CN106033059B - Electric-field-enhancement structure - Google Patents
Electric-field-enhancement structure Download PDFInfo
- Publication number
- CN106033059B CN106033059B CN201510106412.8A CN201510106412A CN106033059B CN 106033059 B CN106033059 B CN 106033059B CN 201510106412 A CN201510106412 A CN 201510106412A CN 106033059 B CN106033059 B CN 106033059B
- Authority
- CN
- China
- Prior art keywords
- dielectric
- layer
- electric field
- metal
- isolation layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002245 particle Substances 0.000 claims abstract description 72
- 230000005684 electric field Effects 0.000 claims abstract description 50
- 238000002955 isolation Methods 0.000 claims abstract description 37
- 229910052751 metal Inorganic materials 0.000 claims abstract description 36
- 239000002184 metal Substances 0.000 claims abstract description 36
- 239000000463 material Substances 0.000 claims description 11
- 230000002708 enhancing effect Effects 0.000 claims description 4
- 229910010272 inorganic material Inorganic materials 0.000 claims description 4
- 239000011147 inorganic material Substances 0.000 claims description 4
- 239000011368 organic material Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910021389 graphene Inorganic materials 0.000 claims description 3
- 238000001069 Raman spectroscopy Methods 0.000 abstract description 10
- 230000005672 electromagnetic field Effects 0.000 abstract description 10
- 230000008878 coupling Effects 0.000 abstract description 9
- 238000010168 coupling process Methods 0.000 abstract description 9
- 238000005859 coupling reaction Methods 0.000 abstract description 9
- 239000000523 sample Substances 0.000 abstract description 4
- 230000000171 quenching effect Effects 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000010791 quenching Methods 0.000 abstract description 2
- 239000002923 metal particle Substances 0.000 description 16
- 230000005284 excitation Effects 0.000 description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 12
- 229910052710 silicon Inorganic materials 0.000 description 12
- 239000010703 silicon Substances 0.000 description 12
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- 229910052709 silver Inorganic materials 0.000 description 8
- 239000004332 silver Substances 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 239000003574 free electron Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000010356 wave oscillation Effects 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明提供一种电场增强结构,包括基底层及设置在所述基底层表面的介质层,还包括设置在所述介质层表面的隔离层及设置在所述隔离层表面的介电颗粒层,所述介电颗粒层由多个介电颗粒形成,所述介电颗粒的折射率大于所述隔离层的折射率。本发明的优点在于,高折射率介电颗粒能够和入射的电磁场相互作用产生谐振的电磁耦合模式,热损耗能够大大降低;介电颗粒靠近金属,保持一定的低折射率的隔离层,介电颗粒的电磁谐振模式能够与邻近金属的等离激元模式相互作用,导致介电颗粒和金属之间形成极大的电磁增强场;低折射率隔离层的存在能够避免金属和探测物直接接触,有效防止探测物的拉曼信号、荧光信号等的淬灭现象的发生。
The present invention provides an electric field enhancement structure, comprising a base layer and a dielectric layer disposed on the surface of the base layer, and further comprising an isolation layer disposed on the surface of the dielectric layer and a dielectric particle layer disposed on the surface of the isolation layer, The dielectric particle layer is formed of a plurality of dielectric particles having a higher refractive index than the isolation layer. The advantage of the present invention is that the high-refractive index dielectric particles can interact with the incident electromagnetic field to generate a resonant electromagnetic coupling mode, and the heat loss can be greatly reduced; the dielectric particles are close to the metal, and a certain low-refractive-index isolation layer is maintained, and the dielectric The electromagnetic resonance mode of the particle can interact with the plasmon mode of the adjacent metal, resulting in the formation of a huge electromagnetic field between the dielectric particle and the metal; the existence of a low refractive index isolation layer can avoid direct contact between the metal and the probe, Effectively prevent the occurrence of quenching phenomena such as Raman signals and fluorescence signals of the probe.
Description
技术领域technical field
本发明涉及光电场增强领域,尤其涉及一种增强入射光电场强度的电场增强结构。The invention relates to the field of photoelectric field enhancement, in particular to an electric field enhancement structure for enhancing incident photoelectric field intensity.
