CN106007110A - Low-salt wastewater recycled treatment and recycling method - Google Patents
Low-salt wastewater recycled treatment and recycling method Download PDFInfo
- Publication number
- CN106007110A CN106007110A CN201610436947.6A CN201610436947A CN106007110A CN 106007110 A CN106007110 A CN 106007110A CN 201610436947 A CN201610436947 A CN 201610436947A CN 106007110 A CN106007110 A CN 106007110A
- Authority
- CN
- China
- Prior art keywords
- concentration
- membrane
- acid
- membrane materials
- waste water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 70
- 239000002351 wastewater Substances 0.000 title claims abstract description 30
- 238000004064 recycling Methods 0.000 title abstract description 4
- 239000012528 membrane Substances 0.000 claims abstract description 79
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 36
- 238000004821 distillation Methods 0.000 claims abstract description 21
- 239000002253 acid Substances 0.000 claims abstract description 20
- 238000000909 electrodialysis Methods 0.000 claims abstract description 15
- 239000007788 liquid Substances 0.000 claims abstract description 12
- 239000003513 alkali Substances 0.000 claims abstract description 9
- 229910017053 inorganic salt Inorganic materials 0.000 claims abstract description 8
- 238000010521 absorption reaction Methods 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 30
- 150000003839 salts Chemical class 0.000 claims description 20
- 239000012267 brine Substances 0.000 claims description 12
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 12
- 238000011084 recovery Methods 0.000 claims description 6
- HBZVNWNSRNTWPS-UHFFFAOYSA-N 6-amino-4-hydroxynaphthalene-2-sulfonic acid Chemical compound C1=C(S(O)(=O)=O)C=C(O)C2=CC(N)=CC=C21 HBZVNWNSRNTWPS-UHFFFAOYSA-N 0.000 claims description 3
- 239000002585 base Substances 0.000 claims description 3
- 150000007516 brønsted-lowry acids Chemical class 0.000 claims description 3
- 150000007528 brønsted-lowry bases Chemical class 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000002075 main ingredient Substances 0.000 abstract 1
- 239000005416 organic matter Substances 0.000 abstract 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- 235000002639 sodium chloride Nutrition 0.000 description 22
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 14
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical group N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 235000019270 ammonium chloride Nutrition 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 229960002668 sodium chloride Drugs 0.000 description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 235000011152 sodium sulphate Nutrition 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- WBZKQQHYRPRKNJ-UHFFFAOYSA-L disulfite Chemical compound [O-]S(=O)S([O-])(=O)=O WBZKQQHYRPRKNJ-UHFFFAOYSA-L 0.000 description 3
- 239000001117 sulphuric acid Substances 0.000 description 3
- 235000011149 sulphuric acid Nutrition 0.000 description 3
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- -1 salt ion Chemical class 0.000 description 2
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000009279 wet oxidation reaction Methods 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 239000000980 acid dye Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical group C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- PANBYUAFMMOFOV-UHFFFAOYSA-N sodium;sulfuric acid Chemical compound [Na].OS(O)(=O)=O PANBYUAFMMOFOV-UHFFFAOYSA-N 0.000 description 1
- 239000007785 strong electrolyte Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/447—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by membrane distillation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
- C02F1/4693—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
The invention provides a low-salt wastewater recycled treatment and recycling method. Wastewater is obtained after pretreatment is conducted to remove organic matter, and the main ingredient is inorganic salt. The method includes the steps that low-salt wastewater is subjected to membrane distillation processing, and a concentrated solution and condensate water (1) are obtained; the concentrated solution is subjected to bipolar membrane electrodialysis processing, and corresponding dilute acid and dilute alkali with high value are obtained respectively; the dilute acid is subjected to membrane distillation concentration, a high-concentration acid solution and condensate water (2) are obtained, the dilute alkali is subjected to membrane distillation concentration, and a high-concentration alkali solution and condensate water (3) are obtained. The condensate water obtained through membrane distillation can be used for bipolar membrane electrodialysis processing and recycled as absorption liquid of acid and alkali, and discharge of wastewater is reduced.
Description
One, technical field
The present invention relates to a kind of less salt waste water reclaiming and process recovery method.
