CN106003053A - Teleoperation passive robot control system and control method thereof - Google Patents
Teleoperation passive robot control system and control method thereof Download PDFInfo
- Publication number
- CN106003053A CN106003053A CN201610617043.3A CN201610617043A CN106003053A CN 106003053 A CN106003053 A CN 106003053A CN 201610617043 A CN201610617043 A CN 201610617043A CN 106003053 A CN106003053 A CN 106003053A
- Authority
- CN
- China
- Prior art keywords
- human body
- control board
- slave
- robot
- main
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 11
- 230000036544 posture Effects 0.000 claims abstract description 52
- 230000009471 action Effects 0.000 claims abstract description 33
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 10
- 230000033001 locomotion Effects 0.000 claims description 10
- 238000003384 imaging method Methods 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 claims description 6
- 230000003993 interaction Effects 0.000 abstract description 7
- 230000008901 benefit Effects 0.000 abstract description 6
- 238000011897 real-time detection Methods 0.000 abstract description 3
- 210000000245 forearm Anatomy 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 210000000707 wrist Anatomy 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1689—Teleoperation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1615—Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
- B25J9/162—Mobile manipulator, movable base with manipulator arm mounted on it
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Manipulator (AREA)
Abstract
本发明涉及机器人控制系统技术领域,公开了一种遥操作随动机器人控制系统及其控制方法,包括:主端人体姿态采集单元,主端人体姿态采集单元包括主端主控板和能够实时检测人体各关节部位的动作姿态的多个采集板,各采集板均与主端主控板电连接;以及从端机器人;其中,通过各采集板分别获取能够代表人体的各关节部位的动作姿态的四元数,并将各四元数分别传输给主端主控板,通过主端主控板利用人体姿态解算算法对各四元数进行解算,以得到代表人体的各关节部位的关节角度的电信号,并将该电信号传输给从端机器人的从端主控板,从而使得从端机器人能够跟随人体做出相同的动作姿态。该控制系统具有控制直接和较好的人机交互的柔顺性的优点。
The invention relates to the technical field of robot control systems, and discloses a remote-operated follow-up robot control system and a control method thereof, including: a main-end human body posture acquisition unit, the main-end human body posture acquisition unit includes a main-end main control board and a real-time detection A plurality of acquisition boards for the action postures of the joints of the human body, each acquisition board is electrically connected to the main control board at the main end; Quaternions, and transmit each quaternion to the main control board of the main end, and use the human body posture calculation algorithm to solve each quaternion through the main control board of the main end, so as to obtain the joints representing the joints of the human body Angle electrical signal, and transmit the electrical signal to the slave main control board of the slave robot, so that the slave robot can follow the human body to make the same gesture. The control system has the advantage of direct control and better compliance for human-machine interaction.
Description
技术领域technical field
本发明涉及机器人控制系统技术领域,特别是涉及一种遥操作随动机器人控制系统及其控制方法。The invention relates to the technical field of robot control systems, in particular to a remote-operated follow-up robot control system and a control method thereof.
背景技术Background technique
随着对资源开发、核废料清理、高压高危作业、外科手术以及康复护理等工作需求的不断扩大,研究遥操作控制技术,使其替代人来完成相应特种工作的需求更加迫切。其中,遥操作控制技术特别适合应用于人们难以接近或对人体有害的非结构化环境作业,以及也同样适用于医疗看护等领域中。即,操作者可处在安全便利的环境,远程操作从端机械人进行作业。With the continuous expansion of the demand for resource development, nuclear waste cleanup, high-pressure and high-risk operations, surgical operations, and rehabilitation nursing, it is more urgent to study remote operation control technology to replace humans to complete corresponding special tasks. Among them, the teleoperation control technology is especially suitable for unstructured environment operations that are difficult for people to approach or harmful to the human body, and it is also suitable for medical care and other fields. That is, the operator can remotely operate the slave robot in a safe and convenient environment.
目前,使用较为广泛的遥操作控制方式主要是通过搭建主端机器人和从端机器人,利用操作者的经验,结合从端机器人的反馈信息,通过控制主端机器人的运动来实现从端机器人的相对运动。At present, the widely used teleoperation control method is mainly to build the master robot and the slave robot, use the experience of the operator, combine the feedback information of the slave robot, and realize the relative movement of the slave robot by controlling the movement of the master robot. sports.
然而,现有的遥操作控制系统由于需要配备相应的主端机器人,因而,存在使得遥操作控制系统繁杂以及不能直接地控制从端机器人做出与主端机器人相同动作的问题。However, because the existing teleoperation control system needs to be equipped with a corresponding master robot, there are problems that the teleoperation control system is complicated and cannot directly control the slave robot to perform the same actions as the master robot.
发明内容Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
本发明的目的是提供一种遥操作随动机器人控制系统及其控制方法,以解决现有技术中存在的遥操作控制系统繁杂以及不能够直接地控制从端机器人做出与主端机器人相同动作的问题。The purpose of the present invention is to provide a remote operation follower robot control system and its control method to solve the complicated remote operation control system in the prior art and the inability to directly control the slave robot to perform the same action as the master robot The problem.
(二)技术方案(2) Technical solution
为了解决上述技术问题,根据本发明的第一方面,提供了一种遥操作随动机器人控制系统,包括:能够穿戴在人体上的主端人体姿态采集单元,所述主端人体姿态采集单元包括主端主控板和能够实时检测人体各关节部位的动作姿态的多个采集板,各所述采集板均与所述主端主控板电连接;以及从端机器人;其中,通过各所述采集板分别获取能够代表人体的各关节部位的动作姿态的四元数,并将各所述四元数分别传输给所述主端主控板,通过所述主端主控板利用人体姿态解算算法对各所述四元数进行解算,以得到代表人体的各关节部位的关节角度的电信号,并将该电信号传输给所述从端机器人的从端主控板,从而使得所述从端机器人能够跟随人体做出相同的动作姿态。In order to solve the above technical problems, according to the first aspect of the present invention, a remote-operated follower robot control system is provided, including: a main-end human body posture acquisition unit that can be worn on the human body, and the main-end human body posture acquisition unit includes The main control board of the main end and a plurality of acquisition boards capable of real-time detection of the action postures of each joint of the human body, each of the acquisition boards is electrically connected to the main control board of the main end; and a slave robot; wherein, through each of the The acquisition board obtains the quaternions that can represent the action postures of the joints of the human body, and transmits each of the quaternions to the main control board at the main end, and uses the posture of the human body to solve the problem through the main control board at the main end. The calculation algorithm solves each of the quaternions to obtain electrical signals representing the joint angles of the joints of the human body, and transmits the electrical signals to the slave main control board of the slave robot, so that all The slave robot described above can follow the human body to make the same gestures.