背景技术Background technique
金属颗粒在电磁波的激励耦合下产生表面电子的集体震荡表现了奇异的光学特性,也就是所谓的局域等离激元共振特性。这种光和电子的共振能够将光约束在金属颗粒表面几十纳米甚至更小的范围,并且形成很强的局域电磁场,金属颗粒的局域等离激元超强的光学局域和光场增强特性使其在生物传感器、表面增强拉曼光谱以及荧光增强光谱等技术上展现了巨大的应用前景。The collective oscillation of surface electrons generated by metal particles under the excitation coupling of electromagnetic waves shows a singular optical property, which is the so-called localized plasmon resonance property. This resonance of light and electrons can confine light to a range of tens of nanometers or even smaller on the surface of metal particles, and form a strong local electromagnetic field. The localized plasmons of metal particles have super strong optical localization and light fields. The enhanced properties make it a great application prospect in biosensors, surface-enhanced Raman spectroscopy, and fluorescence-enhanced spectroscopy.
基于金属颗粒的表面增强拉曼光谱就是一种公知的光谱应用技术,其原理主要利用实验准备的金属粗糙表面或者金属颗粒附近的增强的电场增加来自探测分子的拉曼信号。在表面增强拉曼试验中,探测分子被吸附在活化的金属表面或者结构上或者被放置与活化的金属表面或者颗粒相邻。利用一定频率的光来照射探测分子和金属表面或者金属颗粒,电磁波在该金属表面或者金属颗粒中激发表面等离子体。探测分子经过这种增强的局域等离激元电场的作用,能够产生105-1010倍的拉曼散射信号的增强效果。对于一些纳米级的金属纳米针,纳米天线结构,其超强的光电场增强,甚至可以用来探测单个分子的拉曼信号。除了增强拉曼上的应用,金属纳米颗粒的光电场增强还可以用到生物传感器、荧光寿命增强以及纳米激光器等方面。Surface-enhanced Raman spectroscopy based on metal particles is a well-known spectroscopic application technology. Its principle mainly uses the rough surface of the metal prepared in the experiment or the enhanced electric field near the metal particles to increase the Raman signal from the probe molecule. In surface-enhanced Raman experiments, probe molecules are adsorbed on or placed adjacent to activated metal surfaces or structures. Light of a certain frequency is used to irradiate detection molecules and metal surfaces or metal particles, and electromagnetic waves excite surface plasmons on the metal surfaces or metal particles. The detection molecule can produce a 10 5 -10 10 times Raman scattering signal enhancement effect through the enhanced localized plasmon electric field. For some nanoscale metal nanoneedles, nanoantenna structures, their super-strong optical field enhancement can even be used to detect Raman signals of single molecules. In addition to the application of enhanced Raman, the optical field enhancement of metal nanoparticles can also be used in biosensors, fluorescence lifetime enhancement, and nanolasers.
金属颗粒的等离激元光电场增强广受关注,但是其应用前景也同样受到限制。最为关键的技术问题在于金属颗粒中自由电子等离激元共振产生的局域电磁场增强通常伴随着较大的电磁能量吸收,产生大量的金属热损耗,最终导致金属颗粒及周围环境的温度升高。理论和实验研究(Nano Totay,2007,2,30)报道连续光源激励下金属颗粒温度可以增加50K,而在脉冲光源的照射下温度能够升高1000K。这种金属颗粒温度的升高不仅会引起其在拉曼光谱探测应用中探测分子拉曼信号增强性能的退化,而且有可能改变金属颗粒及其周围探测物质的性质,从而使得金属颗粒的电场增强在某些生物医学上的应用受到了限制。Plasmonic photoelectric field enhancement of metal particles has attracted much attention, but its application prospects are also limited. The most critical technical problem is that the local electromagnetic field enhancement generated by free electron plasmon resonance in metal particles is usually accompanied by large electromagnetic energy absorption, resulting in a large amount of metal heat loss, which eventually leads to an increase in the temperature of metal particles and the surrounding environment. . Theoretical and experimental studies (Nano Totay, 2007, 2, 30) reported that the temperature of metal particles can be increased by 50K under the excitation of a continuous light source, and the temperature can be increased by 1000K under the irradiation of a pulsed light source. The increase in the temperature of the metal particles will not only cause the degradation of its Raman signal enhancement performance in the detection of molecules in Raman spectroscopy, but also may change the properties of the metal particles and their surrounding detection substances, thereby enhancing the electric field of the metal particles. Some biomedical applications are limited.
