CN106030376B - 波导中及相关的改进 - Google Patents
波导中及相关的改进 Download PDFInfo
- Publication number
- CN106030376B CN106030376B CN201480075901.5A CN201480075901A CN106030376B CN 106030376 B CN106030376 B CN 106030376B CN 201480075901 A CN201480075901 A CN 201480075901A CN 106030376 B CN106030376 B CN 106030376B
- Authority
- CN
- China
- Prior art keywords
- diffraction grating
- grating
- input
- waveguide
- grating region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1847—Manufacturing methods
- G02B5/1852—Manufacturing methods using mechanical means, e.g. ruling with diamond tool, moulding
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/34—Optical coupling means utilising prism or grating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00663—Production of light guides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/0074—Production of other optical elements not provided for in B29D11/00009- B29D11/0073
- B29D11/00769—Producing diffraction gratings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00865—Applying coatings; tinting; colouring
- B29D11/00875—Applying coatings; tinting; colouring on light guides
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0081—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4272—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1814—Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
- G02B5/1819—Plural gratings positioned on the same surface, e.g. array of gratings
- G02B5/1823—Plural gratings positioned on the same surface, e.g. array of gratings in an overlapping or superposed manner
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1847—Manufacturing methods
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0015—Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/0016—Grooves, prisms, gratings, scattering particles or rough surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0035—Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0065—Manufacturing aspects; Material aspects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0018—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
- B29K2995/0026—Transparent
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0123—Head-up displays characterised by optical features comprising devices increasing the field of view
- G02B2027/0125—Field-of-view increase by wavefront division
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Mechanical Engineering (AREA)
- Optical Integrated Circuits (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
本发明涉及一种制造用于显示装置的波导的方法,包括:提供平面光波导部(20);在光波导部上沉积可固化以形成光学透明固体的流体材料(11);在所述流体材料上压印限定了输入衍射光栅区域、中间衍射光栅区域和输出衍射光栅区域的印记,其中中间衍射光栅区域的流体材料与至少输入衍射光栅区域的流体材料连续;固化所压印的流体材料以使所述印记凝固。输入衍射光栅的物理位置完全位于中间衍射光栅的地理区域内,并且输入衍射光栅和中间衍射光栅的光栅矢量在各自不同的方向进行取向。
Description
技术领域
本发明涉及一种波导(例如,但不限于用于显示器的光学波导)以及一种显示装置。特别地,本发明涉及一种显示装置,其中载像光入射到波导中,被展开以形成可见图像并且被从波导释放以供查看。
背景技术
这种类型的现有技术的显示装置可以包括板状波导,其包含被布置成执行各自的三个连续功能之一的三个独立的衍射光栅。第一光栅用作沿板状波导的方向衍射所接收的光的光输入区域。第二光栅用于在第一维度展开来自第一光栅的光,以及第三光栅用于接收所展开的光,并进一步在正交于第一维度的第二维度展开所述光并且从波导输出结果。为了使第二衍射光栅能够在所需的方向中衍射所接收的光,该方向能够使该衍射的光到达第三衍射光栅,还需要使来自第一光栅的所述光相对于第二光栅的光栅线的方向以适当的方向被第二光栅接收。在第一(输入)光栅和第二光栅的光栅线的方向之间的光栅的错位会导致从第二光栅输出的光相对于第三(输出)光栅的光栅线的方向的错位。
这具有降低从第三(输出)光栅输出的载像光中可再现图像的质量的整体效果。
为了尝试减少第一和第二衍射光栅之间错位的光栅线的可能性,一些现有技术的方法包括:将第一和第二光栅压制或冲压为具有光栅线贯穿的一个共同方向的一个整体光栅结构的不同部分。这可以是从一个共同的单个光栅压模冲压的两个分开的光栅区域的形式(例如图1A)或者从一个压模冲压的一个光栅图案的两个分开区域的形式(例如图1B)。
然而,在这两种情况下,为了使第二光栅或光栅区域可以从第一光栅或光栅区域以适当的角度接收输入光,该适当的角度为入射到第二光栅的光栅线用于向前衍射到第三(输出)光栅的方向的角度,从第一光栅或光栅区域发出的光必须通过朝向第二光栅或光栅区域被反射返回而被重新取向。为了实现这些目的,沿着部分的板状波导的边缘必须提供高度反射面。
如果要使用的话,必须以非常高的光学标准制造反射面。需要将反射板边缘抛光到非常平的表面。这是很难实现的并且制备这样的波导是昂贵的。
本发明的目的是解决这些问题。
发明内容
在第一方面,本发明提供一种用于显示设备的波导,其包括:平面光波导部,用于引导待显示的光;输入衍射光栅,布置成用于接收光并沿用于引导通过的所述光波导部来衍射所接收的光;中间衍射光栅,经由光波导部光学耦合到输入衍射光栅,并布置为用于从所述输入衍射光栅接收所衍射的光,并通过衍射而在第一维度展开所接收的光;输出衍射光栅,经由光波导部光学耦合到所述中间衍射光栅,并布置为用于接收所展开的光并通过衍射输出来自光波导部的所接收的展开的光用于显示;其中所述输入衍射光栅定位成完全位于中间光栅的所述地理区域或覆盖区域内,并且其中所述输入衍射光栅和中间衍射光栅的光栅矢量在各自不同的方向进行取向。例如,如果各自的光栅矢量基本上不在波导部的平面上,则输入衍射光栅和中间衍射光栅的光栅矢量在光波导部平面上的投影可以在各自不同的方向进行取向。
