[go: up one dir, main page]

CN106023193B - A kind of array camera observation procedure detected for body structure surface in turbid media - Google Patents

A kind of array camera observation procedure detected for body structure surface in turbid media Download PDF

Info

Publication number
CN106023193B
CN106023193B CN201610328899.9A CN201610328899A CN106023193B CN 106023193 B CN106023193 B CN 106023193B CN 201610328899 A CN201610328899 A CN 201610328899A CN 106023193 B CN106023193 B CN 106023193B
Authority
CN
China
Prior art keywords
camera
ideal
image
array
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610328899.9A
Other languages
Chinese (zh)
Other versions
CN106023193A (en
Inventor
何小元
刘聪
戴美玲
邵新星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610328899.9A priority Critical patent/CN106023193B/en
Publication of CN106023193A publication Critical patent/CN106023193A/en
Application granted granted Critical
Publication of CN106023193B publication Critical patent/CN106023193B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10052Images from lightfield camera

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The invention discloses a kind of array camera observation procedures detected for body structure surface in turbid media, using camera array device, observed range can be greatly shortened in the case that visual field size is constant, imaging definition is improved, to realize the purpose that body structure surface blur-free imaging is carried out in turbid media.This method includes the following steps:Each camera is demarcated using encoded point scaling board, while obtains the spin matrix and translation matrix of the inner parameter matrix of each camera, distortion parameter matrix, camera coordinates system and world coordinate system;Calculate camera array ideal inner parameter matrix;Calculate image homograph matrix;Camera photocentre correction calculates;Lens distortion calibration calculates;The mapping relations of single camera image and array image, that is, look-up table calculates;Body structure surface high resolution imaging shows and detects.

Description

一种用于浑浊介质中结构表面检测的阵列相机观测方法An Array Camera Observation Method for Structural Surface Detection in Turbid Media

技术领域technical field

本发明涉及一种用于浑浊介质中结构表面检测的阵列相机观测方法,尤其是一种利用数字图像处理技术及相机标定技术实现的用于浑浊介质中的高清晰度结构表面观测方法。The invention relates to an array camera observation method for structural surface detection in turbid media, in particular to a high-definition structural surface observation method for turbid media realized by digital image processing technology and camera calibration technology.

背景技术Background technique

结构在服役过程中会受到各种条件的影响,这些影响会造成结构不同程度的损伤,影响其正常使用。因此对结构的安全性检测具有极其重要的意义,表面检测是其中重要的一个方面。表面检测是指对整体结构和局部结构的几何尺寸的测量、结构病害的检测与量测等。The structure will be affected by various conditions during the service process, which will cause different degrees of damage to the structure and affect its normal use. Therefore, the safety detection of the structure is of great significance, and the surface detection is one of the important aspects. Surface inspection refers to the measurement of the geometric dimensions of the overall structure and local structures, the detection and measurement of structural defects, etc.

常规条件下一般采用单相机对结构进行表面检测,但在一些复杂条件下如浑浊介质中,若观测距离较远时,受光传输介质的影响,很难得到清晰的表观图像;但观测距离近的时候,视场则会变小。目前大多数相机阵列采用远距离成像,图像清晰度难以保证,至今还未出现一种可以用于浑浊介质中结构表面检测的阵列相机方法。Under normal conditions, a single camera is generally used to detect the surface of the structure, but under some complex conditions such as turbid media, if the observation distance is long, it is difficult to obtain a clear appearance image due to the influence of the light transmission medium; but the observation distance is short , the field of view becomes smaller. At present, most camera arrays use long-distance imaging, and the image clarity is difficult to guarantee. So far, there has not been an array camera method that can be used for structural surface detection in turbid media.

发明内容Contents of the invention

技术问题:本发明提供一种操作简单,易于实现,在检测过程中可以实时显示结构表面图像的用于浑浊介质中结构表面检测的阵列相机观测方法。Technical problem: The present invention provides an array camera observation method for structural surface detection in turbid media, which is simple to operate, easy to implement, and can display structure surface images in real time during the detection process.