其中,所述控制系统还包括设置在所述从端机器人的躯干上的所述从端主控板,其中,所述从端主控板与所述主端主控板无线连接。Wherein, the control system further includes the slave main control board arranged on the torso of the slave robot, wherein the slave main control board is wirelessly connected to the master main control board.
其中,所述控制系统还包括分别设置在所述从端机器人的机械手臂的各个关节部位的关节角度执行部件,各所述关节角度执行部件均与所述从端主控板电连接。Wherein, the control system further includes joint angle executing components respectively arranged at each joint of the mechanical arm of the slave robot, and each of the joint angle executing components is electrically connected to the slave main control board.
其中,所述控制系统还包括设置在所述从端机器人的头部的双目视觉获取模块,所述双目视觉获取模块包括能够获取当前图像的图像获取子模块和与所述图像获取子模块电连接的发射子模块,其中,所述图像获取子模块将当前所述图像以电信号的形式传递给所述发射子模块。Wherein, the control system also includes a binocular vision acquisition module arranged on the head of the slave robot, and the binocular vision acquisition module includes an image acquisition sub-module capable of acquiring the current image and an image acquisition sub-module connected with the image acquisition sub-module An electrically connected transmitting submodule, wherein the image acquisition submodule transmits the current image to the transmitting submodule in the form of an electrical signal.
其中,所述主端人体姿态采集单元还包括双目视觉成像模块,所述双目视觉成像模块与所述发射子模块无线连接。Wherein, the main-end human body posture acquisition unit further includes a binocular vision imaging module, and the binocular vision imaging module is wirelessly connected to the transmitting sub-module.
其中,所述控制系统还包括能够分别连接所述从端机器人的头部以及躯干的角度转动部件,所述角度转动部件与所述从端主控板电连接。Wherein, the control system further includes an angle turning part capable of connecting the head and the torso of the slave robot respectively, and the angle turning part is electrically connected with the slave main control board.
其中,在所述从端机器人的机械手臂的末端设有能促使与其相连接的执行部件进行五自由度运动的执行机构接口,所述执行机构接口与所述从端主控板电连接。Wherein, the end of the mechanical arm of the slave robot is provided with an actuator interface capable of urging the connected actuator to perform five-degree-of-freedom movement, and the actuator interface is electrically connected to the slave main control board.
其中,各所述关节角度执行部件为舵机或伺服电机。Wherein, each of the joint angle actuators is a steering gear or a servo motor.
其中,所述控制系统还包括能够带动所述从端机器人行走的行走模块。Wherein, the control system further includes a walking module capable of driving the slave robot to walk.
根据本发明的第二个方面,提出了一种遥操作随动机器人控制系统的控制方法,包括:通过各所述采集板分别获取能够代表人体的各关节部位的动作姿态的四元数,并将该四元数传输给所述主端主控板;According to the second aspect of the present invention, a control method for a teleoperated follower robot control system is proposed, including: obtaining quaternions that can represent the action postures of each joint of the human body through each of the acquisition boards, and The quaternion is transmitted to the main control board at the main end;
通过所述主端主控板采用人体姿态解算算法对各所述四元数进行解算,以得到代表人体的各关节部位的关节角度的电信号;Each of the quaternions is calculated by using the human body posture calculation algorithm through the main control board of the main terminal, so as to obtain electrical signals representing the joint angles of each joint part of the human body;
通过所述主端主控板将代表人体的各关节部位的关节角度的电信号传输给所述从端主控板;Transmitting electrical signals representing the joint angles of each joint of the human body to the slave main control board through the master main control board;
所述从端主控板接收到代表人体的各关节部位的关节角度的电信号后,控制所述从端机器人的相应部位跟随人体做出与人体相同的动作姿态。After the slave main control board receives electrical signals representing the joint angles of the joints of the human body, it controls the corresponding parts of the slave robot to follow the human body to make the same gestures as the human body.
其中,各所述采集板通过采用惯性导航技术以分别获取能够代表人体的各关节部位的动作姿态的信息,并将该信息以四元数的形式表示。Wherein, each of the acquisition boards adopts inertial navigation technology to respectively obtain information that can represent the action posture of each joint of the human body, and express the information in the form of a quaternion.
(三)有益效果(3) Beneficial effects
本发明提供的控制系统,与现有技术相比具有如下优点:Compared with the prior art, the control system provided by the present invention has the following advantages:
本申请的控制系统通过将主端人体姿态采集单元穿戴在使用者的身上,通过主端人体姿态采集单元中的各个采集板分别获取能够代表人体的各关节部位的动作姿态的四元数,并将各四元数分别传输给主端主控板,通过主端主控板利用人体姿态解算算法对各四元数进行解算,以得到代表人体的各关节部位的关节角度的电信号,并将该电信号传输给从端机器人的从端主控板,从而使得从端机器人能够跟随人体做出相同的动作姿态。这样,相对于现有的控制系统而言,即,现有的控制系统需要为从端机器人专门设计主端机器人。然而,本申请则是直接通过将主端人体姿态采集单元穿戴在人体上,从而来控制从端机器人的动作。由此可见,本申请的控制系统能够更为直接地控制从端机器人的动作,从而大大地提高了人机交互的柔顺性。The control system of the present application wears the main-end human body posture acquisition unit on the body of the user, and obtains the quaternions that can represent the action postures of the joints of the human body through each acquisition board in the main-end human body posture acquisition unit, and The quaternions are respectively transmitted to the main control board of the main terminal, and the quaternions are calculated by using the human body posture calculation algorithm through the main control board of the main terminal, so as to obtain electrical signals representing the joint angles of the joints of the human body, And transmit the electrical signal to the slave main control board of the slave robot, so that the slave robot can follow the human body to make the same gesture. In this way, compared to the existing control system, that is, the existing control system needs to specially design the master robot for the slave robot. However, this application directly controls the actions of the slave robot by wearing the master body posture acquisition unit on the human body. It can be seen that the control system of the present application can more directly control the actions of the slave robot, thereby greatly improving the flexibility of human-computer interaction.