输入衍射光栅可以与中间衍射光栅基本上在同一平面或共面,使得输入衍射光栅的物理位置完全在中间衍射光栅的地理区域或覆盖区域内。
输入衍射光栅可被定位成邻近所述中间衍射光栅(例如平行于,但在平面外),使得输入衍射光栅的表观位置是完全位于中间衍射光栅的地理区域或覆盖区域内。输入衍射光栅完全在中间衍射光栅的地理区域或覆盖区域内的位置可以是物理的/实际的位置,或者可以是表观位置。输入光栅在地理区域或覆盖区域内的表观位置可以通过定位输入光栅合适地邻近于中间衍射光栅来实现从而使得一表面——在该表面上形成中间光栅,并且该表面由中间衍射光栅的外边界/周边包围——沿整个输入光栅延伸,它本身就是在单独的表面上形成的。一个例子是,在光波导部的一个平坦表面上形成中间衍射光栅,并且在波导部的相对的平坦表面上中间光栅的覆盖区域内形成输入衍射光栅,在投影到后一个平坦表面上时(例如,通过波导部可见)。
优选地,中间衍射光栅的材料覆盖光波导部在其一侧的表面的所有那些部分,经由那些表面所述所接收的光通过全内反射从输入衍射光栅引导至中间衍射光栅。
中间衍射光栅的材料优选与至少输入衍射光栅的材料连续。
中间衍射光栅的材料可以是与输出衍射光栅的材料连续。
中间衍射光栅可以是形成在波导表面中的表面凸纹光栅。输入衍射光栅和输出衍射光栅的每一个都可以是形成在波导的表面中的凸纹光栅。
中间衍射光栅可以包括方波光栅结构。输入光栅或/和输出光栅可以包括闪耀光栅结构。
波导可以包括在中间衍射光栅上的涂层。该涂层的折射率可以与中间衍射光栅的材料的折射率不同。
波导可以包括在输入或/和输出的衍射光栅上的涂层,其折射率可与输入或/和输出的衍射光栅的材料的折射率不同。
输出衍射光栅优选地被布置为从中间衍射光栅接收所展开的光,并在垂直于第一维度的第二维度展开所接收的光。
本发明可以提供一种包括上述波导的显示装置。
在第二方面,本发明提供一种制造用于显示装置的波导的方法,该波导包括:输入衍射光栅,用于接收光并沿着波导衍射所接收的光;中间衍射光栅,用于从输入衍射光栅接收所衍射的光,并通过衍射而在第一维度展开所接收的光;以及输出衍射光栅,用于接收并通过衍射输出来自光波导的展开的光,所述方法包括:提供平面光波导部;在光波导部上沉积流体材料,该材料能固化以形成光学透明的固体;在流体材料上压印限定了输入衍射光栅区域、中间衍射光栅区域和输出衍射光栅区域的印记,其中中间衍射光栅区域的流体材料与至少输入衍射光栅区域的流体材料连续;固化所压印的流体材料以使所述印记凝固;其中输入衍射光栅完全地被定位在中间光栅的地理区域或覆盖区域内,并且其中输入衍射光栅和中间衍射光栅的光栅矢量在各自不同的方向进行取向。例如,如果各自的光栅矢量基本上不在波导部的平面上,则输入衍射光栅和中间衍射光栅的光栅矢量在光波导部的平面上的投影优选地在各自不同的方向进行取向。
输入衍射光栅可以与中间衍射光栅基本上在同一平面或共面,使得输入衍射光栅的物理位置完全地位于中间衍射光栅的地理区域或覆盖区域内。
优选地,固化的材料覆盖了光波导部在其一侧的表面的所有那些部分,经由那些表面所述所接收的光通过全内反射从输入衍射光栅引导至中间衍射光栅。
压印可以包括在平面波导相同一侧的流体材料上压印输入光栅和中间衍射光栅两者。
压印可以包括在平面波导相同一侧的流体材料上压印输入光栅和围绕所述输入光栅作为衍射区域的中间衍射光栅两者。
中间衍射光栅区域的流体材料与输出衍射光栅区域的流体材料可以是连续的。
压印可以包括在平面波导的相同一侧的流体材料上压印输入光栅、中间衍射和输出衍射光栅中的每一个。
压印可以包括在流体材料上同时压印输入光栅、中间衍射和输出衍射光栅中的每一个。
固化可以包括对每个输入光栅和中间衍射或附加的输出衍射光栅同时固化流体材料。
压印可以包括压印中间衍射光栅使其具有方波光栅结构。
压印可以包括压印输入光栅或/和输出光栅使其具有闪耀光栅结构。
该方法可包括在中间衍射光栅上施加涂层,该涂层的折射率与中间衍射光栅的材料的折射率不同。
该方法可包括在输入或/和输出衍射光栅上施加涂层,该涂层的折射率与输入或/和输出衍射光栅的材料的折射率不同。
输出衍射光栅优选地被布置为从中间衍射光栅接收所展开的光,并在垂直于第一维度的第二维度展开所接收的光。
在第三方面,本发明可以提供一种用于显示装置的波导的制造方法,该波导包括:输入衍射光栅,用于接收光并沿着波导衍射所接收的光;中间衍射光栅,用于从输入衍射光栅接收所衍射的光并且通过衍射而在第一维度展开所接收的光;以及输出衍射光栅,用于接收并通过衍射输出来自光波导的展开的光,所述方法包括:提供平面光波导部;在光波导部的相对两平坦表面上沉积流体材料,该材料能固化以形成光学透明的固体;在流体材料上压印限定了输入衍射光栅、中间衍射光栅和输出衍射光栅的印记;固化所压印的流体材料以使印记凝固;其中输入衍射光栅被定位成邻近中间光栅以便完全位于中间光栅的地理区域或覆盖区域内,并且其中输入衍射光栅和中间衍射光栅的光栅矢量在各自不同的方向上进行取向。例如,如果各自的光栅矢量基本上不在波导部的平面上,输入衍射光栅和中间衍射光栅的光栅矢量在光波导部的平面上的投影优选地在各自不同的方向进行取向。
输入衍射光栅可以定位成邻近于中间衍射光栅与其平行,但在其平面之外,使得输入衍射光栅的表观位置是完全地位于中间衍射光栅的地理区域或覆盖区域内。输入衍射光栅完全在中间衍射光栅的地理区域或覆盖区域内的位置可以是表观位置。输入光栅在地理区域或覆盖区域内的表观位置可以通过定位输入光栅合适地邻近于中间衍射光栅来实现,使得一表面——在该表面上形成中间光栅,并且该表面由中间衍射光栅的外边界/周边包围——沿整个输入光栅延伸,其自身形成在单独的表面上。一个例子是,在光波导部的一个平坦表面上形成中间衍射光栅,并且在波导部的相对的平坦表面上中间光栅的覆盖区域内形成输入衍射光栅,在投影到后一平坦表面上时(例如,通过波导部可见)。
流体材料优选沉积在平面波导部的两个相对的侧面的每一侧上,并且压印优选包括在平面波导的一侧在流体材料上压印中间衍射光栅作为围绕基本上非衍射的输入窗区域的衍射区域,并且在平面波导的相对一侧的流体材料上压印输入光栅,使得输入光栅通过输入窗区域可见。
优选的是,固化的材料覆盖了光波导部在其一侧的表面的所有那些部分,经由那些部分所述所接收的光通过全内反射从输入衍射光栅引导至中间衍射光栅。
中间衍射光栅区域的流体材料与输出衍射光栅区域的流体材料可以是连续的。
压印可以包括在平面波导的相同一侧的流体材料上压印中间衍射光栅和输出衍射光栅中的每一个。
固化可以包括在平面波导的一侧上同时固化每个中间衍射光栅和输出衍射光栅的流体材料,并且随后在平面波导的相对一侧施加流体材料。
压印可以包括随后在平面波导的相对一侧的流体材料上压印输入光栅。
该方法可包括对压印到流体材料中的输入衍射光栅相对于凝固的中间衍射光栅和凝固的输出衍射光栅的取向进行调整,并随后将所压印的输入衍射光栅以选定的取向进行固化。
压印可以包括压印中间衍射光栅使其具有方波光栅结构。
压印可以包括压印输入光栅或/和输出光栅使其具有闪耀光栅结构。
该方法可以包括在中间衍射光栅上施加涂层,该涂层的折射率与中间衍射光栅的材料的折射率不同。
该方法可以包括在输入或/和输出衍射光栅上施加涂层,该涂层的折射率与输入或/和输出衍射光栅的材料的折射率不同。
输出衍射光栅优选地被布置为从中间衍射光栅接收所展开的光,并在垂直于第一维度的第二维度展开所接收的光。
波导部折射率的周期性扰动或变化或者在其上的表面波纹可以限定衍射光栅,并且通过增加或减少光栅脉冲(光栅矢量)的整数(m)倍,这样具有沿光栅表面改变入射光波的脉冲(波矢量表面分量)的效果:
其中,和d是在单位矢量方向上的光栅周期,其在光栅平面中且在光栅的周期性的方向上(例如,垂直于直的光栅线/槽的方向)。
如果光栅位于xy平面且周期是沿着x轴,并且入射光线位于垂直于槽的平面中,在反射中的等式采用所谓的光栅等式的形式:
其中λ是光的波长。
附图说明
现在将参照附图对本发明的示例性实施例进行更加详细地说明,其中:
图1A和图1B各自示出了根据现有技术的板状波导;
图2A~图2F示意性地示出了用于制造根据图1的板状波导的方法;
图3示出了根据本发明的一个实施例的板状波导;
图4示出了根据本发明的另一实施例的板状波导的两个相对的平面侧;
图5示意性示出了根据本发明的一个实施例的光输入到板状波导的相互作用,并且从其中输出;
图6示意性示出了在图1的现有技术的板状波导中的输入光的导向与在图4和图5所示的根据本发明实施例的板状波导之间的比较;