技术方案:本发明的用于浑浊介质中结构表面检测的阵列相机观测方法,包括以下步骤:Technical solution: The array camera observation method for structural surface detection in turbid media of the present invention includes the following steps:

1)阵列相机标定:将编码点标定板置于被测结构平面位置,阵列所有相机同步采集标定板图像,得到一组图像0;将标定板沿着与其平面垂直的方向平移已知距离,阵列相机同步采集标定板图像,得到一组图像1;由每个相机采集到的图像0和图像1利用两步法标定得到该相机的所有参数,所述相机参数包括:内部参数矩阵Ai,镜头畸变参数矩阵Di,相机光心坐标系相对于编码点标定板世界坐标系的旋转矩阵Ri=[Ri,x Ri,y Ri,z]及平移矩阵Ti=[Ti,x Ti,y Ti,z],所述内部参数矩阵为其中fi,x、fi,y为第i个相机的水平方向和竖直方向等效焦距,i=1、2、...、m,m为相机个数,si为倾斜因子,ci,x、ci,y为镜头的光轴与靶面交点的像素坐标;1) Array camera calibration: place the code point calibration plate at the position of the measured structure plane, and all the cameras in the array collect the calibration plate images synchronously to obtain a set of image 0; translate the calibration plate along a direction perpendicular to its plane for a known distance, The array camera synchronously collects the images of the calibration plate to obtain a set of image 1; the image 0 and image 1 collected by each camera are calibrated using a two-step method to obtain all the parameters of the camera, and the camera parameters include: the internal parameter matrix A i , lens distortion parameter matrix D i , rotation matrix R i =[R i,x R i,y R i,z ] and translation matrix T i =[T i, x T i, y T i, z ], the internal parameter matrix is Wherein f i, x , f i, y are the horizontal and vertical equivalent focal lengths of the ith camera, i=1, 2, ..., m, m is the number of cameras, s i is the tilt factor, c i, x , c i, y are the pixel coordinates of the intersection point of the optical axis of the lens and the target surface;

2)阵列相机同步采集结构表面图像,根据以下关系式计算每个相机采集的结构表面图像的单应变换矩阵Hi2) The array camera collects the structural surface image synchronously, and calculates the homography transformation matrix H i of the structural surface image collected by each camera according to the following relation:

AidealRideal=HiAiRi A ideal R ideal =H i A i R i

3)首先计算每个相机光心的世界坐标其中Ci=[Ci,x Ci,y Ci,z],然后计算校正后光心到结构表面的距离Cideal,z,Cideal,z为所有相机光心世界坐标中Ci,z的平均值;3) First calculate the world coordinates of each camera optical center Where C i =[C i, x C i, y C i, z ], then calculate the corrected distance C ideal, z from the optical center to the surface of the structure, C ideal, z is C i in the world coordinates of the optical center of all cameras, mean value of z ;

4)以相机阵列中的左上角相机为相机1,根据下式计算所有相机光心相对于相机1光心的水平和竖直像素平移xtrans、ytrans4) Taking the camera in the upper left corner of the camera array as camera 1, calculate the horizontal and vertical pixel translations x trans , y trans of the optical centers of all cameras relative to the optical center of camera 1 according to the following formula:

xtrans=(Ci,x-C1,x)×fideal,x/Cideal,z x trans = (C i, x −C 1, x )×f ideal, x /C ideal, z

ytrans=(Ci,y-C1,y)×fideal,y/Cideal,z y trans = (C i,y -C 1,y )×f ideal,y /C ideal,z

5)按照如下方式遍历阵列图像中的所有点,计算确定单个相机采集的结构表面图像与阵列图像的映射关系:对于阵列图像上任意一点,根据所述步骤4)得到的所有相机相对于相机1的像素平移,计算该点位于第i个相机的图像位置,然后利用所述步骤3)得到的校正后光心到结构表面的距离对每个相机进行光心位置校正,利用所述步骤2)得到的单应变换矩阵进行单应变换校正,最后利用所述步骤1)得到的镜头畸变参数矩阵进行畸变校正;5) Traverse all points in the array image in the following manner, and calculate and determine the mapping relationship between the structure surface image collected by a single camera and the array image: For any point on the array image, all cameras obtained according to step 4) are relative to camera 1 Calculate the image position of the point at the i-th camera, and then use the corrected distance from the optical center to the structure surface obtained in step 3) to correct the optical center position of each camera, using the step 2) Homography transformation correction is performed on the obtained homography transformation matrix, and finally distortion correction is carried out using the lens distortion parameter matrix obtained in step 1);

所述光心位置校正根据如下公式进行:The optical center position correction is performed according to the following formula:

xideal-cideal,x=(xi-cideal,x)×Ci,z/Cideal,z x ideal - c ideal, x = (xi - c ideal, x ) × C i, z / C ideal, z

yideal-cideal,y=(yi-cideal,y)×Ci,z/Cideal,z y ideal -c ideal,y =(y i -c ideal,y )×C i,z /C ideal,z

其中xi、yi为校正前任意一点的图像坐标,xideal、yideal为校正后任意一点的图像坐标;Among them, x i and y i are the image coordinates of any point before correction, and x ideal and y ideal are the image coordinates of any point after correction;

6)通过所述步骤5)得到的映射关系计算阵列图像中每个图像点的像素值,并从而得到阵列图像实时进行阵列图像显示及结构表观面检测。6) Calculate the pixel value of each image point in the array image through the mapping relationship obtained in step 5), and thereby obtain the array image to perform array image display and structure surface detection in real time.

进一步的,本发明方法中,所述步骤1)中,镜头畸变参数矩阵包括6阶径向畸变参数K1、K2、K3、K4、K5、K6和2阶切向畸变参数矩阵P1、P2Further, in the method of the present invention, in step 1), the lens distortion parameter matrix includes 6th-order radial distortion parameters K 1 , K 2 , K 3 , K 4 , K 5 , K 6 and 2nd-order tangential distortion parameters Matrix P 1 , P 2 .

进一步的,本发明方法中,所述步骤2)中,标定板图像包括但不仅限于编码点。Further, in the method of the present invention, in the step 2), the calibration plate image includes but not limited to code points.

本发明方法通过采用相机阵列装置,在视场大小不变的情况下缩短观测距离,提高浑浊介质中成像清晰度,最终实现在浑浊介质中进行结构表面检测的目的。By adopting the camera array device, the method of the invention shortens the observation distance under the condition that the size of the field of view remains unchanged, improves the imaging definition in the turbid medium, and finally realizes the purpose of detecting the structure surface in the turbid medium.

有益效果:本发明与现有技术相比,具有以下优点:Beneficial effect: compared with the prior art, the present invention has the following advantages:

(1)被测结构表面直观检测。与其他声成像等检测技术相比,本发明采用光学成像技术,可以直接观测到结构表面原始图像,更加直观、有效。(1) Intuitive detection of the surface of the structure under test. Compared with other detection technologies such as acoustic imaging, the present invention adopts optical imaging technology, which can directly observe the original image of the structure surface, which is more intuitive and effective.

(2)结构表面成像更加清晰。传统的单相机结构表面检测成像距离较远,视场较小;而本发明采用阵列相机装置,不仅增大了视场,同时缩短了观测距离,减少了浑浊的介质对于成像清晰度的影响,提高了结构表面成像清晰度。(2) The structure surface imaging is clearer. The traditional single-camera surface detection imaging distance is relatively long and the field of view is small; however, the present invention uses an array camera device, which not only increases the field of view, but also shortens the observation distance and reduces the influence of turbid media on imaging clarity. Improving the imaging clarity of the structure surface.

(3)操作简单方便。本发明采用编码点,只需两步即可完成标定,由于采用固定的阵列相机装置,只需出厂时标定一次,之后进行结构表面检测时无需再次标定。(3) The operation is simple and convenient. The present invention adopts the coding point, and only needs two steps to complete the calibration. Since the fixed array camera device is used, it only needs to be calibrated once when leaving the factory, and there is no need to calibrate again when the structure surface is detected afterwards.

(4)结构表面实时检测。本发明通过构建查找表的方式,可以直接计算阵列图像的像素值,并且适宜多线程技术并行运算;相比于采用图像拼接的方法计算效率更高。(4) Real-time detection of the structure surface. The present invention can directly calculate the pixel value of the array image by constructing a lookup table, and is suitable for multi-thread technology parallel operation; compared with the method of image splicing, the calculation efficiency is higher.

附图说明Description of drawings

图1为编码点标定板,是已知尺寸的标准件。Figure 1 is the code point calibration plate, which is a standard part with known dimensions.

图2为发明方法流程图。Fig. 2 is a flow chart of the inventive method.

具体实施方式Detailed ways

下面结合实施例和说明书附图对本发明作进一步的说明。The present invention will be further described below in conjunction with embodiment and accompanying drawing.

制备一相机阵列装置:相机按网格排列方式规则排列于刚性架上,其中所有相机的图像分辨率、光圈、焦距等相机和镜头参数均一致,单个相机的视场大小约为8cm×6cm,观测距离约为11cm,相邻相机间水平距离略小于单个相机视场的宽度,竖直距离略小于单个相机视场的高度,相机与相机之间尽量保持平行;这种排列方式既可充分利用相机的图像分辨率又能确保相邻相机间有一定的重叠区域,从而保证最终阵列图像的连续性。若在水下条件进行结构表面检测,则相机应具备防水装置,为保证在弱光条件下能够清晰成像,每个相机周围至少应布置4个LED灯以提高亮度。Prepare a camera array device: the cameras are regularly arranged on a rigid frame according to the grid arrangement, and the image resolution, aperture, focal length and other camera and lens parameters of all cameras are the same, and the field of view of a single camera is about 8cm×6cm. The observation distance is about 11cm, the horizontal distance between adjacent cameras is slightly smaller than the width of a single camera's field of view, and the vertical distance is slightly smaller than the height of a single camera's field of view, and the cameras should be kept as parallel as possible; this arrangement can make full use of The image resolution of the camera can ensure a certain overlapping area between adjacent cameras, thereby ensuring the continuity of the final array image. If the structural surface inspection is carried out under underwater conditions, the camera should be equipped with a waterproof device. In order to ensure clear imaging under low light conditions, at least 4 LED lights should be arranged around each camera to increase the brightness.

用于浑浊介质中结构表面检测的阵列相机观测方法包括以下步骤:An array camera observation method for structural surface detection in turbid media includes the following steps:

1)阵列相机标定:将图1所示编码点标定板置于被测结构平面位置,使用移动工作站控制阵列所有相机同步采集标定板图像,得到一组图像0;将标定板沿着与其平面垂直的方向平移已知距离,阵列相机同步采集标定板图像,得到一组图像1;由每个相机采集到的图像0和图像1利用两步法标定得到该相机的所有参数;本方法只需要两步即可标定相机的所有参数,在一次标定结束之后无需再次标定即可实现多次测量。采用编码点标定板作为标定图案,其特征在于,每个特征点可以唯一识别,标定过程中每一个特征点的图像坐标和世界坐标可以唯一确定,此处的标定板包括但不仅限于编码点标定板。所述相机参数包括:内部参数矩阵Ai,镜头畸变参数矩阵Di,相机光心坐标系相对于编码点标定板世界坐标系的旋转矩阵Ri=[Ri,x Ri,y Ri,z]及平移矩阵Ti=[Ti,x Ti,y Ti,z]。内部参数矩阵其中fi,x、fi,y为第i个相机的水平方向和竖直方向等效焦距,i=1、2、...、m(m为相机个数),si为倾斜因子,ci,x、ci,y为镜头的光轴与靶面交点的像素坐标;镜头畸变参数矩阵一般包括6阶径向畸变参数K1、K2、K3、K4、K5、K6和2阶切向畸变参数矩阵P1、P2,镜头畸变参数矩阵主要用来校正由于镜头畸变而造成的图像失真。1) Array camera calibration: place the code point calibration plate shown in Figure 1 on the plane of the structure to be measured, use the mobile workstation to control all cameras in the array to collect the calibration plate images synchronously, and obtain a set of images 0; place the calibration plate along its plane Translate the known distance in the vertical direction, and the array camera collects the images of the calibration board synchronously to obtain a set of image 1; the image 0 and image 1 collected by each camera are calibrated by two-step method to obtain all the parameters of the camera; this method only It takes two steps to calibrate all the parameters of the camera, and multiple measurements can be realized without re-calibration after one calibration. The code point calibration plate is used as the calibration pattern, which is characterized in that each feature point can be uniquely identified, and the image coordinates and world coordinates of each feature point during the calibration process can be uniquely determined. The calibration plate here includes but is not limited to code point calibration plate. The camera parameters include: internal parameter matrix A i , lens distortion parameter matrix D i , rotation matrix R i =[R i , x R i , y R i , z ] and translation matrix T i =[T i, x T i, y T i, z ]. internal parameter matrix Among them, f i, x , f i, y are the horizontal and vertical equivalent focal lengths of the ith camera, i=1, 2, ..., m (m is the number of cameras), and s i is the tilt factor , ci , x , ci , y are the pixel coordinates of the intersection point of the optical axis of the lens and the target surface; the lens distortion parameter matrix generally includes six-order radial distortion parameters K 1 , K 2 , K 3 , K 4 , K 5 , K 6 and the second-order tangential distortion parameter matrices P 1 , P 2 , and the lens distortion parameter matrix are mainly used to correct image distortion caused by lens distortion.

2)阵列相机同步采集结构表面图像,根据以下关系式计算每个相机采集的结构表面图像的单应变换矩阵Hi2) The array camera collects the structural surface image synchronously, and calculates the homography transformation matrix H i of the structural surface image collected by each camera according to the following relation:

AidealRideal=HiAiRi A ideal R ideal =H i A i R i

3)由于相机的安装误差,所有相机的光心不可能处于同一平面上,因而需要进行相机光心位置校正。首先计算每个相机光心的世界坐标其中Ci=[Ci,x Ci,yCi,z]。然后计算校正后光心到结构表面的距离为Cideal,z,Cideal,z为所有相机光心世界坐标中Ci,z的平均值。3) Due to the installation error of the cameras, the optical centers of all the cameras cannot be on the same plane, so it is necessary to correct the positions of the optical centers of the cameras. First calculate the world coordinates of each camera optical center where C i =[C i,x C i,y C i,z ]. Then calculate the corrected distance from the optical center to the structure surface as C ideal, z , where C ideal, z is the average value of C i, z in the world coordinates of the optical centers of all cameras.

4)以相机阵列中的左上角相机为相机1,根据下式计算所有相机光心相对于相机1光心的水平和竖直像素平移xtrans、ytrans4) Taking the camera in the upper left corner of the camera array as camera 1, calculate the horizontal and vertical pixel translations x trans , y trans of the optical centers of all cameras relative to the optical center of camera 1 according to the following formula:

xtrans=(Ci,x-C1,x)×fideal,x/Cideal,z x trans = (C i, x −C 1, x )×f ideal, x /C ideal, z

ytrans=(Ci,y-C1,y)×fideal,y/Cideal,z y trans = (C i,y -C 1,y )×f ideal,y /C ideal,z

5)按照如下方式遍历阵列图像中的所有点,计算确定单个相机采集的结构表面图像与阵列图像的映射关系:对于阵列图像上任意一点,根据所述步骤4)得到的所有相机相对于相机1的像素平移,计算该点位于第i个相机的图像位置,然后分别利用所述步骤3)得到的校正后光心到结构平面的距离对每个相机进行光心位置校正、利用所述步骤2)得到的单应变换矩阵进行单应变换校正,最后利用所述步骤1)得到的镜头畸变参数矩阵进行畸变校正。遍历阵列图像中的所有点,映射关系即查找表计算完成。5) Traverse all points in the array image in the following manner, and calculate and determine the mapping relationship between the structure surface image collected by a single camera and the array image: For any point on the array image, all cameras obtained according to step 4) are relative to camera 1 Calculate the image position of the point at the i-th camera, and then use the distance from the corrected optical center to the structural plane obtained in step 3) to correct the optical center position of each camera, and use the step 2 ) to perform homography transformation correction on the homography transformation matrix obtained, and finally use the lens distortion parameter matrix obtained in step 1) to perform distortion correction. All points in the array image are traversed, and the mapping relationship, that is, the lookup table, is calculated.

所述光心位置校正根据如下公式进行:The optical center position correction is performed according to the following formula:

xideal-cideal,x=(xi-cideal,x)×Ci,z/Cideal,z x ideal - c ideal, x = (xi - c ideal, x ) × C i, z / C ideal, z

yideal-cideal,y=(yi-cideal,y)×Ci,z/Cideal,z y ideal -c ideal,y =(y i -c ideal,y )×C i,z /C ideal,z

其中xi、yi为校正前任意一点的图像坐标,xideal、yideal为校正后任意一点的图像坐标。Among them, x i and y i are the image coordinates of any point before correction, and x ideal and y ideal are the image coordinates of any point after correction.

6)通过所述步骤5)得到的映射关系快速计算阵列图像中每个图像点的像素值,从而得到阵列图像。阵列相机装置只需出厂时标定一次得到所述步骤5)的映射关系,之后的检测过程中可以直接利用该映射关系,采用多线程技术可以实时计算并显示结构表面阵列图像。6) Quickly calculate the pixel value of each image point in the array image through the mapping relationship obtained in step 5), thereby obtaining the array image. The array camera device only needs to be calibrated once before leaving the factory to obtain the mapping relationship in step 5), and the mapping relationship can be directly used in the subsequent detection process, and the multi-threading technology can be used to calculate and display the structure surface array image in real time.

上述实施例仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和等同替换,这些对本发明权利要求进行改进和等同替换后的技术方案,均落入本发明的保护范围。The foregoing embodiments are only preferred implementations of the present invention. It should be pointed out that for those of ordinary skill in the art, without departing from the principles of the present invention, several improvements and equivalent replacements can be made, which are important to the rights of the present invention. Technical solutions requiring improvement and equivalent replacement all fall within the protection scope of the present invention.

Claims (3)

1.一种用于浑浊介质中结构表面检测的阵列相机观测方法,其特征在于,该方法包括以下步骤:1. an array camera observation method for structural surface detection in turbid media, it is characterized in that, the method comprises the following steps: 1)阵列相机标定:将编码点标定板置于被测结构平面位置,阵列所有相机同步采集标定板图像,得到一组图像0;将标定板沿着与其平面垂直的方向平移已知距离,阵列相机同步采集标定板图像,得到一组图像1;由每个相机采集到的图像0和图像1利用两步法标定得到该相机的所有参数,所述相机参数包括:内部参数矩阵Ai,镜头畸变参数矩阵Di,相机光心坐标系相对于编码点标定板世界坐标系的旋转矩阵Ri=[Ri,x Ri,y Ri,z]及平移矩阵Ti=[Ti,x Ti,y Ti,z],所述内部参数矩阵为其中fi,x、fi,y为第i个相机的水平方向和竖直方向等效焦距,i=1、2、...、m,m为相机个数,si为倾斜因子,ci,x、ci,y为镜头的光轴与靶面交点的像素坐标;1) Array camera calibration: place the code point calibration plate at the position of the measured structure plane, and all the cameras in the array collect the calibration plate images synchronously to obtain a set of image 0; translate the calibration plate along a direction perpendicular to its plane for a known distance, The array camera synchronously collects the images of the calibration plate to obtain a set of image 1; the image 0 and image 1 collected by each camera are calibrated using a two-step method to obtain all the parameters of the camera, and the camera parameters include: the internal parameter matrix A i , lens distortion parameter matrix D i , rotation matrix R i =[R i,x R i,y R i,z ] and translation matrix T i =[T i, x T i, y T i, z ], the internal parameter matrix is Wherein f i, x , f i, y are the horizontal and vertical equivalent focal lengths of the ith camera, i=1, 2, ..., m, m is the number of cameras, s i is the tilt factor, c i, x , c i, y are the pixel coordinates of the intersection point of the optical axis of the lens and the target surface; 2)阵列相机同步采集结构表面图像,根据以下关系式计算每个相机采集的结构表面图像的单应变换矩阵Hi2) The array camera collects the structural surface image synchronously, and calculates the homography transformation matrix H i of the structural surface image collected by each camera according to the following relation: 其中fideal,x、fideal,y、sideal为所有相机fi,x、fi,y、si的平均值,cideal,x和cideal,y为每个相机的图像单应校正之后成像区域最大的理想主点坐标,Rideal为单位矩阵, Where f ideal, x , f ideal, y , s ideal are the average values of all cameras f i, x , f i, y , s i , c ideal, x and c ideal, y are the image homography correction of each camera Afterwards, the coordinates of the largest ideal principal point in the imaging area, R ideal is the identity matrix, 3)首先计算每个相机光心的世界坐标其中Ci=[Ci,x Ci,y Ci,z],然后计算校正后光心到结构表面的距离Cideal,z,Cideal,z为所有相机光心世界坐标中Ci,z的平均值;3) First calculate the world coordinates of each camera optical center Where C i =[C i, x C i, y C i, z ], then calculate the corrected distance C ideal, z from the optical center to the surface of the structure, C ideal, z is C i in the world coordinates of the optical center of all cameras, mean value of z ; 4)以相机阵列中的左上角相机为相机1,根据下式计算所有相机光心相对于相机1光心的水平和竖直像素平移xtrans、ytrans4) Taking the camera in the upper left corner of the camera array as camera 1, calculate the horizontal and vertical pixel translations x trans , y trans of the optical centers of all cameras relative to the optical center of camera 1 according to the following formula: xtrans=(Ci,x-C1,x)×fideal,x/Cideal,z x trans = (C i, x −C 1, x )×f ideal, x /C ideal, z ytrans=(Ci,y-C1,y)×fideal,y/Cideal,z y trans = (C i,y -C 1,y )×f ideal,y /C ideal,z 5)按照如下方式遍历阵列图像中的所有点,计算确定单个相机采集的结构表面图像与阵列图像的映射关系:对于阵列图像上任意一点,根据所述步骤4)得到的所有相机相对于相机1的像素平移,计算该点位于第i个相机的图像位置,然后利用所述步骤3)得到的校正后光心到结构表面的距离对每个相机进行光心位置校正,利用所述步骤2)得到的单应变换矩阵进行单应变换校正,最后利用所述步骤1)得到的镜头畸变参数矩阵进行畸变校正;5) Traverse all points in the array image in the following manner, and calculate and determine the mapping relationship between the structure surface image collected by a single camera and the array image: For any point on the array image, all cameras obtained according to step 4) are relative to camera 1 Calculate the image position of the point at the i-th camera, and then use the corrected distance from the optical center to the structure surface obtained in step 3) to correct the optical center position of each camera, using the step 2) Homography transformation correction is performed on the obtained homography transformation matrix, and finally distortion correction is carried out using the lens distortion parameter matrix obtained in step 1); 所述光心位置校正根据如下公式进行:The optical center position correction is performed according to the following formula: xideal-cideal,x=(xi-cideal,x)×Ci,z/Cideal,z x ideal - c ideal, x = (xi - c ideal, x ) × C i, z / C ideal, z yideal-cideal,y=(yi-cideal,y)×Ci,z/Cideal,z y ideal -c ideal,y =(y i -c ideal,y )×C i,z /C ideal,z 其中xi、yi为校正前任意一点的图像坐标,xideal、yideal为校正后任意一点的图像坐标;Among them, x i and y i are the image coordinates of any point before correction, and x ideal and y ideal are the image coordinates of any point after correction; 6)通过所述步骤5)得到的映射关系计算阵列图像中每个图像点的像素值,从而得到阵列图像。6) Calculate the pixel value of each image point in the array image through the mapping relationship obtained in step 5), thereby obtaining the array image. 2.根据权利要求1所述的用于浑浊介质中结构表面检测的阵列相机观测方法,其特征在于,所述步骤1)中,镜头畸变参数矩阵包括6阶径向畸变参数K1、K2、K3、K4、K5、K6和2阶切向畸变参数矩阵P1、P22. The array camera observation method for structural surface detection in turbid media according to claim 1, characterized in that, in the step 1), the lens distortion parameter matrix includes six-order radial distortion parameters K 1 , K 2 , K 3 , K 4 , K 5 , K 6 and the second-order tangential distortion parameter matrices P 1 , P 2 . 3.根据权利要求1或2所述的用于浑浊介质中结构表面检测的阵列相机观测方法,其特征在于,所述步骤1)中,标定板图像包括但不仅限于编码点。3. The array camera observation method for structural surface detection in turbid media according to claim 1 or 2, characterized in that, in the step 1), the calibration plate image includes but not limited to code points.
CN201610328899.9A 2016-05-18 2016-05-18 A kind of array camera observation procedure detected for body structure surface in turbid media Active CN106023193B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610328899.9A CN106023193B (en) 2016-05-18 2016-05-18 A kind of array camera observation procedure detected for body structure surface in turbid media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610328899.9A CN106023193B (en) 2016-05-18 2016-05-18 A kind of array camera observation procedure detected for body structure surface in turbid media

Publications (2)

Publication Number Publication Date
CN106023193A CN106023193A (en) 2016-10-12
CN106023193B true CN106023193B (en) 2018-06-19

Family

ID=57098706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610328899.9A Active CN106023193B (en) 2016-05-18 2016-05-18 A kind of array camera observation procedure detected for body structure surface in turbid media

Country Status (1)

Country Link
CN (1) CN106023193B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107643213B (en) * 2017-07-31 2018-07-20 东南大学 A kind of high temperature strain measurement method for eliminating off face Influence of Displacement
CN107687821B (en) * 2017-08-24 2019-11-15 南京理工大学 Calibration method of multi-camera light knife system for shape measurement of deep hole rotating parts
CN108154534B (en) * 2017-12-26 2020-09-01 努比亚技术有限公司 Picture definition calibration method, terminal and computer readable storage medium
CN110298878B (en) * 2018-03-21 2021-03-12 北京猎户星空科技有限公司 Method and device for determining three-dimensional pose of target object and electronic equipment
CN110596130A (en) * 2018-05-25 2019-12-20 上海翌视信息技术有限公司 An industrial detection device with auxiliary lighting
CN109099883A (en) * 2018-06-15 2018-12-28 哈尔滨工业大学 The big visual field machine vision metrology of high-precision and caliberating device and method
CN112435303B (en) * 2020-12-09 2024-03-19 华中科技大学 Galvanometer system calibration table construction method, system construction and galvanometer system calibration method
CN119151781A (en) * 2024-11-19 2024-12-17 东南大学 Method and system for uniform calibration of internal and external parameters of underwater camera and splicing of array images

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104182969A (en) * 2014-08-08 2014-12-03 河南科技大学 Internal and external parameter calibration method of single-scanline camera
CN104635278A (en) * 2014-12-18 2015-05-20 中国海洋大学 Detection device and detection method for target image of large non-uniform light field
CN105303574A (en) * 2015-07-30 2016-02-03 四川大学 Integrated imaging camera array calibration method based on homography transformation
US9310191B1 (en) * 2008-07-08 2016-04-12 Bae Systems Information And Electronic Systems Integration Inc. Non-adjustable pointer-tracker gimbal used for directed infrared countermeasures systems

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9392189B2 (en) * 2014-02-28 2016-07-12 Intel Corporation Mechanism for facilitating fast and efficient calculations for hybrid camera arrays

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9310191B1 (en) * 2008-07-08 2016-04-12 Bae Systems Information And Electronic Systems Integration Inc. Non-adjustable pointer-tracker gimbal used for directed infrared countermeasures systems
CN104182969A (en) * 2014-08-08 2014-12-03 河南科技大学 Internal and external parameter calibration method of single-scanline camera
CN104635278A (en) * 2014-12-18 2015-05-20 中国海洋大学 Detection device and detection method for target image of large non-uniform light field
CN105303574A (en) * 2015-07-30 2016-02-03 四川大学 Integrated imaging camera array calibration method based on homography transformation

Also Published As

Publication number Publication date
CN106023193A (en) 2016-10-12

Similar Documents

Publication Publication Date Title
CN106023193B (en) A kind of array camera observation procedure detected for body structure surface in turbid media
CN110197466B (en) A wide-angle fisheye image correction method
CN104851104B (en) Using the flexible big view calibration method of target high speed camera close shot
CN111047649B (en) Camera high-precision calibration method based on optimal polarization angle
WO2013182080A1 (en) Parameter calibration method and device
JP5627622B2 (en) Solid-state imaging device and portable information terminal
CN103852060B (en) A kind of based on single visual visible images distance-finding method felt
CN108305233B (en) A light field image correction method for microlens array errors
CN108613628A (en) A kind of overhead transmission line arc sag measurement method based on binocular vision
CN104165598B (en) Automatic reflection light spot positioning method for large-caliber mirror interferometer vertical type detection
CN108917602B (en) A panoramic structured light vision measurement system and a parameter calibration method for a general distortion model
CN107635135B (en) Test method and test system for relative inclination angle of dual-camera module before assembly
CN111986267B (en) Coordinate system calibration method of multi-camera vision system
CN108198220A (en) A kind of optical camera image surfaces method for precisely marking
CN110349257B (en) Phase pseudo mapping-based binocular measurement missing point cloud interpolation method
CN107449586A (en) A kind of fish-eye method of testing and test device
CN115205466A (en) Structured light-based three-dimensional reconstruction method and system for power transmission channel
CN112907680B (en) Automatic calibration method for rotation matrix of visible light and infrared double-light camera
CN110443856A (en) A kind of 3D structure optical mode group scaling method, storage medium, electronic equipment
CN111968182A (en) Calibration method for binocular camera nonlinear model parameters
JP2012007972A (en) Vehicle dimension measuring device
CN112649095B (en) Large-range accurate temperature measurement system based on affine transformation and optical/infrared double lenses
CN115631715A (en) A kind of LED display screen correction method
CN112085803B (en) A color consistency processing method for multi-lens and multi-detector spliced cameras
CN115797460A (en) Underwater binocular calibration method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant