)-Rohm(xk,T)·μk+vk (9)y k =U oc (x k )-U 1 (x k , T)-R ohm (x k , T)·μ k +v k (9)
式(7)是根据图1所建立电池模型得到的电池非线性状态空间模型的观测方程。在EKF算法中,电池模型的状态变量xk为唯一变量,表征第k次计算得到的SOC,观测变量yk表征通过电池模型第k次计算得到的电池端电压UB,输入变量μk表征第k次计算时的电池充放电电流IB。将式(5)和(7)离散化可得电池的离散状态空间模型为式(8)和式(9)。其中Δt为采样周期,wk为系统噪声,vk为观测噪声,二者为不相关的零均值Gauss白噪声,Uoc为电池开路电压,是仅与SOC有关的变量。Equation (7) is the observation equation of the battery nonlinear state space model obtained according to the battery model established in Fig. 1. In the EKF algorithm, the state variable xk of the battery model is the only variable, representing the SOC obtained by the kth calculation, the observed variable yk represents the battery terminal voltage UB obtained by the kth calculation of the battery model, and the input variable μk represents the kth calculation When the battery charge and discharge current IB. The discrete state space model of the battery can be obtained by discretizing equations (5) and (7) as equations (8) and (9). Among them, Δt is the sampling period, wk is the system noise, vk is the observation noise, the two are uncorrelated zero-mean Gauss white noise, and Uoc is the open circuit voltage of the battery, which is a variable only related to SOC.
采样环节硬件系统结构图Sampling link hardware system structure diagram
为实现电池模型数据采集,需采集的量有电池电压、温度和充放电电流。硬件结构图如图2所示。In order to realize the data acquisition of the battery model, the quantities to be collected include battery voltage, temperature and charge and discharge current. The hardware structure diagram is shown in Figure 2.
由于电动汽车动力电池串联节数一般较多,电压采集采用Linear公司的LTC6803-4芯片,检测12节串联电池单体电压,并且可以堆叠架构实现对多节串联电池组的电压采样。电路结构如图3所示。Since the electric vehicle power battery generally has a large number of series cells, the voltage acquisition adopts Linear's LTC6803-4 chip to detect the voltage of 12 series-connected battery cells, and the stacking structure can realize the voltage sampling of multi-cell series battery packs. The circuit structure is shown in Figure 3.
温度采集采用100kΩNTC温感对电池温度采集。用电压基准给电阻和NTC温感的串联电路供电,采集温感和电阻的串联分压,经由信号调理电路,直接送入MCU内置的ADC进行电压采集,计算温感电阻值,再根据温感温度与阻值对照表即可得出温度值。采样电路如图4所示。The temperature collection adopts 100kΩ NTC temperature sensor to collect the battery temperature. Use the voltage reference to supply power to the series circuit of the resistor and the NTC temperature sensor, collect the series voltage division of the temperature sensor and the resistor, and send it directly to the ADC built in the MCU for voltage acquisition through the signal conditioning circuit, calculate the temperature sensor resistance value, and then calculate the temperature sensor value according to the temperature sensor The temperature value can be obtained from the comparison table of temperature and resistance value. The sampling circuit is shown in Figure 4.
电流采集采用外置霍尔传感器,通过匹配霍尔传感器,得到电流,经过霍尔传感器信号调理,进行充放电电流采集。The current acquisition adopts an external Hall sensor. By matching the Hall sensor, the current is obtained, and the charging and discharging current is collected after the signal conditioning of the Hall sensor.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610444271.5A CN106054081A (en) | 2016-06-17 | 2016-06-17 | A lithium battery modeling method for electric vehicle power battery SOC estimation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610444271.5A CN106054081A (en) | 2016-06-17 | 2016-06-17 | A lithium battery modeling method for electric vehicle power battery SOC estimation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106054081A true CN106054081A (en) | 2016-10-26 |
Family
ID=57168552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610444271.5A Pending CN106054081A (en) | 2016-06-17 | 2016-06-17 | A lithium battery modeling method for electric vehicle power battery SOC estimation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106054081A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106680722A (en) * | 2016-12-01 | 2017-05-17 | 威胜集团有限公司 | OCV-SOC curve real-time online prediction method and device |
CN107064815A (en) * | 2017-03-31 | 2017-08-18 | 惠州市蓝微新源技术有限公司 | A kind of internal resistance of cell computational methods |
CN107167743A (en) * | 2017-06-29 | 2017-09-15 | 北京新能源汽车股份有限公司 | Electric vehicle-based state of charge estimation method and device |
CN107870305A (en) * | 2017-12-04 | 2018-04-03 | 浙江大学城市学院 | On-line parameter identification and SOH estimation method of lithium-ion battery based on temperature parameters |
CN108490361A (en) * | 2018-03-22 | 2018-09-04 | 深圳库博能源科技有限公司 | A kind of state-of-charge SoC computational methods based on high in the clouds feedback |