发明内容Contents of the invention
为了解决上述技术问题,本发明提供一种电场增强结构,其能够大大降低热消耗。In order to solve the above technical problems, the present invention provides an electric field enhancement structure, which can greatly reduce heat consumption.
为了解决上述问题,本发明提供了一种电场增强结构,包括基底层及设置在所述基底层表面的介质层,还包括设置在所述介质层表面的隔离层及设置在所述隔离层表面的介电颗粒层,所述介电颗粒层由多个介电颗粒形成,所述介电颗粒的折射率大于所述隔离层的折射率。In order to solve the above problems, the present invention provides an electric field enhancement structure, which includes a base layer and a dielectric layer arranged on the surface of the base layer, and also includes an isolation layer arranged on the surface of the dielectric layer and an isolation layer arranged on the surface of the isolation layer. The dielectric particle layer is formed of a plurality of dielectric particles, and the refractive index of the dielectric particles is greater than the refractive index of the isolation layer.
进一步,所述介电颗粒的折射率与所述隔离层的折射率的比值大于1.4。Further, the ratio of the refractive index of the dielectric particles to the refractive index of the isolation layer is greater than 1.4.
进一步,所述隔离层的折射率大于1。Further, the refractive index of the isolation layer is greater than 1.
进一步,所述介电颗粒散乱设置在所述隔离层表面上,以形成介电颗粒层。Further, the dielectric particles are scattered on the surface of the isolation layer to form a layer of dielectric particles.
进一步,所述电磁增强结构受一定波长的电磁波的激发,所述介电颗粒的的尺寸与所述电磁波的波长的比值范围为0.05-1。Further, the electromagnetic enhancement structure is excited by electromagnetic waves of a certain wavelength, and the ratio of the size of the dielectric particles to the wavelength of the electromagnetic waves is in the range of 0.05-1.
进一步,所述介电颗粒的材料为无机材料或有机材料中的一种。Further, the material of the dielectric particles is one of inorganic materials or organic materials.
进一步,所述介质层的材料为石墨烯或金属。Further, the material of the dielectric layer is graphene or metal.
本发明的优点在于:The advantages of the present invention are:
1、高折射率介电颗粒能够和入射的电磁场相互作用产生谐振的电磁耦合模式,这种谐振模的产生基于介电颗粒中的束缚电子电磁耦合共振,相比于金属颗粒中的自由电子的等离激元共振,热损耗能够大大降低。1. High-refractive index dielectric particles can interact with incident electromagnetic fields to generate resonant electromagnetic coupling modes. The generation of this resonant mode is based on the electromagnetic coupling resonance of bound electrons in dielectric particles, compared to the free electrons in metal particles. Plasmon resonance, heat loss can be greatly reduced.
2、介电颗粒靠近金属,保持一定的低折射率的隔离层,介电颗粒的电磁谐振模式能够与邻近金属的等离激元模式相互作用,导致介电颗粒和金属之间形成极大的电磁增强场。2. The dielectric particles are close to the metal and maintain a certain low refractive index isolation layer. The electromagnetic resonance mode of the dielectric particle can interact with the plasmon mode of the adjacent metal, resulting in a huge gap between the dielectric particle and the metal. Electromagnetically enhanced fields.
3、低折射率隔离层的存在能够避免金属和探测物直接接触,有效防止探测物的拉曼信号、荧光信号等的淬灭现象的发生。3. The existence of the low-refractive-index isolation layer can avoid direct contact between the metal and the detection object, and effectively prevent the quenching phenomenon of the Raman signal and fluorescence signal of the detection object.
附图说明Description of drawings
图1是本发明电场增强结构的结构示意图;Fig. 1 is the structural representation of the electric field enhancement structure of the present invention;
图2是本发明电场增强结构在硅介电颗粒中心沿XY平面的电场强度分布图;Fig. 2 is the distribution diagram of the electric field intensity along the XY plane at the center of the silicon dielectric particle of the electric field enhanced structure of the present invention;
图3是本发明硅介电颗粒和金属银介质层之间电场增强以及空气中硅介电颗粒附近电场增强的在不同电磁激发波长的函数曲线;Fig. 3 is the function curve of the electric field enhancement between the silicon dielectric particles and the metal silver dielectric layer of the present invention and the electric field enhancement near the silicon dielectric particles in the air at different electromagnetic excitation wavelengths;
图4是本发明电场增强度随着不同隔离层厚度的变化曲线。Fig. 4 is the variation curve of the electric field enhancement degree of the present invention with different thicknesses of the isolation layer.