此外,由于从端机器人通常处在危险的作业环境中,因而,为提高控制系统的便携性,需使得该控制系统中的部件越少越好。然而,本申请的控制系统由于省去了现有技术中的主端机器人,从而使得控制系统的组成更为简单化,方便对从端机器人的控制。In addition, since the slave robot is usually in a dangerous working environment, in order to improve the portability of the control system, it is necessary to make the control system have as few components as possible. However, since the control system of the present application omits the master robot in the prior art, the composition of the control system is simplified and the control of the slave robot is facilitated.
另外,通过增设行走模块,该行走模块可为轮式底盘,使得从端机器人可以适于在室内环境内进行灵活地移动,或该行走模块为履带式底盘,因而具有越障性能好的优点,使得从端机器人可以适于在野外环境中行走。In addition, by adding a walking module, the walking module can be a wheeled chassis, so that the slave robot can be adapted to move flexibly in the indoor environment, or the walking module is a crawler chassis, which has the advantage of good obstacle surmounting performance. So that the slave robot can be adapted to walk in the wild environment.
附图说明Description of drawings
图1为本申请的实施例的遥操作随动机器人控制系统的整体结构示意图;FIG. 1 is a schematic diagram of the overall structure of a teleoperated follower robot control system according to an embodiment of the present application;
图2为本申请的实施例的遥操作随动机器人控制系统的从端机器人的整体结构示意图;FIG. 2 is a schematic diagram of the overall structure of the slave robot of the teleoperation follower robot control system according to the embodiment of the present application;
图3为图2中的从端机器人的机械手臂的整体结构示意图。FIG. 3 is a schematic diagram of the overall structure of the mechanical arm of the slave robot in FIG. 2 .
图4为采用本申请的遥操作随动机器人控制系统来控制从端机器人的控制方法的步骤流程示意图。FIG. 4 is a schematic flowchart of steps of a control method for controlling a slave robot by using the teleoperated follower robot control system of the present application.
图中,100:控制系统;1:主端人体姿态采集单元;11:主端主控板;12:采集板;13:双目视觉成像模块;2:从端机器人;21:躯干;211:从端主控板;22:机械手臂;221:执行部件;23:头部;3:关节角度执行部件;4:双目视觉获取模块;41:图像获取子模块;42:发射子模块;5:角度转动部件;6:执行机构接口;7:行走模块;222:肩部俯仰关节;223:肩部偏航关节;224:肩部横滚关节;225:肘部俯仰关节;226:肘部横滚关节;227:腕部偏航关节;228:手指弯曲关节。In the figure, 100: control system; 1: main-end human body posture acquisition unit; 11: main-end main control board; 12: acquisition board; 13: binocular vision imaging module; 2: slave-end robot; 21: torso; 211: Slave main control board; 22: Robotic arm; 221: Execution component; 23: Head; 3: Joint angle execution component; 4: Binocular vision acquisition module; 41: Image acquisition sub-module; 42: Launch sub-module; 5 : angle rotation part; 6: actuator interface; 7: walking module; 222: shoulder pitch joint; 223: shoulder yaw joint; 224: shoulder roll joint; 225: elbow pitch joint; 226: elbow Roll joint; 227: wrist yaw joint; 228: finger flex joint.
具体实施方式detailed description
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实例用于说明本发明,但不用来限制本发明的范围。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.
如图1所示,图1示意性地显示了该控制系统100包括主端人体姿态采集单元1和从端机器人2。As shown in FIG. 1 , FIG. 1 schematically shows that the control system 100 includes a master human body posture acquisition unit 1 and a slave robot 2 .
该主端人体姿态采集单元1主要利用人体姿态远程实时控制从端机器人2做出与人体姿态相同的动作,即,使得该从端机器人2能够跟随人体的动作而运动。这样,便大大地提高了人机交互的柔顺性,能够更加直接地控制从端机器人2做出与人体相同的动作姿态。The master human body posture acquisition unit 1 mainly uses the human body posture to remotely control the slave robot 2 in real time to make the same action as the human body posture, that is, to enable the slave robot 2 to move following the human body's movement. In this way, the flexibility of the human-computer interaction is greatly improved, and the slave robot 2 can be more directly controlled to make the same gesture as the human body.