图7示意性示出了在图1的现有技术的板状波导中的输入光的导向与在图4和图5所示的根据本发明实施例的板状波导之间的进一步比较;
图8和图9示意性地示出了在图1的现有技术的板状波导中的输入光的导向与在图4所示的根据本发明实施例的板状波导之间的比较;
图10A~图10D示意性地示出了用于制造根据图4中的本发明的板状波导的过程;
图11A~图11I示意性地示出了用于制造根据图5中的本发明的板状波导的过程。
具体实施方式
在附图中,相同的附图标记指代相同的结构。
图1A示出了现有技术的用于显示装置的波导。波导包括:板状光波导1,用于通过全内反射在平板的两个相对平行且平坦的表面之间内部导向光。
将待显示的载像光经由输入衍射光栅2输入到平板,输入衍射光栅2被布置成接收所述载像光6并且沿着板状光波导衍射所接收的光7,该光波导用于在整个光学耦合到输入衍射光栅的中间衍射光栅4上引导。所述中间光栅4被布置为在第一维度7中通过衍射而展开所接收的光和经由板状光波导将所展开的光8导向到光学耦合到中间衍射光栅的输出衍射光栅5。
输出光栅被布置为从中间衍射光栅接收所展开的光并且将所接收的展开的光8通过衍射从板状光波导输出用于显示给用户10。
输入衍射光栅2通过板状波导的由反射涂层3涂覆的反射边缘部分与中间衍射光栅光学耦合。因此,输入光6朝向反射边缘衍射,并通过全内反射在板状波导内被导向到反射涂层/边缘3。在反射边缘发生反射后,被导向的输入光随后被导向到中间衍射光栅4。
反射边缘的存在使波导的制造复杂并且使制造波导相对昂贵、难以制造并且一旦生产就容易产生制造误差。图1B示意性地示出了图1A的现有技术装置的一个现有技术的变型,其中输入衍射光栅2被构造为连续光栅区域,其与中间光栅区域一体地形成并接合而连接到中间衍射光栅。图1B的装置的形成和操作在其它方面与图1A的装置的形成和操作相同,并且光线(6、7、8和9)在图1B中示出来说明此点。
但应该指出的是,输入衍射光栅的光栅线(图1A)或输入衍射光栅区域(图1B)基本上平行于中间衍射光栅的光栅线或光栅区域(它们的光栅矢量是相同的),并且因此需要使用反射边缘3对输入光7进行重新取向到相对于中间光栅的光栅线适当的方向。
现有技术的装置的两个实施例(图1A和图1B)的输入光栅和中间光栅(或光栅区域)的共同取向的光栅线(光栅矢量)通过使用单一的光栅压模轴承来生产,这类凸纹中的共同取向的光栅线/槽如现在图1A的装置的相关描述。但应注意的是,这样的制造方法也同样适用于图1B的设备。在这两种情况下,输入光栅和中间光栅部分的光栅矢量在波导基板的平坦表面上的投影基本上平行,只是因为这些矢量是相同的。
图2A~图2F示意性地示出了所述的制造过程。过程从在平板波导基板1上沉积可固化以形成光学透明固体的流体固化胶水11开始(图2A)。固化胶水的三个单独的、离散的和隔离的沉积物沉积在基板上将要形成通过波导基板光学地相互耦合的三个独立的衍射光栅的区域的位置。接下来,(图2B)将光栅压模12引入到该过程中。光栅压模在一个表面上承载三个表面凸纹图案(13、14、15),其中的每一个凸纹代表三个独立的表面凸纹衍射光栅中相对应的一个。光栅压模的每个表面凸纹图案相对于被设计成用于压印的光栅是负片的、或反向的形式。用于输入光栅的光栅线的凸纹图案13基本上平行于用于中间光栅的光栅线的凸纹图案14。
光栅压模在流体固化胶水的三个离散的沉积物上压印,一致地在与各自的三个独立和离散的衍射光栅之一对应的那三个沉积物上形成印记。三个衍射光栅限定为:由光栅压模的第一表面凸纹图案13限定的输入衍射光栅区域、由光栅压模的第二表面凸纹图案14限定的中间衍射光栅区域以及由光栅压模的第三表面凸纹图案15限定的输出衍射光栅区域。
当然,如上所述,相同的基本步骤应用于制造图1B的装置,其变化在于,光栅压模包括两个分开的表面凸纹图案,其中一个图案对应于合并的输入光栅结构和中间光栅结构,而另一个图案对应于输出光栅结构。此外,只需要两个流体固化胶水的离散沉积物,一个用于合并的光栅,另一个用于输出光栅。
在接下来的制造步骤中(图2C),固化胶水11仍然为流体形式并且光栅压模在其上压印以限定出三个光栅,将多个不同颜色的光输入到压印有第一表面凸纹(输入)衍射光栅图案的固化胶水沉积物。这样的输入光由输入光栅图案朝向波导基板的反射边缘3(见图1)部衍射到波导基板1,并由此通过第二表面凸纹图案14到达形成在流体固化胶水的第二沉积物上的中间衍射光栅图案,然后由此通过光栅压模12的第三表面凸纹图案15压印在流体固化胶水的第三沉积物上的第三(输出)衍射光栅图案。在第三(输出)光栅图案上,多色光从波导基板1输出。可以观察到在不同颜色的光的输出方向之间的任何角度的错位。这样的错位会由于波导基板的反射边缘3和由光栅压模的第一表面凸纹光栅图案13压印的输入衍射光栅图案和由光栅压模压印的中间衍射光栅图案14之间的错位而导致,因为那两个图案的光栅槽基本上是平行的。实际上,来自前者的输入光的入射角必须精确对准,使得光与随后的衍射光栅最佳地耦合。
为了调节这种错位,接下来的制造步骤(图2D)需要相对于波导基板(和它的反射边缘3)小心地旋转光栅压模以在固化胶水沉积物中重新对准流体衍射光栅的压印。当角度对准时,如果观察到不同颜色的输出光束,则可检测到最佳对准。
当观察到最佳对准时,通过使用紫外线(UV)辐射照射,流体固化胶水随后固化(图2E)。这使压印的流体固化胶水凝固,以凝固输入、中间和输出衍射光栅的印记。
将所得到的波导1与波导压模12(图2F)分开,并在表面凸纹上包括:输入衍射光栅2用以接收光,并沿波导将所接收的光朝向反射边缘3衍射;中间衍射光栅4用以接收来自反射边缘3的衍射的光并且用以通过衍射在第一维度展开所接收的光;以及输出衍射光栅5用以接收并通过衍射输出来自光波导的展开的光。
这种现有技术的制造过程是费时、困难且容易出错的。
本发明的两个实施例分别提供了用于显示装置的波导,解决了制造和产品中的这些问题。
参照图3和图4,各实施例包括用于引导待显示光的板状光波导基板(20、24)。该基板承载输入衍射光栅(21、28),输入衍射光栅(21,28)被布置在表面上以接收载像光并沿光波导直接朝向中间光栅25衍射所接收的光,以在波导内引导所述光。
中间衍射光栅(22、25)形成在波导的表面上并且经由光波导与输入衍射光栅(20、24)光学耦合。它被设置成直接接收来自输入衍射光栅的衍射光,并通过衍射而在第一维度上展开所接收的光。输入光栅的光栅线/槽不与中间光栅的光栅线/槽平行,使得两个光栅的光栅矢量具有不同的取向,正如它们在波导基板的平坦表面上各自的投影。在本实施例中,光栅矢量位于平行于波导结构的平面,并因此,它们各自的投影等于它们矢量本身。输入光栅位于中间光栅的地理区域或覆盖区域内。通过位于所述中间光栅的地理区域/覆盖区域内,这意味着输入光栅的实际位置可以限定在中间光栅的边界内(例如图3)或者输入光栅的表观位置可以限定在中间光栅的边界内(例如图4)。
输出衍射光栅(23、27)经由光波导部与中间衍射光栅光学耦合,并被布置为接收所展开的光并通过衍射输出来自光波导的所接收的展开的光,用于显示。
值得注意的是,没有如在现有技术的装置中使用专门的反射边缘,并且中间衍射光栅的材料(22、25)覆盖了光波导部在其一侧的表面的所有那些部分,经由那些部分,输入载像光通过全内反射从输入衍射光栅(21、28)引导到中间衍射光栅(22、25)。
在图3的实施例中,中间衍射光栅22的材料与输入衍射光栅21的材料是连续的。然而,在图4的实施例中,输入衍射光栅28的材料不与中间光栅25的材料连续。事实上,该替代实施例的中间光栅25和输出光栅27的每一个均形成在与板状波导基板的第二平面侧24B相对的第一平面侧24A上,在板状波导基板的第二平面侧24B上形成输入光栅28。图4示出了承载这三个衍射光栅的第一和第二板侧(虚线箭头指向“穿过”波导板看到的光栅)。
详细参照图4,在波导基板的一个侧面24A上的中间衍射光栅包括作为衍射区域25围绕圆形和基本上非衍射的输入窗区域26。平面波导基板的相对侧24B承载定位在输入窗区域26范围中的输入光栅28,使得通过输入窗区域可以看到输入光栅。输入窗区域可以包括与形成中间衍射光栅包围衍射区域25的材料相同的材料,并且是连续的。在替代实施例中,输入窗区域可以通过不具有材料而裸露来限定,并且通过暴露并未覆盖/涂敷板状波导基板的区域而被露出。在任一情况下,输入衍射光栅28的表观位置位于中间光栅的边界内,通过输入窗26显现,并因此位于中间光栅的地理区域或覆盖区域内。当然,在图3的实施例中,输入衍射光栅21的实际位置是在中间光栅的边界内。在前一种情况下,输入光栅在具有中间光栅的平面外,而在后一种情况下,它在平面内。
中间衍射光栅(22、25)的材料也可以与这些实施例中的一个或每一个的输出衍射光栅(23、27)的材料连续。输出衍射光栅可以与中间光栅和/或输入光栅形成在同一平面内,或者形成在一者/两者的平面外。这可以通过在波导基板的两个相对表面中的适当的一个表面上形成输出光栅来实现。