具体实施方式Detailed ways
下面结合附图对本发明提供的电场增强结构的具体实施方式做详细说明。The specific implementation of the electric field enhancement structure provided by the present invention will be described in detail below in conjunction with the accompanying drawings.
图1中X-轴、Y-轴及Z-轴分别代表X轴、Y轴及Z轴。The X-axis, Y-axis and Z-axis in FIG. 1 represent the X-axis, Y-axis and Z-axis respectively.
参见图1,本发明电场增强结构包括基底层101、设置于所述基底层101表面的介质层102、设置在所述介质层102表面的隔离层103及设置在所述隔离层103表面的介电颗粒层104。1, the electric field enhancement structure of the present invention includes a base layer 101, a dielectric layer 102 disposed on the surface of the base layer 101, an isolation layer 103 disposed on the surface of the dielectric layer 102, and a dielectric layer disposed on the surface of the isolation layer 103. Electric particle layer 104 .
所述介电颗粒层104由多个介电颗粒105形成,图1中仅示意性地标示出一个介电颗粒105。本发明的介电颗粒105受到电磁波辐射的激发产生一定频率电磁谐振模式,这种电磁谐振模式与介质层102激发的金属等离激元相互耦合,导致介电颗粒105和介质层102之间形成增强的电场。The dielectric particle layer 104 is formed by a plurality of dielectric particles 105 , and only one dielectric particle 105 is schematically marked in FIG. 1 . The dielectric particles 105 of the present invention are excited by electromagnetic radiation to generate an electromagnetic resonance mode of a certain frequency, and this electromagnetic resonance mode is coupled with the metal plasmons excited by the dielectric layer 102, resulting in the formation of a gap between the dielectric particles 105 and the dielectric layer 102 Enhanced electric field.
高折射率介电颗粒105受电磁波辐射的激发产生的一定频率的电磁谐振模式能够和入射的电磁场相互作用产生谐振的电磁耦合模式,这种谐振的电磁耦合模式的产生基于介电颗粒105中的束缚电子电磁耦合共振,相比于金属颗粒中的自由电子的等离激元共振,本发明电场增强结构的热损耗能够大大降低。The electromagnetic resonance mode of a certain frequency generated by the high-refractive index dielectric particles 105 excited by electromagnetic radiation can interact with the incident electromagnetic field to generate a resonant electromagnetic coupling mode. The generation of this resonant electromagnetic coupling mode is based on the The electromagnetic coupling resonance of bound electrons, compared with the plasmon resonance of free electrons in metal particles, can greatly reduce the heat loss of the electric field enhanced structure of the present invention.
在本具体实施方式中,所述介电颗粒105散乱设置在所述隔离层103表面上,以形成介电颗粒层104。所述散乱设置指的是介电颗粒105杂乱无章的、随机的、没有规律的设置在所述隔离层103的表面上。In this specific embodiment, the dielectric particles 105 are scattered on the surface of the isolation layer 103 to form the dielectric particle layer 104 . The scattered arrangement refers to that the dielectric particles 105 are arranged randomly, randomly, and irregularly on the surface of the isolation layer 103 .
所述介电颗粒105的材料可以为有机材料或或无机材料;所述有机材料为有机聚合物任意一种;所述无机材料为硅、锗、二氧化钛、磷化镓、砷化镓、硫化镉、氧化锌、氮化镓、硒化镉中任意一种或者一种可使用微制造技术或者纳米制造技术加工的高折射率的材料制成。The material of the dielectric particle 105 can be an organic material or an inorganic material; the organic material is any one of an organic polymer; the inorganic material is silicon, germanium, titanium dioxide, gallium phosphide, gallium arsenide, cadmium sulfide , zinc oxide, gallium nitride, cadmium selenide, or a material with a high refractive index that can be processed using micro-manufacturing technology or nano-manufacturing technology.