CN109143092A (en) * | 2017-06-19 | 2019-01-04 | 宁德时代新能源科技股份有限公司 | Method and device for generating cell model and acquiring cell voltage and battery management system |
CN109669131A (en) * | 2018-12-30 | 2019-04-23 | 浙江零跑科技有限公司 | Power battery SOC estimation method under a kind of work condition environment |
CN110133505A (en) * | 2018-02-05 | 2019-08-16 | 南京湛研能源科技有限公司 | A kind of power battery charging and discharging state observation method based on variable parameter model |
CN110188376A (en) * | 2019-04-12 | 2019-08-30 | 汉腾汽车有限公司 | A kind of power battery for hybrid electric vehicle initial quantity of electricity algorithm |
CN110221219A (en) * | 2019-07-03 | 2019-09-10 | 中国民用航空飞行学院 | Airborne circumstance is got off the plane lithium battery SOC estimation method |
CN111308363A (en) * | 2020-02-17 | 2020-06-19 | 中南大学 | Lithium battery state of charge estimation device and method based on self-adaptive model |
WO2021035500A1 (en) * | 2019-08-27 | 2021-03-04 | 淄博火炬能源有限责任公司 | Online state of charge (soc) estimation system for 48v mild hybrid vehicle lithium ion battery |
CN112557925A (en) * | 2020-11-11 | 2021-03-26 | 国联汽车动力电池研究院有限责任公司 | Lithium ion battery SOC estimation method and device |
CN115856644A (en) * | 2023-02-28 | 2023-03-28 | 华东交通大学 | A modeling method for energy storage batteries |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103454592A (en) * | 2013-08-23 | 2013-12-18 | 中国科学院深圳先进技术研究院 | Method and system for estimating charge state of power battery |
CN103744028A (en) * | 2013-12-25 | 2014-04-23 | 广西科技大学 | UKF-based storage battery SOC (state of charge) estimation method |
CN104076293A (en) * | 2014-07-07 | 2014-10-01 | 北京交通大学 | Quantitative analysis method for observer-based SOC estimation errors of lithium batteries |
CN104614676A (en) * | 2015-01-07 | 2015-05-13 | 王金全 | Method for modeling equivalent circuit model by considering pulse current response characteristic of energy storage battery |
CN102981125B (en) * | 2012-11-30 | 2015-11-18 | 山东省科学院自动化研究所 | A kind of electrokinetic cell SOC method of estimation based on RC equivalent model |
CN105277898A (en) * | 2015-10-27 | 2016-01-27 | 浙江大学 | Battery charge state detecting method |
CN105301509A (en) * | 2015-11-12 | 2016-02-03 | 清华大学 | Combined estimation method for lithium ion battery state of charge, state of health and state of function |
-
2016
- 2016-06-17 CN CN201610444271.5A patent/CN106054081A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102981125B (en) * | 2012-11-30 | 2015-11-18 | 山东省科学院自动化研究所 | A kind of electrokinetic cell SOC method of estimation based on RC equivalent model |
CN103454592A (en) * | 2013-08-23 | 2013-12-18 | 中国科学院深圳先进技术研究院 | Method and system for estimating charge state of power battery |
CN103744028A (en) * | 2013-12-25 | 2014-04-23 | 广西科技大学 | UKF-based storage battery SOC (state of charge) estimation method |
CN104076293A (en) * | 2014-07-07 | 2014-10-01 | 北京交通大学 | Quantitative analysis method for observer-based SOC estimation errors of lithium batteries |
CN104614676A (en) * | 2015-01-07 | 2015-05-13 | 王金全 | Method for modeling equivalent circuit model by considering pulse current response characteristic of energy storage battery |
CN105277898A (en) * | 2015-10-27 | 2016-01-27 | 浙江大学 | Battery charge state detecting method |
CN105301509A (en) * | 2015-11-12 | 2016-02-03 | 清华大学 | Combined estimation method for lithium ion battery state of charge, state of health and state of function |
Non-Patent Citations (2)
Title |
---|
孙冬等: "基于离散滑模观测器的锂电池荷电状态估计", 《中国电机工程学报》 * |
魏增福等: "锂电池动态系统Thevenin模型研究", 《电源技术》 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106680722A (en) * | 2016-12-01 | 2017-05-17 | 威胜集团有限公司 | OCV-SOC curve real-time online prediction method and device |
CN107064815A (en) * | 2017-03-31 | 2017-08-18 | 惠州市蓝微新源技术有限公司 | A kind of internal resistance of cell computational methods |
CN109143092A (en) * | 2017-06-19 | 2019-01-04 | 宁德时代新能源科技股份有限公司 | Method and device for generating cell model and acquiring cell voltage and battery management system |
CN107167743A (en) * | 2017-06-29 | 2017-09-15 | 北京新能源汽车股份有限公司 | Electric vehicle-based state of charge estimation method and device |
CN107870305A (en) * | 2017-12-04 | 2018-04-03 | 浙江大学城市学院 | On-line parameter identification and SOH estimation method of lithium-ion battery based on temperature parameters |
CN107870305B (en) * | 2017-12-04 | 2019-10-18 | 浙江大学城市学院 | On-line parameter identification and SOH estimation method of lithium-ion battery based on temperature parameters |