中间衍射光栅(22、25)是方波表面凸纹光栅,该方波表面凸纹光栅形成在沉积于板状波导基板(20、24)表面上的已固化的固化胶水的表面上。同样地,输入衍射光栅(21、28)和输出衍射光栅(23、27)均是形成在沉积于板状波导基板表面上的已固化的固化胶水的表面上的闪耀表面凸纹光栅。
电介质或金属涂层可以根据需要沉积在输入、中间和/或输出衍射光栅上。该涂层优选具有与所述的涂覆的衍射光栅形成的已固化的固化胶水材料的折射率不同的折射率(例如大于)。
波导的这些实施例是用于包括上述波导的显示装置。实施例包括头盔平视显示器(HUD)、或者在运载工具(例如,作战运载工具或其它运载工具的驾驶舱、客舱等)中安装的HUD。
图5示意性示出了图3或图4中任一实施例在使用中的波导。将待显示的载像光6于输入衍射光栅(21、28)输入到板状波导(20、24A),在该输入衍射光栅处,它被衍射并通过其光栅线/槽(或光栅矢量)相对于中间光栅的光栅线/槽(或光栅矢量)的非平行选定的取向的特点沿板状光波导被引导直接朝向并跨越中间衍射光栅(22、25)。中间光栅被设置为通过衍射在第一维度7展开所接收的光,并且通过其光栅线/槽(或光栅矢量)取向的特点经由板状光波导朝向输出衍射光栅(23、27)引导所展开的光8,用于输出9,并由用户10观看。
特别地,输出光栅被布置为接收来自中间光栅(22、25)的展开的光8,并通过衍射输出9(来自板状光波导的所接收的展开的光)以进行显示。输出光栅的光栅线/槽(即,光栅矢量)的取向与中间光栅的光栅线/槽(光栅矢量)的取向不同。
图5示出了位于中间衍射光栅内并共同形成具有不同取向的光栅线/槽/矢量(如图3所示)或单独形成但通过波导的输入窗区域可见(如图4所示)的输入衍射光栅,作为有关适当的实施例。
相比于图1A或图1B所示的现有技术的波导,图6~图9示出了本发明的有利的方面。
参照图6,可以看出的是在本发明的实施例中在波导基板回避使用反射边缘3的需要,缩短了光从输入光栅到中间光栅的光路长度。因此,由输入衍射光栅支持的总视场角(TFOV)可以在本发明的实施例中通过具有相对较小宽度的中间衍射光栅而被容纳。因为中间衍射光栅的面积可以更小,这使得波导作为一个整体更短。
而且,参照图7,这种中间光栅在宽度/面积中的减小意味着在朝着输出光栅(即朝着输出光栅“转向”)的方向已由中间衍射光栅衍射的光需要在其朝向输出光栅的路径中沿着中间衍射光栅通过较少的区域。必须指出,作为转向的光通过全内反射(TIR)在板状波导基板相对的平坦表面之间被导向,来自承载中间光栅结构的基板表面的每次TIR通过在其中的衍射将导致光的一些损失。损失的光被横向引导到“转向”的光行进的方向,即,远离输出光栅。这样的光将不会到达输出光栅。中间光栅的这样的损耗相互作用越少,来自于最终显示输出所丢失的光就越少。因此,如在图7中示意性示出的与有更多损耗的现有技术的波导1的比较,本发明中减少的中间光栅面积降低了这种损失。
图8和图9示出了本发明的优选实施例的进一步的优点,其中中间衍射光栅的材料覆盖光波导部在其一侧的表面的所有那些部分,经由那些表面接收的载像光通过全内反射从输入衍射光栅引导到中间衍射光栅。这发生在图3所示的实施例中,其中输入光栅和中间光栅在波导基板的同一侧是连续的(在同一平面内)。当输入光栅被与中间光栅连续的包括与中间光栅的材料相同的材料的输入窗26替换时,这种情况同样发生在图4所示的实施例中。在这种情况下输入光栅在板状波导基板的反向侧通过输入窗可见。
图8示出了一个假想的比较波导(左侧图像)和根据本发明的一个实施例的波导(右侧图像)的输入光栅和中间光栅部分的并排比较。可以看出,在所述波导基板表面所产生的分离的和离散的输入和输出衍射光栅的效果是在波导基板内为所导向的光的路径呈现结构性边缘,在该边缘可发生光的散射。这导致光的损失而降低图像的亮度,并且导致具有随机散射光的载像光的污染,这降低了输出图像的对比度和分辨率。图9示出了图8的假想的波导的部分截面图的分解视图中的这种效果。
根据本发明的一个方面的优选的实施例,因为中间衍射光栅的材料覆盖光波导部在其一侧的上表面的所有那些部分(承载了中间光栅和以连续的材料方式的输入光栅的材料或输入窗的材料),所以没有通过全内反射将导向的光传递到中间光栅的这种散射边缘存在。虽然这样的技术优点已经参考图8左侧示出的假想的设备中示出,假想的设备的结构的缺点是图1A和图1B所示的现有技术的设备所共有的。
图10A~图10D示意性地示出了制造过程,通过该过程可以制造图3的波导。该过程开始(图10A)于在板状光波导基板20上沉积可固化以形成光学透明的固体的流体固化胶水11。固化胶水的两个分离的、离散的和隔离的沉积物被沉积在基板这样的位置,该位置旨在形成由波导基板彼此光耦合的两个独立的衍射光栅的区域。接下来,(图10B)将光栅压模30引入到过程中。光栅压模在一个表面上承载三个表面凸纹图案(31、32、33),三个表面凸纹图案(31、32、33)的每一个代表三个表面凸纹衍射光栅中相应的一个。光栅压模的每个表面凸纹图案相对于被设计成用于压印的光栅是负片的、或反向的形式。
光栅压模在流体固化胶水的两个分离的沉积物上压印,一致地在与三个衍射光栅中的一个对应的那两个沉积物上形成印记。三个衍射光栅限定为:由完全地在中间衍射光栅区域的地理区域或覆盖区域内形成的光栅压模的第一表面凸纹图案31限定的输入衍射光栅区域、由光栅压模的第二表面凸纹图案32限定的中间衍射光栅区域以及由光栅压模的第三表面凸纹图案33限定的独立的输出衍射光栅区域。输入光栅的光栅线/槽由光栅压模限定为不与中间光栅的光栅线/槽平行,以便朝向并横跨中间光栅的主体直接衍射输入光。
下一步(图10C),流体固化胶水通过用紫外线(UV)辐射45在光栅压模于合适位置时照射而固化。这使所压印的流体固化胶水凝固,以凝固输入、中间和输出衍射光栅的印记。
最后(图10D),压模与所述波导基板分开,以显露在图3中所示的结构的波导,包括在波导板基板的同一个表面上形成的凝固的输入、中间和输出光栅。
值得注意的是,这种过程避免了使用反射边缘的需要,因此,避免了在固化该固化胶水之前将衍射光栅与这样的边缘对准的需要。
图11A~图11I示意性地示出了制造过程,通过该过程可以制造图4的波导。该过程开始(图11A)于在板状光波导基板24上沉积可固化的以形成光学透明的固体的流体固化胶水11。将固化胶水的两个单独的、离散的和隔离的沉积物沉积在基板这样的位置,该位置旨在形成由波导基板彼此光耦合的两个独立的衍射光栅区域。
接下来,将(图11B)光栅压模40引入到过程中。光栅压模在一个表面上承载两个表面凸纹图案(41、42),其中的每一个代表两个表面凸纹衍射光栅中相应的一个。光栅压模的每个表面凸纹图案相对于被设计成用于压印的光栅是负片的、或反向的形式。
光栅压模在流体固化胶水的两个分立的沉积物上压印,一致地在与两个衍射光栅中的一个对应的那两个沉积物上形成印记。两个衍射光栅限定为:由光栅压模的第一表面凸纹图案42限定的中间衍射光栅区域、和由光栅压模的第二表面凸纹图案41限定的输出衍射光栅区域,非衍射输入窗区域43由位于用于中间光栅的第一表面凸纹图案完全包围的范围内的光栅压模限定。
接下来(图11C),流体固化胶水通过用紫外线(UV)辐射45在光栅压模24于合适位置时照射而固化。这使所压印的流体固化胶水凝固,以凝固输入窗、中间光栅和输出光栅的印记。
在下一制造步骤(图11D),光栅压模与所述波导基板分开,以显露形成在波导板基板的同一个表面上的凝固的输入窗26、中间光栅27和输出光栅。
接下来(图11E),流体固化胶水的沉积物然后进一步沉积在板状光波导基板的与已形成中间和输出光栅的侧面24A相对的一侧24B上。流体固化胶水沉积在这样的位置,在此旨在形成输入衍射光栅并通过输入窗26对准且可视。引入输入光栅压模44,其在一个表面上承载表示表面凸纹衍射光栅的表面凸纹图案45,表面凸纹图案45相对于被设计成用于压印的光栅为负片的或反向的形式。输入光栅压模在流体固化胶水的离散的沉积物上压印。
接下来(图11F),当固化胶水仍然为流体形式时并且输入光栅压模44压印于其上以限定输入光栅,将多个不同颜色的光通过输入窗26输入到波导。这样的输入光由未固化的输入光栅图案衍射到波导基板24中朝向中间衍射光栅并从那里到输出衍射光栅。在输出光栅27处,多色光从波导基板24输出。可观察到不同颜色光的输出方向之间的任何角度的错位。这样的错位的产生是由于波导的输入光栅44的衍射光栅线/槽与中间衍射光栅的衍射光栅线/槽之间的错位。实际上,光从前者输出的角度必须精确地对准,使得光与随后的衍射光栅最佳地耦合。
为了调节这种错位,接下来的制造过程(图11G)要求输入光栅压模44相对于波导基板(和它的其它光栅25、27)的小心的旋转,以与流体固化胶水沉积物内的流体输入衍射光栅压印的光栅线/槽的取向重新对准。当观察到不同颜色的输出光束的角度对准时,则会检测到最佳对准。值得注意的是,输入光栅线不与在最佳对准时的中间光栅的光栅线/槽平行。因此,各个光栅矢量具有不同的取向。