该主端人体姿态采集单元1能够穿戴在人体上,其包括主端主控板11和能够实时检测人体各关节部位的动作姿态的多个采集板12。其中,各采集板12均与主端主控板11电连接。这样,通过各个采集板12采集到的人体的各关节部位的信息能够及时地传递给主端主控板11。具体地,通过各采集板12分别获取能够代表人体的各关节部位的动作姿态的信息,并使得该信息以四元数的形式表示,并将各四元数分别传输给主端主控板11,通过主端主控板11利用人体姿态解算算法对各四元数进行解算,以得到代表人体的各关节部位的关节角度的电信号,并将该电信号传输给从端机器人2的从端主控板21,从而使得从端机器人2能够跟随人体做出相同的动作姿态。这样,相对于现有的控制系统而言,即,现有的控制系统需要为从端机器人专门设计主端机器人。然而,本申请则是直接通过将主端人体姿态采集单元1穿戴在人体上,从而来控制从端机器人2的动作。由此可见,本申请的控制系统100能够更为直接地控制从端机器人2的动作,从而大大地提高了人机交互的柔顺性。The main-end human body posture acquisition unit 1 can be worn on the human body, and it includes a main-end main control board 11 and a plurality of acquisition boards 12 capable of real-time detection of motion postures of various joints of the human body. Wherein, each collection board 12 is electrically connected with the main control board 11 at the main end. In this way, the information of each joint part of the human body collected by each collection board 12 can be transmitted to the master main control board 11 in time. Specifically, each acquisition board 12 obtains information that can represent the action posture of each joint of the human body, and makes the information expressed in the form of a quaternion, and transmits each quaternion to the main control board 11 respectively. Each quaternion is calculated by the main control board 11 of the main end using the human body posture calculation algorithm to obtain electrical signals representing the joint angles of each joint of the human body, and transmit the electrical signals to the slave robot 2 The slave-end main control board 21 enables the slave-end robot 2 to follow the human body to make the same gestures. In this way, compared to the existing control system, that is, the existing control system needs to specially design the master robot for the slave robot. However, in this application, the action of the slave robot 2 is directly controlled by wearing the master human body posture acquisition unit 1 on the human body. It can be seen that the control system 100 of the present application can control the action of the slave robot 2 more directly, thereby greatly improving the flexibility of human-computer interaction.
另外,由于从端机器人2通常处在危险的作业环境中,因而,为提高控制系统的便携性,需使得该控制系统中的部件越少越好。然而,本申请的控制系统100由于省去了现有技术中的主端机器人,从而使得控制系统100的组成更为简单化,方便对从端机器人2的控制。In addition, since the slave robot 2 is usually in a dangerous working environment, in order to improve the portability of the control system, it is necessary to make the control system have as few components as possible. However, since the control system 100 of the present application omits the master robot in the prior art, the composition of the control system 100 is simplified, and it is convenient to control the slave robot 2 .
在本申请的实施例中,四元数以及人体姿态解算算法是本领域的技术人员所公知的,为节约篇幅起见,此处不做详述。In the embodiments of the present application, the quaternions and human body posture calculation algorithms are well known to those skilled in the art, and for the sake of space saving, no detailed description is given here.
在一个具体的实施例中,采集板12可分布在人体的头部、背部、左大臂、左小臂、左手、右大臂、右小臂、以及右手等部位,从而方便采集相应关节部位的动作姿态。In a specific embodiment, the collection board 12 can be distributed on the head, back, left upper arm, left forearm, left hand, right upper arm, right forearm, and right hand of the human body, so as to facilitate the collection of corresponding joint parts. action posture.
如图1、图2和图3所示,在一个实施例中,图2示意性地显示了该控制系统100还包括设置在从端机器人2的躯干21上的从端主控板211,其中,该从端主控板211与主端主控板11无线连接。即,该从端主控板211与主端主控板11可通过无线电信号实现信息的传输。这样,通过主端主控板11将其接收到的代表人体各关节部位的电信号无线传输给从端主控板211后,从而控制从端机器人2做出与人体相同的动作姿态。容易理解,为了能够更为直接地控制从端机器人2的运动,需使得各采集板12获取的代表人体各关节部位的角度均与从端机器人2的各关节部位的角度相对应,从而保证人体做出的动作姿态与从端机器人2做出的动作姿态的一致性。As shown in Fig. 1, Fig. 2 and Fig. 3, in one embodiment, Fig. 2 schematically shows that the control system 100 also includes a slave main control board 211 arranged on the torso 21 of the slave robot 2, wherein , the slave main control board 211 is wirelessly connected to the master main control board 11 . That is, the slave main control board 211 and the master main control board 11 can realize information transmission through radio signals. In this way, after the master control board 11 wirelessly transmits the received electrical signals representing the joints of the human body to the slave control board 211, the slave robot 2 is controlled to make the same gesture as the human body. It is easy to understand that in order to be able to control the motion of the slave robot 2 more directly, it is necessary to make the angles of the joints of the human body acquired by each acquisition board 12 correspond to the angles of the joints of the slave robot 2, so as to ensure that the human body The action gesture made is consistent with the action gesture made by the slave robot 2.
如图3所示,在一个实施例中,图3还示意性地显示了该控制系统100还包括分别设置在从端机器人2的机械手臂22的各个关节部位的关节角度执行部件3,各关节角度执行部件3均与从端主控板211电连接。这样,该从端主控板211便可直接地控制各个关节角度执行部件3做出符合要求的动作,进一步地,使得机械手臂22的动作更加的灵活。As shown in FIG. 3 , in one embodiment, FIG. 3 also schematically shows that the control system 100 also includes joint angle executing components 3 respectively arranged at each joint of the mechanical arm 22 of the slave robot 2 , each joint The angle executing components 3 are all electrically connected to the slave main control board 211 . In this way, the slave-end main control board 211 can directly control each joint angle actuator 3 to perform actions that meet the requirements, further making the action of the mechanical arm 22 more flexible.
如图3所示,在一个具体的实施例中,关节角度执行部件3可从上至下依次分布在机械手臂22的肩部俯仰关节222、肩部偏航关节223、肩部横滚关节224、肘部俯仰关节225、肘部横滚关节226、腕部偏航关节227以及手指弯曲关节228。从而依次分别实现机械手臂22相对于躯干21的前后摆动,机械手臂22相对躯干21的两侧向外扩展、机械手臂22中的小臂相对于大臂的左右转动、小臂靠近或远离大臂的运动、小臂绕自身的中心轴线进行转动、手腕相对小臂进行左右摆动以及实现各个手指的弯曲。As shown in FIG. 3 , in a specific embodiment, the joint angle actuators 3 can be distributed in sequence from top to bottom in the shoulder pitch joint 222 , shoulder yaw joint 223 , and shoulder roll joint 224 of the robotic arm 22 . , elbow pitch joint 225 , elbow roll joint 226 , wrist yaw joint 227 and finger flexion joint 228 . Thereby realize respectively in turn the front and rear swing of the mechanical arm 22 relative to the trunk 21, the outward expansion of the mechanical arm 22 relative to both sides of the trunk 21, the left and right rotation of the forearm in the mechanical arm 22 relative to the large arm, and the small arm approaches or moves away from the large arm. The movement of the forearm, the rotation of the forearm around its own central axis, the left and right swing of the wrist relative to the forearm, and the bending of each finger.