CN110133505A (en) * | 2018-02-05 | 2019-08-16 | 南京湛研能源科技有限公司 | A kind of power battery charging and discharging state observation method based on variable parameter model |
CN108490361B (en) * | 2018-03-22 | 2020-07-24 | 深圳库博能源科技有限公司 | Cloud feedback-based SOC (state of charge) calculation method |
CN108490361A (en) * | 2018-03-22 | 2018-09-04 | 深圳库博能源科技有限公司 | A kind of state-of-charge SoC computational methods based on high in the clouds feedback |
CN109669131A (en) * | 2018-12-30 | 2019-04-23 | 浙江零跑科技有限公司 | Power battery SOC estimation method under a kind of work condition environment |
CN109669131B (en) * | 2018-12-30 | 2021-03-26 | 浙江零跑科技有限公司 | SOC estimation method of power battery under working condition environment |
CN110188376A (en) * | 2019-04-12 | 2019-08-30 | 汉腾汽车有限公司 | A kind of power battery for hybrid electric vehicle initial quantity of electricity algorithm |
CN110221219A (en) * | 2019-07-03 | 2019-09-10 | 中国民用航空飞行学院 | Airborne circumstance is got off the plane lithium battery SOC estimation method |
WO2021035500A1 (en) * | 2019-08-27 | 2021-03-04 | 淄博火炬能源有限责任公司 | Online state of charge (soc) estimation system for 48v mild hybrid vehicle lithium ion battery |
CN112601968A (en) * | 2019-08-27 | 2021-04-02 | 淄博火炬能源有限责任公司 | Charge state online estimation system for 48V light-mixed automobile lithium ion battery |
CN111308363A (en) * | 2020-02-17 | 2020-06-19 | 中南大学 | Lithium battery state of charge estimation device and method based on self-adaptive model |
CN112557925A (en) * | 2020-11-11 | 2021-03-26 | 国联汽车动力电池研究院有限责任公司 | Lithium ion battery SOC estimation method and device |
CN115856644A (en) * | 2023-02-28 | 2023-03-28 | 华东交通大学 | A modeling method for energy storage batteries |
CN115856644B (en) * | 2023-02-28 | 2023-05-05 | 华东交通大学 | A modeling method for energy storage batteries |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106054081A (en) | A lithium battery modeling method for electric vehicle power battery SOC estimation | |
CN111707951B (en) | Battery pack consistency evaluation method and system | |
CN103091642B (en) | Lithium battery capacity rapid estimation method | |
Li et al. | Comparative study of the influence of open circuit voltage tests on state of charge online estimation for lithium-ion batteries | |
CN106443474B (en) | A kind of electrokinetic cell system service life Decline traits quickly know method for distinguishing | |
CN103616647B (en) | A kind of estimation method of battery dump energy for cell management system of electric automobile | |
CN105334462B (en) | Battery capacity loses estimation on line method | |
CN108459278B (en) | Lithium ion battery internal resistance and charge state synchronous estimation method | |
CN110208703A (en) | The method that compound equivalent-circuit model based on temperature adjustmemt estimates state-of-charge | |
CN103744026A (en) | Storage battery state of charge estimation method based on self-adaptive unscented Kalman filtering | |
CN110261779A (en) | A kind of ternary lithium battery charge state cooperates with estimation method with health status online | |
CN108919137A (en) | A kind of battery aging status estimation method considering different battery status | |
CN108872861B (en) | A method for online assessment of battery state of health | |
CN110596606B (en) | A method, system and device for estimating remaining power of lithium battery | |
CN110632528A (en) | A lithium battery SOH estimation method based on internal resistance detection | |
CN103744028A (en) | UKF-based storage battery SOC (state of charge) estimation method | |
CN105319515A (en) | A combined estimation method for the state of charge and the state of health of lithium ion batteries | |
CN106918787A (en) | A kind of electric automobile lithium battery residual charge evaluation method and device | |
CN110515011A (en) | An accurate estimation method of SOC of lithium-ion power battery | |
CN102680795A (en) | Real-time on-line estimation method for internal resistance of secondary battery | |
CN105929338B (en) | A kind of method and its application measuring battery status | |
CN107748336A (en) | The state-of-charge On-line Estimation method and system of lithium ion battery | |
CN110133525A (en) | A method for estimating the state of health of lithium-ion batteries applied to battery management systems | |
CN110221221A (en) | Charge states of lithium ion battery and health status combined estimation method | |
CN104242393A (en) | Battery management system based on dynamic SOC estimation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20161026 |
|
RJ01 | Rejection of invention patent application after publication |