当观察到最佳对准时,流体固化胶水随后通过用紫外线(UV)辐射45的照射而固化(图11H)。如此固化了所压印的流体固化胶水以固化输入衍射光栅的印记。
最后(图11I),第二光栅压模45与波导基板分开以显露在图4中所示的波导结构,其包括形成在波导板状基板的同一个表面上的凝固的输入窗、中间光栅和输出光栅,以及形成在板状基板的另一侧并且通过输入窗可见的输入光栅。
值得注意的是,这种过程避免了使用反射边缘的需要。
在一个进一步的实施方案中,在板状光波导基板24上沉积流体固化胶水11的步骤(图11A)可替代地包括以这样的方式沉积流体固化胶水,即,没有固化胶水沉积在中间光栅25的输入窗26的预定位置。其结果是,输入窗将完全不包括固化胶水,即,干净且未覆盖的光学基板表面区域由中间衍射光栅部包围,而不是如上所述的固化胶水的无槽/线的涂层。
上述实施例是用于说明的目的,对于本领域技术人员而言将是显而易见的修改、变体和所有等同于此的方案包含在本发明权利要求所限定的范围内。
Claims (16)
1.一种制造用于显示装置的波导的方法,该波导包括:输入衍射光栅,用于接收光并沿着该波导衍射所接收的光;中间衍射光栅,用于从输入衍射光栅接收所衍射的光,并通过衍射而在第一维度展开所接收的光;以及输出衍射光栅,用于接收并通过衍射输出来自光波导的展开的光,该方法包括:
提供平面光波导部;
在光波导部的至少一个平坦表面上沉积流体材料,该流体材料能固化以形成光学透明的固体;
在流体材料上压印限定了输入衍射光栅区域、中间衍射光栅区域和输出衍射光栅区域的印记;并且
固化所压印的流体材料以使所述印记凝固,
其中,该输入衍射光栅区域完全位于中间衍射光栅区域的地理区域内,并且其中该输入衍射光栅区域和中间衍射光栅区域的光栅矢量在各自不同的方向进行取向,该波导不采用反射边缘。
2.根据权利要求1所述的方法,其中,流体材料沉积在波导部的一个平坦表面上,从而限定了该中间衍射光栅区域的印记形成在与其内形成有限定了至少输入衍射光栅区域的印记的流体材料连续的流体材料中。
3.根据权利要求1或权利要求2所述的方法,其中,所述压印包括在波导部的一个平坦表面上沉积的流体材料上同时压印该输入衍射光栅区域和该中间衍射光栅区域。
4.根据权利要求1所述的方法,其中,流体材料沉积在波导部的相对两平坦表面上,并且其中,限定了该输入衍射光栅区域的印记压印到在波导部的一个平坦表面上沉积的流体材料中,并且,限定了该中间衍射光栅区域的印记压印到在波导部的相对表面上沉积的流体材料中,并且其中,当沿穿过输入衍射光栅区域垂直于其上已形成输入衍射光栅区域的波导表面的方向观看时,该中间衍射光栅区域完全地显示出包围该输入衍射光栅区域。
5.根据权利要求1所述的方法,其中,形成该中间衍射光栅区域的流体材料与形成该输出衍射光栅区域的流体材料之间是连续的。
6.根据权利要求2所述的方法,其中,所述压印包括在波导的一个平坦表面上沉积的流体材料上压印该输入衍射光栅区域、该中间衍射光栅区域和该输出衍射光栅区域中的每一个。
7.根据权利要求1所述的方法,其中,所述固化包括同时固化用于该输入衍射光栅区域和用于该中间衍射光栅区域的流体材料。
8.根据权利要求7所述的方法,其中,所述固化还包括固化用于该输出衍射光栅区域的流体材料。
9.根据权利要求4所述的方法,其中,所述固化包括:当该中间衍射光栅区域和该输出衍射光栅区域形成在波导部的一个平坦表面上时,同时固化其内形成有该中间衍射光栅区域和该输出衍射光栅区域的流体材料,并且其中,接下来将该流体材料施加到波导部的相对平坦表面上,该输入衍射光栅区域通过压印形成于其中,并且其内形成有该输入衍射光栅区域的流体材料被固化。
10.根据权利要求9所述的方法,包括对压印到流体材料中的该输入衍射光栅相对于凝固的中间衍射光栅和凝固的输出衍射光栅的取向进行调整,并且接下来将所压印的输入衍射光栅以选定的取向进行固化。
11.根据权利要求1所述的方法,其中,所述压印包括压印该中间衍射光栅使其具有方波光栅结构。
12.根据权利要求1所述的方法,其中,所述压印包括压印该输入衍射光栅区域或/和输出衍射光栅区域使其具有闪耀光栅结构。
13.根据权利要求1所述的方法,包括在该中间衍射光栅区域上施加涂层,该涂层的折射率与该中间衍射光栅区域的材料的折射率不同。
14.根据权利要求1所述的方法,包括在该输入或/和输出衍射光栅区域上施加涂层,该涂层的折射率与该输入或/和输出衍射光栅区域的材料的折射率不同。
15.根据权利要求1所述的方法,其中,该输出衍射光栅布置为从该中间衍射光栅区域接收所展开的光并在垂直于第一维度的第二维度展开所接收的光。
16.一种波导,其通过使用权利要求1~15中任一项所述的方法制造。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13275325.2A EP2887121A1 (en) | 2013-12-19 | 2013-12-19 | Improvements in and relating to waveguides |
GB1322490.2 | 2013-12-19 | ||
EP13275325.2 | 2013-12-19 | ||
GBGB1322490.2A GB201322490D0 (en) | 2013-12-19 | 2013-12-19 | Improvements in or relating to waveguides |
PCT/EP2014/077609 WO2015091282A1 (en) | 2013-12-19 | 2014-12-12 | Improvements in and relating to waveguides |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106030376A CN106030376A (zh) | 2016-10-12 |
CN106030376B true CN106030376B (zh) | 2019-06-07 |
Family
ID=52021222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480075901.5A Active CN106030376B (zh) | 2013-12-19 | 2014-12-12 | 波导中及相关的改进 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10042096B2 (zh) |
EP (1) | EP3084508B1 (zh) |
JP (1) | JP6430516B2 (zh) |
KR (1) | KR102359045B1 (zh) |
CN (1) | CN106030376B (zh) |
ES (1) | ES2702886T3 (zh) |
WO (1) | WO2015091282A1 (zh) |
Families Citing this family (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0522968D0 (en) | 2005-11-11 | 2005-12-21 | Popovich Milan M | Holographic illumination device |
GB0718706D0 (en) | 2007-09-25 | 2007-11-07 | Creative Physics Ltd | Method and apparatus for reducing laser speckle |
US11726332B2 (en) | 2009-04-27 | 2023-08-15 | Digilens Inc. | Diffractive projection apparatus |
US9335604B2 (en) | 2013-12-11 | 2016-05-10 | Milan Momcilo Popovich | Holographic waveguide display |
US20200057353A1 (en) | 2009-10-09 | 2020-02-20 | Digilens Inc. | Compact Edge Illuminated Diffractive Display |
US11204540B2 (en) | 2009-10-09 | 2021-12-21 | Digilens Inc. | Diffractive waveguide providing a retinal image |
US9274349B2 (en) | 2011-04-07 | 2016-03-01 | Digilens Inc. | Laser despeckler based on angular diversity |