Two, background technology
In chemical process, inevitably produce many salt-containing organic wastewaters, wherein contain and have in a large number
Machine thing and salt constituents, in order to protect environment, need to process to reach discharge standard to these waste water.
Membrane Materials is a kind of employing dewatering microporous film, the membrance separation with film both sides steam pressure difference as mass transfer driving force
Process.During Membrane Materials, steam can enter fenestra, and liquid then can not pass through fenestra.Membrane Materials excellent
Gesture is mainly: it is good to produce water water quality, and salt rejection rate is high, and Water Sproading rate is high, can carry out at ambient pressure, equipment is simple,
Easy to operate.
The dense water of Membrane Materials that Membrane Materials obtains typically uses evaporative crystallization process to obtain salt-pepper noise, and this method reclaims
Salt is relatively costly, inferior quality, and recovery value is the highest.
Bipolar membrane electrodialysis can make the salt ion in saline solution and the hydrion of Bipolar Membrane both sides water decomposition and hydrogen
Oxygen radical ion combines and generates corresponding bronsted lowry acids and bases bronsted lowry, and the recycling of soda acid is worth just much higher than salt, and
And can be with direct reuse in Chemical Manufacture.
Three, summary of the invention
The present invention provides the recycling treatment recovery method of a kind of less salt waste water, it is possible to become by the salt in waste water
Divide and recycle, and resource utilization rate is high.
Concrete, the technical solution used in the present invention is:
A kind of less salt waste water reclaiming processes recovery method, and described less salt waste water is to remove organic through pretreatment
The waste water of thing, is mainly composed of inorganic salt, and described inorganic salt is XaYb, X is Na+、NH4 +、K+Deng,
Y is Cl-、SO4 2-Deng, a is the quantivalence absolute value of Y, and b is the quantivalence absolute value of X;Further,
Inorganic salt is usually sodium chloride, sodium sulfate, potassium chloride, potassium sulfate, ammonium chloride etc., inorganic salt in waste water
Mass percentage concentration is generally 0.2~10%.Said method comprising the steps of:
(1) Membrane Materials processes: is processed through Membrane Materials by less salt waste water, obtains concentrated solution and condensed water 1;
(2) bipolar membrane electrodialysis processes: the concentrated solution obtained in step (1) processes through bipolar membrane electrodialysis,
Respectively obtain corresponding diluted acid HaY and diluted alkaline X (OH)bAnd the weak brine after processing;
(3) membrane distillation concentration bronsted lowry acids and bases bronsted lowry: the diluted acid H obtained in step (2)aY through membrane distillation concentration,
Obtain the H of high concentrationaY acid solution and condensed water 2, the diluted alkaline X (OH) that step (2) obtainsbSteam through film
Evaporate concentration, obtain the X (OH) of high concentrationbAqueous slkali and condensed water 3;
Further, in the inventive method, the condensed water 1 of step (1) and condensed water 2 He of step (3)
Condensed water 3 can be back to step (2) bipolar membrane electrodialysis process in, can as the acid in Bipolar Membrane,
Alkali absorption liquid.
High concentration H obtained in step (3)aY acid solution and X (OH)bIt is raw that aqueous slkali can be back to industry
In product.
Described brine waste be through pretreatment remove organic waste water, described preprocess method include but not
Be limited to light electrolysis, Fenton process, adsorb, flocculate, wet oxidation, low temperature wet oxidation, photocatalysis, extraction
Etc. one or more combination of method, the removing that these methods are well known to those skilled in the art has
The method of machine thing.
As preferably, in step (1), the concentration that treatment fluid processes, through Membrane Materials, the concentrated solution obtained is 10%
To 40%, more preferably 10% to 20%, the temperature range of Membrane Materials is 20 DEG C to 100 DEG C, more preferably
50 DEG C to 70 DEG C.
As preferably, the salt concentration of the weak brine after the process that step (2) obtains is 0.5% to 10%, when
When weak brine concentration after Bipolar Membrane process is less than 5%, energy consumption and cost that Bipolar Membrane processes significantly rise, institute
With it is further preferred that the weak brine concentration after Chu Liing is for 5% to 10%;And the weak brine after processing mixes with raw wastewater
Conjunction is recycled by method of the present invention after carrying out pretreatment again, or is returned directly in step (1),
As preferably, the weak brine after process returns to step (1), mixes with less salt waste water, and circulation carries out step (1)
Membrane Materials process.The diluted acid H obtainedaThe concentration of Y is 2-10%, preferably 6%-10%, the diluted alkaline obtained
X(OH)bConcentration be 2-8%, preferably 3-8%.