所述介电颗粒105的形状可以为任意形状,例如,球体、圆柱、棱锥、多面体,本发明不进行限制。本具体实施方式中,所述介电颗粒105的材料为硅,选取为球体,其半径r选取65nm。The shape of the dielectric particles 105 can be any shape, for example, sphere, cylinder, pyramid, polyhedron, which is not limited in the present invention. In this specific implementation manner, the material of the dielectric particle 105 is silicon, selected as a sphere, and its radius r is selected to be 65 nm.
进一步,所述电场增强结构受一定波长的电磁波的激发,所述介电颗粒105的尺寸与所述电磁波的波长的比值范围为0.05-1。所述介电颗粒105的尺寸指介电颗粒105在所有方向上的最大长度。Further, the electric field enhancement structure is excited by electromagnetic waves of a certain wavelength, and the ratio of the size of the dielectric particles 105 to the wavelength of the electromagnetic waves is in the range of 0.05-1. The size of the dielectric particle 105 refers to the maximum length of the dielectric particle 105 in all directions.
所述基底层101起到支撑衬底的作用,本发明不对其材料进行限制。The base layer 101 functions as a supporting substrate, and the material of the base layer 101 is not limited in the present invention.
所述介质层102的材料可以为石墨烯或金属,所述金属可以为金、银、铝、铜、钛、镍、铬中任意一种或几种的合金。本具体实施方式中采用银材料,复介电函数色散关系为:Ep=9.5eV,γ=0.04eV。其中,εAg为银的复介电函数,εb为银的电介质常数部分,Ep为银的自由电子气的等离子振荡能量,γ为银的自由电子气的振荡弛豫时间,E为电磁波的振荡能量。The material of the dielectric layer 102 may be graphene or metal, and the metal may be any one or an alloy of gold, silver, aluminum, copper, titanium, nickel, and chromium. Adopt silver material in this embodiment, complex dielectric function dispersion relation is: Ep = 9.5eV, γ = 0.04eV. Among them, ε Ag is the complex dielectric function of silver, ε b is the dielectric constant part of silver, E p is the plasma oscillation energy of the free electron gas of silver, γ is the oscillation relaxation time of the free electron gas of silver, E is the electromagnetic wave oscillation energy.
所述隔离层103由MgF4,Al2O3,Si3N4等低折射率电介质材料构成。所述介电颗粒层104的折射率大于所述隔离层103的折射率,优选地,所述介电颗粒层104的折射率与所述隔离层103的折射率的比值大于1.4,所述隔离层103的折射率大于1。所述隔离层103调节介质层102与介电颗粒层104之间的电磁分布,使更多的电磁能量局域在介电颗粒层104以下及介质层102以上的亚波长区域,进一步远离金属表面,从而减少金属的热消耗,增强电磁场的局域强度。在本发明电场增强结构应用于拉曼实验中,隔离层103能够阻止荧光探测分子和金属的直接接触,避免这些化学活性分子的增强性能的淬灭效应。The isolation layer 103 is made of low refractive index dielectric materials such as MgF 4 , Al 2 O 3 , Si 3 N 4 . The refractive index of the dielectric particle layer 104 is greater than the refractive index of the isolation layer 103, preferably, the ratio of the refractive index of the dielectric particle layer 104 to the refractive index of the isolation layer 103 is greater than 1.4, the isolation Layer 103 has a refractive index greater than one. The isolation layer 103 adjusts the electromagnetic distribution between the dielectric layer 102 and the dielectric particle layer 104, so that more electromagnetic energy is localized in the sub-wavelength region below the dielectric particle layer 104 and above the dielectric layer 102, further away from the metal surface , thereby reducing the heat consumption of the metal and enhancing the local strength of the electromagnetic field. When the electric field enhanced structure of the present invention is applied to a Raman experiment, the isolation layer 103 can prevent the direct contact between the fluorescent detection molecules and the metal, and avoid the quenching effect of the enhanced performance of these chemically active molecules.