EP2995986B1 (en) | 2011-08-24 | 2017-04-12 | Rockwell Collins, Inc. | Data display |
US10670876B2 (en) | 2011-08-24 | 2020-06-02 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
WO2016020630A2 (en) | 2014-08-08 | 2016-02-11 | Milan Momcilo Popovich | Waveguide laser illuminator incorporating a despeckler |
US20150010265A1 (en) | 2012-01-06 | 2015-01-08 | Milan, Momcilo POPOVICH | Contact image sensor using switchable bragg gratings |
CN106125308B (zh) | 2012-04-25 | 2019-10-25 | 罗克韦尔柯林斯公司 | 用于显示图像的装置和方法 |
US9456744B2 (en) | 2012-05-11 | 2016-10-04 | Digilens, Inc. | Apparatus for eye tracking |
US9933684B2 (en) | 2012-11-16 | 2018-04-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration |
WO2014188149A1 (en) | 2013-05-20 | 2014-11-27 | Milan Momcilo Popovich | Holographic waveguide eye tracker |
WO2015015138A1 (en) | 2013-07-31 | 2015-02-05 | Milan Momcilo Popovich | Method and apparatus for contact image sensing |
ES2704700T3 (es) | 2013-12-19 | 2019-03-19 | Bae Systems Plc | Mejoras en guías de onda y en relación con ellas |
JP6430516B2 (ja) | 2013-12-19 | 2018-11-28 | ビ−エイイ− システムズ パブリック リミテッド カンパニ−BAE SYSTEMS plc | 導波路における、および、導波路に関連した改良 |
WO2016020632A1 (en) | 2014-08-08 | 2016-02-11 | Milan Momcilo Popovich | Method for holographic mastering and replication |
WO2016042283A1 (en) | 2014-09-19 | 2016-03-24 | Milan Momcilo Popovich | Method and apparatus for generating input images for holographic waveguide displays |
US10423222B2 (en) | 2014-09-26 | 2019-09-24 | Digilens Inc. | Holographic waveguide optical tracker |
CN107873086B (zh) | 2015-01-12 | 2020-03-20 | 迪吉伦斯公司 | 环境隔离的波导显示器 |
EP3245551B1 (en) | 2015-01-12 | 2019-09-18 | DigiLens Inc. | Waveguide light field displays |
EP3248026B1 (en) | 2015-01-20 | 2019-09-04 | DigiLens Inc. | Holographic waveguide lidar |
US9632226B2 (en) | 2015-02-12 | 2017-04-25 | Digilens Inc. | Waveguide grating device |
US10459145B2 (en) | 2015-03-16 | 2019-10-29 | Digilens Inc. | Waveguide device incorporating a light pipe |
WO2016156776A1 (en) | 2015-03-31 | 2016-10-06 | Milan Momcilo Popovich | Method and apparatus for contact image sensing |
CN113759555B (zh) | 2015-10-05 | 2024-09-20 | 迪吉伦斯公司 | 波导显示器 |
EP3398007B1 (en) | 2016-02-04 | 2024-09-11 | DigiLens, Inc. | Waveguide optical tracker |
EP3433659B1 (en) | 2016-03-24 | 2024-10-23 | DigiLens, Inc. | Method and apparatus for providing a polarization selective holographic waveguide device |
CN109154717B (zh) | 2016-04-11 | 2022-05-13 | 迪吉伦斯公司 | 用于结构光投射的全息波导设备 |
US11513350B2 (en) | 2016-12-02 | 2022-11-29 | Digilens Inc. | Waveguide device with uniform output illumination |
CN106772764B (zh) * | 2016-12-29 | 2019-09-27 | 上海天马微电子有限公司 | 背光模组以及显示装置 |
CN106842397B (zh) * | 2017-01-05 | 2020-07-17 | 苏州苏大维格光电科技股份有限公司 | 一种树脂全息波导镜片及其制备方法、及三维显示装置 |
US10545346B2 (en) | 2017-01-05 | 2020-01-28 | Digilens Inc. | Wearable heads up displays |
FI128551B (en) * | 2017-05-08 | 2020-07-31 | Dispelix Oy | Diffractive grating with variable diffraction efficiency and method for displaying an image |
US10175423B2 (en) | 2017-05-31 | 2019-01-08 | Microsoft Technology Licensing, Llc | Optical waveguide using overlapping optical elements |
US11131807B2 (en) | 2017-05-31 | 2021-09-28 | Microsoft Technology Licensing, Llc | Pupil expander with improved color uniformity |
JP7301004B2 (ja) * | 2017-06-19 | 2023-06-30 | マジック リープ, インコーポレイテッド | 動的に作動可能な回折光学要素 |
US10393930B2 (en) | 2017-06-30 | 2019-08-27 | Microsoft Technology Licensing, Llc | Large-field-of-view waveguide supporting red, green, and blue in one plate |
WO2019079350A2 (en) | 2017-10-16 | 2019-04-25 | Digilens, Inc. | SYSTEMS AND METHODS FOR MULTIPLYING THE IMAGE RESOLUTION OF A PIXÉLISÉ DISPLAY |
US10620440B2 (en) * | 2017-11-22 | 2020-04-14 | Microsoft Technology Licensing, Llc | Waveguide for generating overlapping images in a display module |
CN111566571B (zh) | 2018-01-08 | 2022-05-13 | 迪吉伦斯公司 | 波导单元格中全息光栅高吞吐量记录的系统和方法 |
US20190212588A1 (en) | 2018-01-08 | 2019-07-11 | Digilens, Inc. | Systems and Methods for Manufacturing Waveguide Cells |
US10914950B2 (en) | 2018-01-08 | 2021-02-09 | Digilens Inc. | Waveguide architectures and related methods of manufacturing |
EP3719562A4 (en) | 2018-01-12 | 2021-02-24 | Lg Chem, Ltd. | LIGHT GUIDE PLATE AND DISPLAY DEVICE WITH IT |
KR102157554B1 (ko) * | 2018-01-12 | 2020-09-18 | 주식회사 엘지화학 | 회절 도광판 및 이를 포함하는 디스플레이 장치 |
US10564332B2 (en) * | 2018-01-26 | 2020-02-18 | Applied Materials, Inc. | Controlling grating outcoupling strength for AR waveguide combiners |
KR20200133265A (ko) | 2018-03-16 | 2020-11-26 | 디지렌즈 인코포레이티드. | 복굴절 제어가 통합된 홀로그래픽 도파관 및 이를 제조하는 방법 |
US11460609B2 (en) | 2018-04-02 | 2022-10-04 | Magic Leap, Inc. | Hybrid polymer waveguide and methods for making the same |
US11402801B2 (en) | 2018-07-25 | 2022-08-02 | Digilens Inc. | Systems and methods for fabricating a multilayer optical structure |
KR102255150B1 (ko) * | 2018-08-22 | 2021-05-24 | 주식회사 엘지화학 | 회절 도광판 및 이를 포함하는 디스플레이 장치 |
JP7100567B2 (ja) * | 2018-11-14 | 2022-07-13 | 株式会社日立エルジーデータストレージ | 導光板および画像表示装置 |
EP3671314B1 (en) * | 2018-12-21 | 2024-05-22 | Valeo Vision | Luminous device for vehicle with optical axis adjustment |
US20200225471A1 (en) | 2019-01-14 | 2020-07-16 | Digilens Inc. | Holographic Waveguide Display with Light Control Layer |
US20220283377A1 (en) | 2019-02-15 | 2022-09-08 | Digilens Inc. | Wide Angle Waveguide Display |
WO2020168348A1 (en) | 2019-02-15 | 2020-08-20 | Digilens Inc. | Methods and apparatuses for providing a holographic waveguide display using integrated gratings |
KR102227050B1 (ko) * | 2019-02-28 | 2021-03-12 | 고려대학교 세종산학협력단 | Ftir 기반 회절 광학 구조체 및 그를 갖는 웨이브 가이드 장치와 증강현실 디스플레이 |
WO2020186113A1 (en) | 2019-03-12 | 2020-09-17 | Digilens Inc. | Holographic waveguide backlight and related methods of manufacturing |
US11105982B2 (en) * | 2019-05-30 | 2021-08-31 | Facebook Technologies, Llc | Imageable overcoat for an optical waveguide and process for making the same |
WO2020247930A1 (en) | 2019-06-07 | 2020-12-10 | Digilens Inc. | Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing |
WO2021021926A1 (en) | 2019-07-29 | 2021-02-04 | Digilens Inc. | Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display |
US11442222B2 (en) | 2019-08-29 | 2022-09-13 | Digilens Inc. | Evacuated gratings and methods of manufacturing |
EP3809038A1 (en) * | 2019-10-17 | 2021-04-21 | BAE SYSTEMS plc | Waveguide and method for fabricating a waveguide |
ES3000399T3 (en) * | 2019-09-06 | 2025-02-28 | Bae Systems Plc | Waveguide and method for fabricating a waveguide |
US20220317347A1 (en) * | 2019-09-06 | 2022-10-06 | Bae Systems Plc | Waveguide and method for fabricating a waveguide master grating tool |
JP2024502255A (ja) | 2020-12-21 | 2024-01-18 | ディジレンズ インコーポレイテッド | 導波路ベースのディスプレイにおけるアイグロー抑制 |
JP2024508926A (ja) | 2021-03-05 | 2024-02-28 | ディジレンズ インコーポレイテッド | 真空周期的構造体および製造の方法 |
CN113219671A (zh) * | 2021-05-25 | 2021-08-06 | 深圳市光舟半导体技术有限公司 | 光学装置和显示设备 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5208882A (en) * | 1991-11-14 | 1993-05-04 | Eastman Kodak Company | Hybrid thin film optical waveguide structure having a grating coupler and a tapered waveguide film |
JP2001296417A (ja) * | 2000-04-14 | 2001-10-26 | Canon Inc | 光学素子及び該光学素子を備えた露光装置 |
US6951715B2 (en) * | 2000-10-30 | 2005-10-04 | Sru Biosystems, Inc. | Optical detection of label-free biomolecular interactions using microreplicated plastic sensor elements |
US6833955B2 (en) | 2001-10-09 | 2004-12-21 | Planop Planar Optics Ltd. | Compact two-plane optical device |
US7304797B2 (en) * | 2004-03-24 | 2007-12-04 | Enablence Inc. | Inputs and outputs for an optical multiplexer/demultiplexer utilizing the grating facet diffraction envelope |
JP2007281765A (ja) * | 2006-04-05 | 2007-10-25 | Konica Minolta Holdings Inc | 撮像装置 |
WO2009077772A1 (en) | 2007-12-18 | 2009-06-25 | Bae Systems Plc | Improvemements in or relating to display projectors |
EP2376970A1 (en) | 2008-12-12 | 2011-10-19 | BAE Systems PLC | Improvements in or relating to waveguides |
EP2241926A1 (en) * | 2009-04-14 | 2010-10-20 | BAE Systems PLC | Optical waveguide and display device |
US8064745B2 (en) * | 2009-11-24 | 2011-11-22 | Corning Incorporated | Planar waveguide and optical fiber coupling |
EP3309602A1 (en) | 2011-08-29 | 2018-04-18 | Vuzix Corporation | Controllable waveguide for near-eye display applications |
GB201117029D0 (en) | 2011-10-04 | 2011-11-16 | Bae Systems Plc | Optical waveguide and display device |
GB2500631B (en) * | 2012-03-27 | 2017-12-27 | Bae Systems Plc | Improvements in or relating to optical waveguides |
JP6430516B2 (ja) | 2013-12-19 | 2018-11-28 | ビ−エイイ− システムズ パブリック リミテッド カンパニ−BAE SYSTEMS plc | 導波路における、および、導波路に関連した改良 |
ES2704700T3 (es) | 2013-12-19 | 2019-03-19 | Bae Systems Plc | Mejoras en guías de onda y en relación con ellas |
US20160266343A1 (en) | 2015-03-09 | 2016-09-15 | Ofs Fitel, Llc | Optical-Fiber Ribbon With Reduced-Diameter Optical Fibers |
-
2014
- 2014-12-12 JP JP2016541666A patent/JP6430516B2/ja active Active
- 2014-12-12 US US15/106,102 patent/US10042096B2/en active Active
- 2014-12-12 WO PCT/EP2014/077609 patent/WO2015091282A1/en active Application Filing
- 2014-12-12 ES ES14809902T patent/ES2702886T3/es active Active
- 2014-12-12 CN CN201480075901.5A patent/CN106030376B/zh active Active
- 2014-12-12 EP EP14809902.1A patent/EP3084508B1/en active Active
- 2014-12-12 KR KR1020167019422A patent/KR102359045B1/ko active Active
Also Published As
Publication number | Publication date |
---|---|
CN106030376A (zh) | 2016-10-12 |
EP3084508A1 (en) | 2016-10-26 |
KR102359045B1 (ko) | 2022-02-04 |
KR20160101104A (ko) | 2016-08-24 |
JP2017502348A (ja) | 2017-01-19 |
JP6430516B2 (ja) | 2018-11-28 |
EP3084508B1 (en) | 2018-11-28 |
ES2702886T3 (es) | 2019-03-06 |
US20160327705A1 (en) | 2016-11-10 |
WO2015091282A1 (en) | 2015-06-25 |
US10042096B2 (en) | 2018-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106030376B (zh) | 波导中及相关的改进 | |
CN106030375B (zh) | 波导的改进 | |
EP2887121A1 (en) | Improvements in and relating to waveguides | |
EP2887119A1 (en) | Improvements in and relating to waveguides | |
WO2015091669A1 (en) | Improvements in and relating to waveguides | |
US6859318B1 (en) | Method for forming a holographic spectral filter | |
KR102097597B1 (ko) | 회절 도광판 및 회절 도광판의 제조 방법 | |
US11561393B2 (en) | Light guide plate and image display device | |
JP7579247B2 (ja) | 接眼レンズのための重畳された回折格子 | |
WO2015033645A1 (ja) | 平行配置された光反射部を備えた光制御パネルの製造方法 | |
JP2013205512A (ja) | 光拡散フィルム、偏光板、画像形成装置および表示装置 | |
CN111830716A (zh) | 波导显示装置和增强现实显示设备 | |
GB2521535A (en) | Improvements in and relating to waveguides | |
JP5942527B2 (ja) | 光拡散フィルムの設計方法、光拡散フィルムの製造方法、および、光拡散フィルムの拡散特性の評価方法 | |
EP2887120A1 (en) | Improvements in and relating to waveguides | |
GB2521534A (en) | Improvements in and relating to waveguides | |
GB2521536A (en) | Improvements in and relating to waveguides | |
JP7481796B2 (ja) | 反射型回折光学素子、反射型回折光学素子の製造方法 | |
WO2025054942A1 (zh) | 波导片、光波导结构及其制备方法和显示装置 | |
WO2023226018A1 (zh) | 光栅结构及其制备方法、显示装置 | |
CN119317861A (zh) | 投影基板以及投影基板的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241024 Address after: California, USA Patentee after: SNAP Inc. Country or region after: U.S.A. Address before: London Patentee before: BAE SYSTEMS PLC Country or region before: Britain |
|
TR01 | Transfer of patent right |