As preferably, the H of the high concentration that the membrane distillation concentration of step (3) obtainsaThe concentration of Y acid solution is
10-50%, preferably 20-50%;The X (OH) of the high concentration obtainedbThe concentration of aqueous slkali is 8-40%, preferably
20-30%;The temperature range of Membrane Materials is 20-100 DEG C, preferably 50-80 DEG C, more preferably 50~60 DEG C.
The reaction condition that bipolar membrane electrodialysis of the present invention processes is: use titanium to be coated with ruthenium in Bipolar Membrane system
As electrode, diaphragm is homogeneous membrane or heterogeneous membrane, uses 0.1-5% strong electrolyte (such as sodium sulfate) solution
For pole liquid, temperature 0~40 DEG C, electric current density is 100-600A/cm2.Employing well known to a person skilled in the art
Bipolar membrane electrodialysis device carries out processing.The technique that bipolar membrane electrodialysis processes also is skill known in this field
Art.
The beneficial effects of the present invention is, the concentration of brine waste is concentrated by Membrane Materials for the first time, is conducive to carrying
The efficiency that high follow-up Bipolar Membrane processes.By bipolar membrane electrodialysis, the salt constituents in waste water is dissociated into utilization
Costly acid is with alkali, and the saline after process returns to Membrane Materials circular treatment for the first time.Twice Membrane Materials obtains
Condensed water may be used for bipolar membrane electrodialysis process in, as acid, the absorbing liquid reuse of alkali, decrease useless
Water discharges, and the concentration of acid, alkali is improved by Membrane Materials for the second time, can be with direct reuse in commercial production.And
And use membrane distillation concentration equipment simple, cost-effective.
Four, detailed description of the invention
With specific embodiment, technical scheme is described further below, but the protection of the present invention
Scope is not limited to this.
Embodiment 1
Diallyl mother liquor waste water, is mainly composed of amino benzene derivate, at ferrum-charcoal reaction and activated carbon
After reason, COD about 2300mg/L, ammonium chloride content about 6.5%.
(1) Membrane Materials processes: aqueous ammonium chloride solution, through distillation membrance concentration, reaction temperature 55 DEG C, obtains 40%
Ammonium chloride concentrated solution and condensed water 1;
(2) Bipolar Membrane processes: the high concentration 40% ammonium chloride concentrated solution obtained in step (1) is through bipolar
EDBM processes, and obtains 7% dilute hydrochloric acid and 3.5% weak ammonia;Waste water salinity after process is about 6%,
It is mixed into distillation membrance concentration circular treatment with the ammonium chloride solution in step (1);Bipolar Membrane system uses
It is homogeneous membrane as electrode, diaphragm that titanium is coated with ruthenium, and using 1% metabisulfite solution is pole liquid, temperature 40 DEG C, electric current
Density is 200A/cm2。
(3) Membrane Materials: the dilute hydrochloric acid that obtains in step (2) and weak ammonia respectively through distillation membrance concentration,
Reaction temperature 60 DEG C, obtains 30% concentrated hydrochloric acid and 10% strong aqua ammonia, and condensed water 2 and condensed water 3;
(4) concentrated hydrochloric acid obtained in step (3) and strong aqua ammonia can be back to industry, step (1) and (3)
In the hydrogen chloride that may be used in step (2) in bipolar membrane electrodialysis of the condensed water 1,2,3 that obtains and ammonia
Absorbing liquid.
Embodiment 2
In DASA and filtrate, after ozone oxidation and activated carbon adsorption, COD about 1200mg/L, sulphuric acid
Sodium content about 4.7%.