如图2所示,在一个实施例中,图3还示意性地显示了该控制系统100还包括设置在从端机器人2的头部23的双目视觉获取模块4,该双目视觉获取模块4包括能够获取当前图像的图像获取子模块41和与图像获取子模块41电连接的发射子模块42。其中,图像获取子模块41将当前图像以电信号的形式传递给发射子模块42。这样,便实现对了现场环境的实时获取。As shown in Figure 2, in one embodiment, Figure 3 also schematically shows that the control system 100 also includes a binocular vision acquisition module 4 arranged on the head 23 of the slave robot 2, the binocular vision acquisition module 4 includes an image acquisition sub-module 41 capable of acquiring the current image and a transmission sub-module 42 electrically connected to the image acquisition sub-module 41. Wherein, the image acquisition sub-module 41 transmits the current image to the transmission sub-module 42 in the form of an electrical signal. In this way, real-time acquisition of the on-site environment is realized.
在一个具体的实施例中,该双目视觉获取模块4可为双目视觉摄像头,直接设置在如下所述的角度转动部件5上。In a specific embodiment, the binocular vision acquisition module 4 may be a binocular vision camera, which is directly arranged on the angle rotating component 5 as described below.
如图1所示,主端人体姿态采集单元1还包括双目视觉成像模块13,该双目视觉成像模块13与发射子模块42是有线的电连接。具体地,该发射子模块42将其接收到的当前图像的电信号无线传输给双目视觉成像模块13,同时,结合使用者自身的双眼视觉系统,从而大大地增强了视觉反馈的立体感,使得使用者能够真实、准确地获取从端机器人2所处的环境,进一步地,使得使用者能够在最短的时间内远程控制从端机器人2做出需要的动作姿态,从而完成作业任务。As shown in FIG. 1 , the human body posture acquisition unit 1 at the main end further includes a binocular vision imaging module 13 , which is electrically connected to the transmitting sub-module 42 by wire. Specifically, the transmitting sub-module 42 wirelessly transmits the electric signal of the current image it receives to the binocular vision imaging module 13, and at the same time, combined with the user's own binocular vision system, thereby greatly enhancing the stereoscopic sense of visual feedback, This allows the user to truly and accurately obtain the environment in which the slave robot 2 is located, and further enables the user to remotely control the slave robot 2 to make required gestures in the shortest possible time, thereby completing the task.
在一个具体的实施例中,该双目视觉成像模块13可为双目视频眼镜,能够直接佩戴在使用者的眼睛部位。In a specific embodiment, the binocular vision imaging module 13 can be binocular video glasses, which can be directly worn on the eyes of the user.
如图2所示,在一个实施例中,该控制系统100还包括能够分别连接从端机器人2的头部23以及躯干21的角度转动部件5,该角度转动部件5与从端主控板211电连接。由于该角度转动部件5的设置,使得从端机器人2的头部23能够相对躯干21进行180度的俯仰及偏航旋转,从而大大地提高了从端机器人2的运动的灵活性,使其更加符合人体的运动标准。As shown in FIG. 2 , in one embodiment, the control system 100 also includes an angle turning part 5 capable of connecting the head 23 and the torso 21 of the slave robot 2 respectively, and the angle turning part 5 is connected to the main control board 211 of the slave end. electrical connection. Due to the setting of the angle rotating part 5, the head 23 of the slave robot 2 can perform 180-degree pitch and yaw rotation relative to the torso 21, thereby greatly improving the flexibility of the slave robot 2 and making it more flexible. Conforms to the movement standard of the human body.
在一个实施例中,在从端机器人2的机械手臂22的末端设置执行机构接口6,该执行机构接口6有能促使与其相连接的执行部件221进行五自由度运动。其中,该执行机构接口6与从端主控板211电连接。这样,通过从端主控板211控制执行机构接口6,以使得其能够为执行部件221提供五自由度运动的控制信号,即,实现各个手指的弯曲。In one embodiment, an actuator interface 6 is provided at the end of the mechanical arm 22 of the slave robot 2 , and the actuator interface 6 can cause the actuator component 221 connected thereto to move in five degrees of freedom. Wherein, the actuator interface 6 is electrically connected to the slave main control board 211 . In this way, the actuator interface 6 is controlled by the slave-side main control board 211 so that it can provide a control signal for five-degree-of-freedom movement to the actuator 221 , that is, to realize the bending of each finger.
在一个具体的实施例中,该执行部件221可为仿生机械手或小于五自由度的夹持部件,从而来适应不同的作业需求。In a specific embodiment, the executing part 221 can be a bionic manipulator or a clamping part with less than five degrees of freedom, so as to adapt to different operation requirements.
在一个实施例中,各关节角度执行部件3为舵机或伺服电机。其中,舵机具有反应快和执行动作迅速的优点,从而使得本申请的机械手臂22能够较为灵活地动作。容易理解,舵机的具体结构是本领域的技术人员所熟知的,为节约篇幅起见,此处不做详述。In one embodiment, each joint angle actuator 3 is a steering gear or a servo motor. Among them, the steering gear has the advantages of quick response and quick action execution, so that the robot arm 22 of the present application can move more flexibly. It is easy to understand that the specific structure of the steering gear is well known to those skilled in the art, and for the sake of space saving, no detailed description is given here.
在另一个实施例中,该控制系统100还包括能够带动从端机器人2行走的行走模块7。该行走模块7为轮式底盘或履带式底盘。具体地,从端机器人2为可更换底盘的半身仿人机器人,其由模块化设计的可更换底盘和与人体上半身结构相似的仿人机器人的上身组成。In another embodiment, the control system 100 further includes a walking module 7 capable of driving the slave robot 2 to walk. The walking module 7 is a wheeled chassis or a crawler chassis. Specifically, the slave robot 2 is a half-body humanoid robot with a replaceable chassis, which consists of a modularly designed replaceable chassis and an upper body of a humanoid robot that is similar in structure to the upper body of a human body.
由于本申请的行走模块7可为轮式底盘,使得从端机器人2可以适于在室内环境内进行灵活地移动,或该行走模块7为履带式底盘,因而具有越障性能好的优点,使得从端机器人2可以适于在野外环境中行走。Since the walking module 7 of the present application can be a wheeled chassis, the slave robot 2 can be adapted to move flexibly in an indoor environment, or the walking module 7 is a crawler chassis, which has the advantage of good obstacle-surpassing performance, making The slave robot 2 may be suitable for walking in a wild environment.
综上所述,本申请的控制系统100通过将主端人体姿态采集单元1穿戴在使用者的身上,通过主端人体姿态采集单元1中的各个采集板12分别获取能够代表人体的各关节部位的动作姿态的四元数,并将各四元数分别传输给主端主控板11,通过主端主控板11利用人体姿态解算算法对各四元数进行解算,以得到代表人体的各关节部位的关节角度的电信号,并将该电信号传输给从端机器人2的从端主控板21,从而使得从端机器人2能够跟随人体做出相同的动作姿态。这样,相对于现有的控制系统而言,即,现有的控制系统需要为从端机器人专门设计主端机器人。然而,本申请则是直接通过将主端人体姿态采集单元1穿戴在人体上,从而来控制从端机器人2的动作。由此可见,本申请的控制系统100能够更为直接地控制从端机器人2的动作,从而大大地提高了人机交互的柔顺性。To sum up, the control system 100 of the present application wears the main-end human body posture acquisition unit 1 on the body of the user, and obtains each joint position that can represent the human body through each acquisition board 12 in the main-end human body posture acquisition unit 1 The quaternions of the action posture, and each quaternion is transmitted to the main control board 11 respectively, and the human body posture calculation algorithm is used to solve each quaternion through the main control board 11, so as to obtain the representative human body The electrical signals of the joint angles of each joint of the robot, and transmit the electrical signals to the slave main control board 21 of the slave robot 2, so that the slave robot 2 can follow the human body to make the same action posture. In this way, compared to the existing control system, that is, the existing control system needs to specially design the master robot for the slave robot. However, in this application, the action of the slave robot 2 is directly controlled by wearing the master body posture acquisition unit 1 on the human body. It can be seen that the control system 100 of the present application can control the action of the slave robot 2 more directly, thereby greatly improving the flexibility of human-computer interaction.
此外,由于从端机器人2通常处在危险的作业环境中,因而,为提高控制系统的便携性,需使得该控制系统中的部件越少越好。然而,本申请的控制系统100由于省去了现有技术中的主端机器人,从而使得控制系统100的组成更为简单化,方便对从端机器人2的控制。In addition, since the slave robot 2 is usually in a dangerous working environment, in order to improve the portability of the control system, it is necessary to make the control system have as few components as possible. However, since the control system 100 of the present application omits the master robot in the prior art, the composition of the control system 100 is simplified, and it is convenient to control the slave robot 2 .
另外,通过增设行走模块7,该行走模块7可为轮式底盘,使得从端机器人2可以适于在室内环境内进行灵活地移动,或该行走模块7为履带式底盘,因而具有越障性能好的优点,使得从端机器人2可以适于在野外环境中行走。In addition, by adding a walking module 7, the walking module 7 can be a wheeled chassis, so that the slave robot 2 can be adapted to move flexibly in an indoor environment, or the walking module 7 is a crawler chassis, so it has obstacle-surmounting performance. Good advantages make the slave robot 2 suitable for walking in the wild environment.
如图4所示,根据本发明,还提供了一种遥操作随动机器人的控制方法,包括:As shown in FIG. 4, according to the present invention, a control method for a teleoperated follower robot is also provided, including:
步骤S410,通过各采集板12分别获取能够代表人体的各关节部位的动作姿态的四元数,并将各四元数分别传输给主端主控板11。具体地,将主端人体姿态采集单元1穿戴在使用者身上后,位于各关节部位的采集板12能够分别获取相应关节部位的动作姿态的信息,并将该信息以四元数的形式表示。In step S410 , the acquisition boards 12 respectively acquire the quaternions that can represent the action postures of the joints of the human body, and transmit the quaternions to the main control board 11 respectively. Specifically, after wearing the main body posture acquisition unit 1 on the user, the acquisition board 12 located at each joint can acquire the information of the action posture of the corresponding joint and express the information in the form of a quaternion.
步骤S420,通过主端主控板11采用人体姿态解算算法对各四元数进行解算,以得到代表人体的各关节部位的关节角度的电信号。In step S420, each quaternion is calculated by the main control board 11 using the human body posture calculation algorithm, so as to obtain electrical signals representing the joint angles of each joint part of the human body.
步骤S430,通过主端主控板11将代表人体的各关节部位的关节角度的电信号传输给从端主控板211。即,主端主控板11将各关节部位的关节角度的电信号无线传输给从端主控板211,从而实现对从端机器人2的控制,以使其做出与人体相同的动作姿态。In step S430 , the master control board 11 transmits electrical signals representing the joint angles of the joints of the human body to the slave control board 211 . That is, the master main control board 11 wirelessly transmits the electrical signals of the joint angles of each joint to the slave main control board 211, so as to realize the control of the slave robot 2 so that it can make the same action posture as the human body.
步骤S440,从端主控板211接收到代表人体的各关节部位的关节角度的电信号后,控制从端机器人2的相应部位跟随人体做出与人体相同的动作姿态。这样,便实现了人与机器人的人机交互,并使得人机交互的柔顺性大大地提高,即,人能够更为直接地控制从端机器人2做出需要的动作,以更好地完成作业任务。Step S440, after the slave main control board 211 receives electrical signals representing the joint angles of the joints of the human body, control the corresponding parts of the slave robot 2 to follow the human body to make the same gestures as the human body. In this way, the human-computer interaction between the human and the robot is realized, and the flexibility of the human-computer interaction is greatly improved, that is, the human can more directly control the slave robot 2 to make the required actions to better complete the work Task.
在一个实施例中,各采集板12通过采用惯性导航技术以分别获取能够代表人体的各关节部位的动作姿态的信息,并将该信息以四元数的形式表示。容易理解,惯性导航技术是本领的技术人员所熟知的,为节约篇幅起见,此处不做详述。In one embodiment, each acquisition board 12 uses inertial navigation technology to respectively acquire information that can represent the action posture of each joint of the human body, and express the information in the form of a quaternion. It is easy to understand that the inertial navigation technology is well known to those skilled in the art, and for the sake of space saving, no detailed description is given here.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the scope of the present invention. within the scope of protection.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610617043.3A CN106003053A (en) | 2016-07-29 | 2016-07-29 | Teleoperation passive robot control system and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610617043.3A CN106003053A (en) | 2016-07-29 | 2016-07-29 | Teleoperation passive robot control system and control method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106003053A true CN106003053A (en) | 2016-10-12 |
Family
ID=57115711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610617043.3A Pending CN106003053A (en) | 2016-07-29 | 2016-07-29 | Teleoperation passive robot control system and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106003053A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109591016A (en) * | 2018-12-29 | 2019-04-09 | 深圳市工匠社科技有限公司 | Apery manipulator arm motion sensing control system and Related product |
CN110076796A (en) * | 2019-04-30 | 2019-08-02 | 航天时代电子技术股份有限公司 | A variable topology multi-joint collaborative follower robot |
CN110161900A (en) * | 2019-04-25 | 2019-08-23 | 中国人民解放军火箭军工程大学 | A wearable teleoperation platform for remote operation |
CN110308798A (en) * | 2019-07-31 | 2019-10-08 | 彭新楚 | An easy-to-wear multi-link teleoperation controller with stereo vision aid |
CN110653827A (en) * | 2019-11-11 | 2020-01-07 | 路邦科技授权有限公司 | Waist control system of bionic robot |
CN110696944A (en) * | 2019-11-11 | 2020-01-17 | 路邦科技授权有限公司 | Leg remote control system and control method of a bionic robot |
CN111136672A (en) * | 2020-01-22 | 2020-05-12 | 深圳国信泰富科技有限公司 | Police robot and control method thereof |
CN111687847A (en) * | 2020-07-09 | 2020-09-22 | 深圳市多够机器人技术有限公司 | Remote control device and control interaction mode of foot type robot |
CN113084800A (en) * | 2021-03-29 | 2021-07-09 | 航天时代电子技术股份有限公司 | Wearable all-joint follow-up remote control device |
CN113110142A (en) * | 2021-03-29 | 2021-07-13 | 航天时代电子技术股份有限公司 | Follow-up remote control operation table and remote control method thereof |
CN113218249A (en) * | 2021-05-30 | 2021-08-06 | 中国人民解放军火箭军工程大学 | Following type teleoperation combat tank and control method |
CN114248283A (en) * | 2021-12-30 | 2022-03-29 | 湖南农业大学 | Exoskeleton maintenance robot hand with Bluetooth sensing function |
CN117428792A (en) * | 2023-12-21 | 2024-01-23 | 商飞智能技术有限公司 | Operating system and method for robot |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5447403A (en) * | 1990-01-05 | 1995-09-05 | Engler, Jr.; Charles D. | Dexterous programmable robot and control system |
JPH09109069A (en) * | 1995-10-13 | 1997-04-28 | Gen Sugano | Powered intelligent method and unit |
US5845540A (en) * | 1995-06-30 | 1998-12-08 | Ross-Hime Designs, Incorporated | Robotic manipulator |
US20120010749A1 (en) * | 2010-04-09 | 2012-01-12 | Deka Products Limited Partnership | System and apparatus for robotic device and methods of using thereof |
CN103895022A (en) * | 2014-03-17 | 2014-07-02 | 东南大学 | Wearable type somatosensory control mechanical arm |
CN105005383A (en) * | 2015-07-10 | 2015-10-28 | 昆山美莱来工业设备有限公司 | Wearable arm band that manipulates mobile robot by using hand gesture |
CN204725497U (en) * | 2015-07-03 | 2015-10-28 | 滨州学院 | A kind of passive robot system |
CN204725501U (en) * | 2015-03-26 | 2015-10-28 | 吉林大学 | Body sense mechanical arm comfort level checkout gear |
CN105690386A (en) * | 2016-03-23 | 2016-06-22 | 北京轩宇智能科技有限公司 | Teleoperation system and teleoperation method for novel mechanical arm |
-
2016
- 2016-07-29 CN CN201610617043.3A patent/CN106003053A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5447403A (en) * | 1990-01-05 | 1995-09-05 | Engler, Jr.; Charles D. | Dexterous programmable robot and control system |
US5845540A (en) * | 1995-06-30 | 1998-12-08 | Ross-Hime Designs, Incorporated | Robotic manipulator |
JPH09109069A (en) * | 1995-10-13 | 1997-04-28 | Gen Sugano | Powered intelligent method and unit |
US20120010749A1 (en) * | 2010-04-09 | 2012-01-12 | Deka Products Limited Partnership | System and apparatus for robotic device and methods of using thereof |
CN103895022A (en) * | 2014-03-17 | 2014-07-02 | 东南大学 | Wearable type somatosensory control mechanical arm |