本发明的电场增强结构可以通过适当地选择来自光源(的激发电磁场特性(如电场激化方向和频率)来激发介电颗粒和金属衬底的耦合共振模式。激发光源可以包括任何用于以所希望的波长发射电磁波的适当源,并且能够可调波长的辐射。例如,商业可得到的半导体激光器、氦氖激光器、二氧化碳激光、发光二极管、白炽灯以及许多其他公知的辐射发射源。对于给定折射率和几何形状的介电颗粒,耦合共振模式发生在特定频率。此外改变介电颗粒的尺寸、形状和折射率可以明显地改变耦合共振模式的电场增强谱。The electric field enhanced structure of the present invention can excite the coupled resonant mode of the dielectric particle and the metal substrate by properly selecting the excitation electromagnetic field characteristics (such as the electric field excitation direction and frequency) from the light source. The excitation light source can include any A suitable source for emitting electromagnetic waves at a wavelength, and capable of tunable wavelength radiation. For example, commercially available semiconductor lasers, helium-neon lasers, carbon dioxide lasers, light-emitting diodes, incandescent lamps, and many other known radiation-emitting sources. For a given refraction The frequency and geometry of the dielectric particles, the coupled resonance mode occurs at a specific frequency. In addition, changing the size, shape and refractive index of the dielectric particles can obviously change the electric field enhancement spectrum of the coupled resonance mode.
自由空间中的介电颗粒在电磁场的照射下能够产生一定波长的共振模式,这类共振模式也被称为介电颗粒的Mie散射振荡。当这种共振模式逐渐靠近金属界面时,在每个介电颗粒激发的单独的共振模式受到金属反射以及金属等离激元交互作用,能够在介电颗粒和金属之间增强区域局部的增强激发的电磁场的电场,电场增强主要局域在介电颗粒以下金属以上的区域。与介电颗粒和金属镜像产生的介电颗粒的每个共振模式相关联的各个逐渐消逝的电场彼此耦合以及金属等离激元的作用以便在中间增强区域内局部的增强激发源的电场。对介电颗粒和金属之间的电场的增强可以是激发电场的约10倍至约400倍之间。Dielectric particles in free space can generate resonance modes of a certain wavelength under the irradiation of an electromagnetic field. This type of resonance mode is also called Mie scattering oscillation of dielectric particles. As this resonant mode approaches the metal interface, the individual resonant modes excited in each dielectric particle are subject to metal reflection and metal plasmon interaction, which can enhance localized excitation between the dielectric particle and the metal. The electric field of the electromagnetic field, the electric field enhancement is mainly localized in the area above the metal below the dielectric particles. The individual evanescent electric fields associated with each resonant mode of the dielectric particles and the metal mirror-generated dielectric particles couple with each other and the action of the metal plasmons to locally enhance the electric field of the excitation source in the intermediate enhancement region. The enhancement of the electric field between the dielectric particles and the metal may be between about 10 times and about 400 times the excitation electric field.
使用时域有限差分方法对本实施例电场增强结构进行了仿真模拟,图2所示为电场增强结构在485nm电磁波激发波长下,隔离层103厚度d为1纳米时,本发明电场增强结构在硅介电颗粒105中心沿XY平面的电场强度分布图。由图2可见,大部分的电场能量居于硅介电颗粒层104之下二氧化硅隔离层103之上,尤其在硅介电颗粒层104和二氧化硅隔离层103的接触点两边数十纳米区域,电场强度得到了极大的增强。The electric field enhanced structure of this embodiment is simulated by using the finite difference time domain method. Figure 2 shows that the electric field enhanced structure of the present invention is under the excitation wavelength of 485nm electromagnetic waves and the thickness d of the isolation layer 103 is 1 nanometer. The electric field intensity distribution diagram of the center of the electric particle 105 along the XY plane. It can be seen from FIG. 2 that most of the electric field energy resides on the silicon dioxide isolation layer 103 under the silicon dielectric particle layer 104, especially tens of nanometers on both sides of the contact point between the silicon dielectric particle layer 104 and the silicon dioxide isolation layer 103. area, the electric field strength has been greatly enhanced.