(1) Membrane Materials processes: aqueous sodium persulfate solution, through distillation membrance concentration, reaction temperature 65 DEG C, obtains 20%
Sodium sulfate concentrated solution and condensed water 1;
(2) Bipolar Membrane processes: the 20% sodium sulfate concentrated solution obtained in step (1) is through Bipolar Membrane electric osmose
Analysis processes, and obtains 8% dilute sulfuric acid and 8% dilute sodium hydroxide, and the waste water salinity after process is about 5%, with step
Suddenly the aqueous sodium persulfate solution in (1) is mixed into distillation membrance concentration circular treatment;Bipolar Membrane system uses titanium
Being coated with ruthenium is homogeneous membrane as electrode, diaphragm, and using 2% metabisulfite solution is pole liquid, and temperature 35 DEG C, electric current is close
Degree is 100A/cm2。
(3) Membrane Materials: the dilute sulfuric acid and the dilute sodium hydroxide that obtain in step (2) are dense respectively through distillation film
Contracting, reaction temperature 60 DEG C, obtain 40% concentrated sulphuric acid and 40% concentrated sodium hydroxide, and condensed water 2 and condensed water
3;
(4) concentrated sulphuric acid obtained in step (3) and concentrated sodium hydroxide can be back to industry, step (1)
(3) condensed water 1,2,3 obtained in may be used for the sulphuric acid in step (2) and the suction of sodium hydroxide
Receive liquid.
Embodiment 3
Acid Dye Wastewater, after ozone oxidation and activated carbon adsorption, solution C OD about 1800mg/L, chlorine
Change sodium content and be about 3.5%.
(1) Membrane Materials processes: sodium-chloride water solution, through distillation membrance concentration, reaction temperature 50 DEG C, obtains highly concentrated
20% sodium chloride concentrated solution of degree and condensed water 1;
(2) Bipolar Membrane processes: the 20% sodium chloride concentrated solution obtained in step (1) is through Bipolar Membrane electric osmose
Analysis processes, and obtains 7% dilute hydrochloric acid and 8% dilute sodium hydroxide, and the waste water salinity after process is about 8%, with step
Suddenly the sodium-chloride water solution in (1) is mixed into distillation membrance concentration circular treatment;Bipolar Membrane system uses titanium
Being coated with ruthenium is homogeneous membrane as electrode, diaphragm, and using 1% metabisulfite solution is pole liquid, and temperature 30 DEG C, electric current is close
Degree is 400A/cm2。
(3) Membrane Materials: the dilute hydrochloric acid and the dilute sodium hydroxide that obtain in step (2) are dense respectively through distillation film
Contracting, reaction temperature 60 DEG C, obtain 30% concentrated hydrochloric acid and 40% concentrated sodium hydroxide, and condensed water 2 and condensed water
3;
(4) concentrated hydrochloric acid obtained in step (3) and concentrated sodium hydroxide can be back to industry, step (1)
(3) obtain in condensed water 1,2,3 may be used for the hydrogen chloride in step (2) and sodium hydroxide
Absorbing liquid.
Claims (10)
1. less salt waste water reclaiming processes a recovery method, and described less salt waste water is main component after pretreatment
For the waste water of inorganic salt, described inorganic salt is XaYb, X is Na+、NH4 +Or K+, Y is Cl-Or SO4 2-,
A is the quantivalence absolute value of Y, and b is the quantivalence absolute value of X;Said method comprising the steps of:
(1) Membrane Materials processes: is processed through Membrane Materials by less salt waste water, obtains concentrated solution and condensed water 1;
(2) bipolar membrane electrodialysis processes: the concentrated solution obtained in step (1) processes through bipolar membrane electrodialysis,
Respectively obtain corresponding diluted acid HaY and diluted alkaline X (OH)b, and the weak brine after process;
(3) membrane distillation concentration bronsted lowry acids and bases bronsted lowry: the diluted acid H obtained in step (2)aY through membrane distillation concentration,
Obtain the H of high concentrationaY acid solution and condensed water 2, the diluted alkaline X (OH) that step (2) obtainsbSteam through film
Evaporate concentration, obtain the X (OH) of high concentrationbAqueous slkali and condensed water 3.
2. the method for claim 1, it is characterised in that the quality hundred of inorganic salt in described less salt waste water
Dividing content range is 0.2%~10%.
3. the method for claim 1, it is characterised in that the condensed water 1 of described step (1) and step
Suddenly condensed water 2 and the condensed water 3 of (3) is back in the bipolar membrane electrodialysis process of step (2), as
Acid in Bipolar Membrane, Alkali absorption liquid.
4. the method for claim 1, it is characterised in that the high concentration obtained in described step (3)
HaY acid solution and high concentration X (OH)bAqueous slkali is back in commercial production.
5. the method for claim 1, it is characterised in that in described step (1), through Membrane Materials
The concentration processing the concentrated solution obtained is 10-40%, and the temperature of Membrane Materials is 20-100 DEG C.
6. the method for claim 1, it is characterised in that the membrane distillation concentration of described step (3) obtains
The H of the high concentration arrivedaThe concentration of Y acid solution is 10-50%;The X (OH) of the high concentration obtainedbAqueous slkali
Concentration is 8%-40%;The temperature range of Membrane Materials is 20-100 DEG C.
7. the method for claim 1, it is characterised in that the Bipolar Membrane system of described step (2) obtains
The diluted acid H arrivedaThe concentration of Y is 2-10%;The diluted alkaline X (OH) obtainedbConcentration be 2%-8%, obtain
The concentration range of the weak brine after process is 0.5-10%.
8. the method for claim 1, it is characterised in that in described step (1), through Membrane Materials
The concentration processing the concentrated solution obtained is 10-20%, and the temperature range of Membrane Materials is 50-70 DEG C.
9. the method for claim 1, it is characterised in that in described step (3), membrane distillation concentration
The H of the high concentration obtainedaThe concentration of Y acid solution is 20-50%;The X (OH) of the high concentration obtainedbAqueous slkali
Concentration be 20-30%;The temperature range of Membrane Materials is 50-80 DEG C.
10. method as claimed in claim 7, it is characterised in that the Bipolar Membrane system of described step (2) obtains
To process after the concentration range of weak brine be 5-10%, and the weak brine obtained is returned to step (1), with
Less salt waste water mixes, and circulation carries out Membrane Materials process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610436947.6A CN106007110A (en) | 2016-06-17 | 2016-06-17 | Low-salt wastewater recycled treatment and recycling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610436947.6A CN106007110A (en) | 2016-06-17 | 2016-06-17 | Low-salt wastewater recycled treatment and recycling method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106007110A true CN106007110A (en) | 2016-10-12 |
Family
ID=57089145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610436947.6A Pending CN106007110A (en) | 2016-06-17 | 2016-06-17 | Low-salt wastewater recycled treatment and recycling method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106007110A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107188358A (en) * | 2017-07-19 | 2017-09-22 | 北京中科康仑环境科技研究院有限公司 | A kind of recycling treatment system, processing method and the application of high-concentration ammonium salt waste water |
CN107215996A (en) * | 2017-07-19 | 2017-09-29 | 北京中科康仑环境科技研究院有限公司 | A kind of recycling treatment system, processing method and the application of high concentration sodium salt waste water |
CN110282786A (en) * | 2019-06-14 | 2019-09-27 | 江苏卓博环保科技有限公司 | Recycle waste lithium cell positive electrode waste water reclaiming processing unit and method |
CN111039487A (en) * | 2020-01-06 | 2020-04-21 | 大唐环境产业集团股份有限公司 | Desulfurization wastewater treatment system and treatment method |
CN113069900A (en) * | 2021-04-26 | 2021-07-06 | 萍乡市华星环保工程技术有限公司 | Flue gas desulfurization and sulfur-containing waste liquid recycling coupling process |
CN113213685A (en) * | 2021-04-26 | 2021-08-06 | 萍乡市华星环保工程技术有限公司 | Desulfurization product sulfur recycling treatment process |
CN113292190A (en) * | 2021-05-27 | 2021-08-24 | 福州大学 | Membrane distillation and bipolar membrane electrodialysis combined wastewater treatment system |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102100351A (en) * | 2009-12-21 | 2011-06-22 | 中国科学院过程工程研究所 | Method for recycling glutamic acid isoelectric mother solution during production of monosodium glutamate |
CN102838240A (en) * | 2012-09-28 | 2012-12-26 | 武汉大学 | Method and system for recovering waste water generated in carbocisteine production |
CN103011482A (en) * | 2012-11-30 | 2013-04-03 | 四川北方硝化棉股份有限公司 | Resource utilization method of acid wastewater |
CN103341320A (en) * | 2013-07-24 | 2013-10-09 | 宜宾海翔化工有限责任公司 | Novel process for recycling acid and base from viscose sodium sulfate waste liquid by using a bipolar membrane electrodialysis method |
CN104341071A (en) * | 2014-11-10 | 2015-02-11 | 巴中市华盛玻璃有限责任公司 | System for recycling acid-alkali during glass production sewage treatment |
TW201522239A (en) * | 2013-12-02 | 2015-06-16 | Ind Tech Res Inst | Waste water treatment system and method |
CN105439395A (en) * | 2016-01-04 | 2016-03-30 | 大唐国际化工技术研究院有限公司 | Zero-discharge treatment method of salt-containing organic wastewater |
CN205133326U (en) * | 2015-11-17 | 2016-04-06 | 新奥科技发展有限公司 | Salt -containing wastewater treatment system |
CN105566176A (en) * | 2015-11-26 | 2016-05-11 | 浙江奇彩环境科技股份有限公司 | Improved 6-nitro-1-diazo-2-naphthol-4-sulphonic acid production process |
CN105671587A (en) * | 2015-12-10 | 2016-06-15 | 浙江工业大学 | Method and device for preparing methionine and recovering by-product-carbon dioxide |
CN105668519A (en) * | 2016-01-07 | 2016-06-15 | 浙江蓝极膜技术有限公司 | Technology for concentration and recycling of dilute hydrochloric acid by electrodialysis and membrane distillation |
-
2016
- 2016-06-17 CN CN201610436947.6A patent/CN106007110A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102100351A (en) * | 2009-12-21 | 2011-06-22 | 中国科学院过程工程研究所 | Method for recycling glutamic acid isoelectric mother solution during production of monosodium glutamate |
CN102838240A (en) * | 2012-09-28 | 2012-12-26 | 武汉大学 | Method and system for recovering waste water generated in carbocisteine production |
CN103011482A (en) * | 2012-11-30 | 2013-04-03 | 四川北方硝化棉股份有限公司 | Resource utilization method of acid wastewater |
CN103341320A (en) * | 2013-07-24 | 2013-10-09 | 宜宾海翔化工有限责任公司 | Novel process for recycling acid and base from viscose sodium sulfate waste liquid by using a bipolar membrane electrodialysis method |
TW201522239A (en) * | 2013-12-02 | 2015-06-16 | Ind Tech Res Inst | Waste water treatment system and method |
CN104341071A (en) * | 2014-11-10 | 2015-02-11 | 巴中市华盛玻璃有限责任公司 | System for recycling acid-alkali during glass production sewage treatment |
CN205133326U (en) * | 2015-11-17 | 2016-04-06 | 新奥科技发展有限公司 | Salt -containing wastewater treatment system |
CN105566176A (en) * | 2015-11-26 | 2016-05-11 | 浙江奇彩环境科技股份有限公司 | Improved 6-nitro-1-diazo-2-naphthol-4-sulphonic acid production process |
CN105671587A (en) * | 2015-12-10 | 2016-06-15 | 浙江工业大学 | Method and device for preparing methionine and recovering by-product-carbon dioxide |
CN105439395A (en) * | 2016-01-04 | 2016-03-30 | 大唐国际化工技术研究院有限公司 | Zero-discharge treatment method of salt-containing organic wastewater |
CN105668519A (en) * | 2016-01-07 | 2016-06-15 | 浙江蓝极膜技术有限公司 | Technology for concentration and recycling of dilute hydrochloric acid by electrodialysis and membrane distillation |
Non-Patent Citations (4)
Title |
---|
YAOMING WANG等: "Integration of conventional electrodialysis and electrodialysis with bipolar membranes for production of organic acids", 《JOURNAL OF MEMBRANE SCIENCE》 * |
岳田利等: "《食品工程原理》", 30 September 2014, 郑州大学出版社 * |