CN204725501U (en) * | 2015-03-26 | 2015-10-28 | 吉林大学 | Body sense mechanical arm comfort level checkout gear |
CN204725497U (en) * | 2015-07-03 | 2015-10-28 | 滨州学院 | A kind of passive robot system |
CN105005383A (en) * | 2015-07-10 | 2015-10-28 | 昆山美莱来工业设备有限公司 | Wearable arm band that manipulates mobile robot by using hand gesture |
CN105690386A (en) * | 2016-03-23 | 2016-06-22 | 北京轩宇智能科技有限公司 | Teleoperation system and teleoperation method for novel mechanical arm |
Non-Patent Citations (3)
Title |
---|
叶锃锋等: "基于四元数和卡尔曼滤波的两轮车姿态稳定方法", 《传感计算学报》 * |
张广玉等: "四旋翼微型飞行器设计", 《哈尔滨理工大学学报》 * |
张谦等: "基于MEMS器件的姿态航向参考系统设计及应用", 《计算机工程与设计》 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109591016A (en) * | 2018-12-29 | 2019-04-09 | 深圳市工匠社科技有限公司 | Apery manipulator arm motion sensing control system and Related product |
CN110161900B (en) * | 2019-04-25 | 2021-04-27 | 中国人民解放军火箭军工程大学 | Remote operation's wearing formula remote control operation platform |
CN110161900A (en) * | 2019-04-25 | 2019-08-23 | 中国人民解放军火箭军工程大学 | A wearable teleoperation platform for remote operation |
CN110076796A (en) * | 2019-04-30 | 2019-08-02 | 航天时代电子技术股份有限公司 | A variable topology multi-joint collaborative follower robot |
CN110308798A (en) * | 2019-07-31 | 2019-10-08 | 彭新楚 | An easy-to-wear multi-link teleoperation controller with stereo vision aid |
CN110653827A (en) * | 2019-11-11 | 2020-01-07 | 路邦科技授权有限公司 | Waist control system of bionic robot |
CN110696944A (en) * | 2019-11-11 | 2020-01-17 | 路邦科技授权有限公司 | Leg remote control system and control method of a bionic robot |
CN111136672A (en) * | 2020-01-22 | 2020-05-12 | 深圳国信泰富科技有限公司 | Police robot and control method thereof |
CN111687847A (en) * | 2020-07-09 | 2020-09-22 | 深圳市多够机器人技术有限公司 | Remote control device and control interaction mode of foot type robot |
CN111687847B (en) * | 2020-07-09 | 2024-02-02 | 广东鹏行智能有限公司 | Remote control device and control interaction mode of foot robot |
CN113084800A (en) * | 2021-03-29 | 2021-07-09 | 航天时代电子技术股份有限公司 | Wearable all-joint follow-up remote control device |
CN113110142A (en) * | 2021-03-29 | 2021-07-13 | 航天时代电子技术股份有限公司 | Follow-up remote control operation table and remote control method thereof |
CN113218249A (en) * | 2021-05-30 | 2021-08-06 | 中国人民解放军火箭军工程大学 | Following type teleoperation combat tank and control method |
CN113218249B (en) * | 2021-05-30 | 2023-09-26 | 中国人民解放军火箭军工程大学 | Following type teleoperation chariot and control method |
CN114248283A (en) * | 2021-12-30 | 2022-03-29 | 湖南农业大学 | Exoskeleton maintenance robot hand with Bluetooth sensing function |
CN114248283B (en) * | 2021-12-30 | 2024-05-24 | 湖南农业大学 | Exoskeleton maintenance robot with Bluetooth perception function |
CN117428792A (en) * | 2023-12-21 | 2024-01-23 | 商飞智能技术有限公司 | Operating system and method for robot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106003053A (en) | Teleoperation passive robot control system and control method thereof | |
JP6940879B2 (en) | Robot control systems, machine control systems, robot control methods, machine control methods, and computer programs | |
CN103895022A (en) | Wearable type somatosensory control mechanical arm | |
CN109955254B (en) | Mobile robot control system and teleoperation control method for robot end pose | |
Almetwally et al. | Real-time tele-operation and tele-walking of humanoid Robot Nao using Kinect Depth Camera | |
CN204997657U (en) | Biomimetic mechanical hand with imitate function | |
CN204366968U (en) | Based on the multiple degrees of freedom anthropomorphic robot of said three-dimensional body sense video camera | |
CN105291138B (en) | It is a kind of to strengthen the visual feedback platform of virtual reality immersion sense | |
CN115469576B (en) | A teleoperation system based on hybrid mapping of human-robot heterogeneous motion space | |
JP5974668B2 (en) | Manipulation system | |
CN110834330B (en) | Flexible mechanical arm teleoperation man-machine interaction terminal and method | |
CN106375421A (en) | Robot-assisted intelligent maintenance system based on remote control | |
CN112828916B (en) | Remote operation combined interaction device for redundant mechanical arm and remote operation system for redundant mechanical arm | |
Asokan et al. | ARMatron—A wearable gesture recognition glove: For control of robotic devices in disaster management and human rehabilitation | |
CN104440926A (en) | Mechanical arm somatic sense remote controlling method and mechanical arm somatic sense remote controlling system based on Kinect | |
CN212421309U (en) | Remote control device of foot type robot | |
CN104825258A (en) | Shoulder-wearable functional auxiliary arm | |
Baldi et al. | Design of a wearable interface for lightweight robotic arm for people with mobility impairments | |
CN205889194U (en) | Distant operation follow -up robot control system | |
CN106901916A (en) | The walked seat unit and its control system of a kind of use EEG signals control | |
Yu et al. | Gesture-based telemanipulation of a humanoid robot for home service tasks | |
AU2018102036A4 (en) | A search-and-rescue hexapod robot with a tele-operable mechanical arm | |
CN116160440A (en) | Teleoperation system for dual-arm intelligent robot based on MR remote control | |
CN115958575B (en) | Mobile robot capable of being operated flexibly by similar people | |
CN108081288A (en) | A kind of intelligent robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20161012 |
|
RJ01 | Rejection of invention patent application after publication |