图3所示为电磁激发波长为440-700nm时,本发明具体实施方式中硅介电颗粒层104和金属银介质层102之间电场增强以及空气中硅介电颗粒105附近电场增强的在不同电磁激发波长的函数曲线。由图3可见,硅介电颗粒105在电磁波的激发下具有一定的电磁谐振模式,在电场增强曲线显示为两个电场增强峰,即具有两种不同波长的耦合共振模式,低波长模式为电偶极模,高波长模式为磁偶极模。本具体实施方式中的电场增强结构中硅介电颗粒105的电磁谐振模和下层的金属等离激元发生耦合,极大的增强了硅介电颗粒105的电场强度。Figure 3 shows that when the electromagnetic excitation wavelength is 440-700nm, the electric field enhancement between the silicon dielectric particle layer 104 and the metal silver dielectric layer 102 in the specific embodiment of the present invention and the electric field enhancement near the silicon dielectric particle 105 in the air are different. Plotted as a function of electromagnetic excitation wavelength. It can be seen from Fig. 3 that the silicon dielectric particles 105 have a certain electromagnetic resonance mode under the excitation of electromagnetic waves, and the electric field enhancement curve shows two electric field enhancement peaks, that is, there are two coupling resonance modes with different wavelengths, and the low wavelength mode is the electric field enhancement peak. Dipole mode, the high wavelength mode is a magnetic dipole mode. In the electric field enhancement structure in this specific embodiment, the electromagnetic resonant mode of the silicon dielectric particles 105 couples with the underlying metal plasmons, which greatly enhances the electric field strength of the silicon dielectric particles 105 .
图4所示为本发明提供的具体实施方式中电场增强度随着不同隔离层103厚度d的变化曲线。由图4可见,电场增强强度随着隔离层103厚度d的减少而增大,这主要是由于,隔离层103厚度越小,介电颗粒105谐振模式与金属等离激元耦合强度越大,导致电磁局域的程度增加。FIG. 4 shows the variation curve of the electric field enhancement degree with different thickness d of the isolation layer 103 in the specific embodiment provided by the present invention. It can be seen from Fig. 4 that the electric field enhancement strength increases with the decrease of the thickness d of the isolation layer 103, which is mainly because the smaller the thickness of the isolation layer 103, the greater the coupling strength between the resonant mode of the dielectric particle 105 and the metal plasmon, resulting in an increased degree of electromagnetic localization.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications should also be considered Be the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510106412.8A CN106033059B (en) | 2015-03-11 | 2015-03-11 | Electric-field-enhancement structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510106412.8A CN106033059B (en) | 2015-03-11 | 2015-03-11 | Electric-field-enhancement structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106033059A CN106033059A (en) | 2016-10-19 |
CN106033059B true CN106033059B (en) | 2018-11-06 |
Family
ID=57150645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510106412.8A Active CN106033059B (en) | 2015-03-11 | 2015-03-11 | Electric-field-enhancement structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106033059B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111577564A (en) * | 2020-06-30 | 2020-08-25 | 中国人民解放军国防科技大学 | Single-stage compound double-pulse enhanced ionization type induction pulse plasma thruster |
CN112713409B (en) * | 2020-11-24 | 2022-05-10 | 西安中科微精光子制造科技有限公司 | Selective wave-absorbing surface structure and preparation method thereof |
CN115165837B (en) * | 2022-05-16 | 2024-11-22 | 东北石油大学 | Fano resonance and surface-enhanced Raman scattering of metal-dielectric hybrid nanoantennas |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0822407A2 (en) * | 1996-07-29 | 1998-02-04 | Forschungszentrum Rossendorf e.V. | Composite material for resonance-enhancement of optical signals and process of fabrication |
CN101688809A (en) * | 2007-06-26 | 2010-03-31 | 惠普开发有限公司 | Electric-field-enhancement structure and detection apparatus using same |
CN102183507A (en) * | 2011-03-01 | 2011-09-14 | 吉林大学 | Method for exciting surface-enhanced Raman spectroscopy (SERS) through long range surface plasmon |
CN102279175A (en) * | 2011-06-28 | 2011-12-14 | 吉林大学 | Device for directionally emitting enhanced Raman spectrums by utilizing surface plasmas |
CN102348966A (en) * | 2009-03-13 | 2012-02-08 | 惠普开发有限公司 | Broad band structures for surface enhanced raman spectroscopy |
CN103217402A (en) * | 2012-01-18 | 2013-07-24 | 精工爱普生株式会社 | Sample analysis element and detecting device |
CN103502798A (en) * | 2011-04-05 | 2014-01-08 | 集成等离子光子学公司 | Integrated plasmonic sensing device and apparatus |