徐铜文: "《膜化学与技术教程》", 31 December 2003, 中国科学技术大学出版社 * |
葛倩倩: "离子交换膜的发展态势与应用展望", 《化工进展》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107188358A (en) * | 2017-07-19 | 2017-09-22 | 北京中科康仑环境科技研究院有限公司 | A kind of recycling treatment system, processing method and the application of high-concentration ammonium salt waste water |
CN107215996A (en) * | 2017-07-19 | 2017-09-29 | 北京中科康仑环境科技研究院有限公司 | A kind of recycling treatment system, processing method and the application of high concentration sodium salt waste water |
CN110282786A (en) * | 2019-06-14 | 2019-09-27 | 江苏卓博环保科技有限公司 | Recycle waste lithium cell positive electrode waste water reclaiming processing unit and method |
CN111039487A (en) * | 2020-01-06 | 2020-04-21 | 大唐环境产业集团股份有限公司 | Desulfurization wastewater treatment system and treatment method |
CN113069900A (en) * | 2021-04-26 | 2021-07-06 | 萍乡市华星环保工程技术有限公司 | Flue gas desulfurization and sulfur-containing waste liquid recycling coupling process |
CN113213685A (en) * | 2021-04-26 | 2021-08-06 | 萍乡市华星环保工程技术有限公司 | Desulfurization product sulfur recycling treatment process |
CN113292190A (en) * | 2021-05-27 | 2021-08-24 | 福州大学 | Membrane distillation and bipolar membrane electrodialysis combined wastewater treatment system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106007110A (en) | Low-salt wastewater recycled treatment and recycling method | |
CN101475276B (en) | Treatment process for ferric oxide production wastewater | |
AU2013284339B2 (en) | Process and apparatus for generating or recovering hydrochloric acid from metal salt solutions | |
CN104370394B (en) | A kind of processing method of surface water desalter by-product brine waste | |
CN102320641B (en) | A method for resource utilization of propylene oxide saponification wastewater by chlorohydrin method | |
CN108455680B (en) | Environment-friendly resource utilization method of steel pickling waste liquid | |
CN103073131A (en) | Process for treating amantadine bromination waste water and mineral acid and alkali recycling through bipolar membrane electrodialysis process | |
CN104944646A (en) | Wastewater advanced treatment method coupling membrane and electricity | |
CN104532283A (en) | Method and device for producing caustic soda through electrolysis by replacing part of fine brine with light salt brine | |
CN108793517A (en) | A kind for the treatment of process of high COD leather-making waste waters with high salt | |
CN113415927A (en) | Recycling and zero-discharge process for monovalent salt in organic wastewater of synthetic ammonia | |
CN110818163A (en) | Ion membrane electrolytic dechlorination fresh brine recycling system and method | |
JP2014144435A (en) | Treatment apparatus of salt-containing wastewater | |
CN107963764A (en) | The recovery method of abraum salt in a kind of organic synthesis industry brine waste | |
CN105330102B (en) | A kind of production technology of improved DSD acid | |
CN109896714B (en) | Pretreatment method of rubber auxiliary CBS production wastewater | |
CN103979708A (en) | Acid and alkali recycled wastewater treatment system and method | |
CN111151140B (en) | A kind of method for concentrating chlor-alkali anode light brine | |
TWI620718B (en) | Wastewater decoloring device of electrocatalyst and electrodialysis | |
TWI886866B (en) | Resource recycling with carbon capture system and method for treating wastewater | |
CN209338315U (en) | A high-concentration brine resource utilization system | |
CN111592167B (en) | Method for treating epoxy resin high-salinity wastewater | |
CN107381891A (en) | A kind of recovery and treatment method of industrial high-salt wastewater | |
TWI671434B (en) | Method for producing chlorine dioxide by using brine and producing chlorine dioxide equipment | |
CN116789236A (en) | A method for utilizing electrolysis resources of sodium sulfate type high-salt wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20161012 |
|
RJ01 | Rejection of invention patent application after publication |