-
2015
- 2015-03-11 CN CN201510106412.8A patent/CN106033059B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0822407A2 (en) * | 1996-07-29 | 1998-02-04 | Forschungszentrum Rossendorf e.V. | Composite material for resonance-enhancement of optical signals and process of fabrication |
CN101688809A (en) * | 2007-06-26 | 2010-03-31 | 惠普开发有限公司 | Electric-field-enhancement structure and detection apparatus using same |
CN102348966A (en) * | 2009-03-13 | 2012-02-08 | 惠普开发有限公司 | Broad band structures for surface enhanced raman spectroscopy |
CN102183507A (en) * | 2011-03-01 | 2011-09-14 | 吉林大学 | Method for exciting surface-enhanced Raman spectroscopy (SERS) through long range surface plasmon |
CN103502798A (en) * | 2011-04-05 | 2014-01-08 | 集成等离子光子学公司 | Integrated plasmonic sensing device and apparatus |
CN102279175A (en) * | 2011-06-28 | 2011-12-14 | 吉林大学 | Device for directionally emitting enhanced Raman spectrums by utilizing surface plasmas |
CN103217402A (en) * | 2012-01-18 | 2013-07-24 | 精工爱普生株式会社 | Sample analysis element and detecting device |
Non-Patent Citations (2)
Title |
---|
Low-Loss Electric and Magnetic Field-Enhanced Spectroscopy with Subwavelength Silicon Dimers;Pablo Albella等;《J. Phys. Chem. C》;20130317;第117卷;第13573-13584页 * |
Polarized GaN-based LED with an integrated multi-layer subwavelength structure;Guiju Zhang等;《OPTICS EXPRESS》;20100329;第18卷(第7期);第7019-7030页 * |
Also Published As
Publication number | Publication date |
---|---|
CN106033059A (en) | 2016-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dong et al. | Ultraviolet lasing behavior in ZnO optical microcavities | |
Hayashi et al. | Plasmonics: visit the past to know the future | |
Lee et al. | Plasmonic gold nanorods coverage influence on enhancement of the photoluminescence of two-dimensional MoS2 monolayer | |
Jiang et al. | Hybrid quadrupolar resonances stimulated at short wavelengths using coupled plasmonic silver nanoparticle aggregation | |
Liu et al. | Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method | |
Kondorskiy et al. | Absorption and scattering of light by silver and gold nanodisks and nanoprisms | |
Liao et al. | Influence of the Substrate to the LSP Coupling Wavelength and Strength | |
CN106033059B (en) | Electric-field-enhancement structure | |
Thakur et al. | Effect of photonic structure on optical properties of YVO4: Eu3+ phosphor | |
Wang et al. | Localized surface plasmon-enhanced deep-UV light-emitting diodes with Al/Al2O3 asymmetrical nanoparticles | |
Chau et al. | A new type of optical antenna: plasmonics nanoshell bowtie antenna with dielectric hole | |
Gao et al. | Cross-diabolo nanoantenna for localizing and enhancing magnetic field with arbitrary polarization | |
Rui et al. | Plasmonic near-field probe using the combination of concentric rings and conical tip underradial polarization illumination | |
Nomoev et al. | A visible light scattering study of silicon nanoparticles created in various ways | |
Tseng et al. | Cavity-enhanced magnetic dipole resonance induced hot luminescence from hundred-nanometer-sized silicon spheres | |
Tanaka et al. | Comparison of resonant plasmon polaritons with mie scattering for laser-induced near-field nanopatterning: metallic particle vs dielectric particle | |
Kim et al. | Coherent nanocavity structures for enhancement in internal quantum efficiency of III-nitride multiple quantum wells | |
CN106033829A (en) | Plasmonic Narrowband Absorbing Thin Films | |
Liu et al. | Improved broadband near-unity light transparency of a metal layer with film-coupled dual plasmonic arrays | |
Simeone et al. | Near-field enhancement in oxidized close gap aluminum dimers | |
Zhang et al. | Bloch surface plasmon enhanced blue emission from InGaN/GaN light-emitting diode structures with Al-coated GaN nanorods | |
Rahbany et al. | Integrated plasmonic double bowtie/ring grating structure for enhanced electric field confinement | |
Kuo et al. | Manipulating the distribution of electric field intensity to effectively enhance the spatial and spectral fluorescence intensity of fluorescent nanodiamonds | |
Yuan et al. | Plasmonic gap resonances of electrically excited MIS-AgNR hybrid system | |
Lin et al. | Numeric tuning of surface plasmon enhanced spontaneous emission inducted by nano-metallic particle systems embedded in GaN-based LED |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |