[go: up one dir, main page]

CN106000468B - 一种金属卟啉-无机晶体复合微球及其制备方法 - Google Patents

一种金属卟啉-无机晶体复合微球及其制备方法 Download PDF

Info

Publication number
CN106000468B
CN106000468B CN201610387498.0A CN201610387498A CN106000468B CN 106000468 B CN106000468 B CN 106000468B CN 201610387498 A CN201610387498 A CN 201610387498A CN 106000468 B CN106000468 B CN 106000468B
Authority
CN
China
Prior art keywords
metalloporphyrin
complex microsphere
ion
crystal complex
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610387498.0A
Other languages
English (en)
Other versions
CN106000468A (zh
Inventor
纪红兵
陈龙
何晓辉
周贤太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Zhongjiang Materials Technology Research Institute Co ltd
Original Assignee
Huizhou Research Institute of Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Research Institute of Sun Yat Sen University filed Critical Huizhou Research Institute of Sun Yat Sen University
Priority to CN201610387498.0A priority Critical patent/CN106000468B/zh
Publication of CN106000468A publication Critical patent/CN106000468A/zh
Application granted granted Critical
Publication of CN106000468B publication Critical patent/CN106000468B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/42Tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/70Complexes comprising metals of Group VII (VIIB) as the central metal
    • B01J2531/72Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本发明公开了一种金属卟啉‑无机晶体复合微球及其制备方法,由金属离子与金属卟啉组成,其质量比为0.1~5:1。本发明的单一金属卟啉或者多种金属卟啉的固定化方法,具有操作简单、成本低廉等优点。本发明制备得到的金属卟啉‑无机晶体复合微球中金属卟啉的稳定性得到提高,金属卟啉的活性基本保持不变或者有所提高,所制备的金属卟啉‑无机晶体复合微球使得金属卟啉的催化反应由均相反应可以成为非均相反应,使得金属卟啉便于从反应体系中分离和回收,提高了金属卟啉的重复使用率,提高了金属卟啉的利用率。以上特点使得该种金属卟啉‑无机晶体复合微球在金属卟啉催化氧化、生物传感等领域有极大的应用前景。

Description

一种金属卟啉-无机晶体复合微球及其制备方法
技术领域
本发明涉及金属卟啉技术领域,具体地说,涉及一种金属卟啉-无机晶体复合微球及其制备方法。
背景技术
金属卟啉作为一种仿生催化剂,因其具有高选择性、高活性以及反应条件温和等特点,催化剂对反应均具有良好的催化性能,且反应条件温和,操作简单、易行且环境负荷小,具有潜在的应用前景,金属卟啉又是一个均相催化剂,均相催化剂最大缺点是难于从反应体系中分离回收和重复使用。
均相催化剂的负载化可以克服均相催化剂回收难等问题,是当前国内外催化领域的一个热门研究课题,在开发应用中一旦实现新的突破,便会促成催化生产工业的一次新革命。
发明内容
本发明的目的是克服现有金属卟啉催化剂不易回收和分离的技术不足,提供一种金属卟啉-无机晶体复合微球及其制备方法。
为实现本发明的目的,所采用的技术方案是:
一种金属卟啉-无机晶体复合微球,由金属离子与金属卟啉组成,其质量比为0.1~5:1。
在上述金属卟啉-无机晶体复合微球中,所述金属卟啉的结构式为:
在上述金属卟啉-无机晶体复合微球中,所述金属卟啉的分子量优选为300-3000。
在上述金属卟啉-无机晶体复合微球中,所述金属离子为铜离子、钙离子、镁离子、铁离子、亚铁离子、钡离子、锌离子或二价镍离子中的一种。
上述金属卟啉-无机晶体复合微球的制备方法,包括如下步骤:
将金属卟啉溶解于溶剂中,将金属离子溶解于水中,将金属卟啉溶液加入磷酸缓冲液中,再加入金属离子溶液,在静置条件下,于0~50℃的温度下得到金属卟啉-无机晶体复合微球。
在上述制备方法中:所述溶剂为水、乙二醇、二甲基亚砜、甲醇、N,N-二甲基甲酰胺、苯胺、乙醇、丙酮、乙腈、吡啶或异丙醇中的一种。
在上述制备方法中:所述磷酸缓冲液中包括磷酸二氢根和磷酸氢根;磷酸二氢根和磷酸氢二根的浓度均为1~1000mM;所述金属卟啉与所述磷酸盐缓冲液组成的混合液中,所述金属卟啉的浓度为0.01mg~10mg·mL-1;磷酸缓冲液的pH为5.0~9.0。
与现有技术相比,本发明具有如下有益效果:本发明提供一种单一金属卟啉或者多种金属卟啉的固定化方法,该方法具有操作简单、成本低廉等优点。本发明制备得到的金属卟啉-无机晶体复合微球中金属卟啉的稳定性得到提高,金属卟啉的活性基本保持不变或者有所提高,所制备的金属卟啉-无机晶体复合微球使得金属卟啉的催化反应由均相反应可以成为非均相反应,使得金属卟啉便于从反应体系中分离和回收,提高了金属卟啉的重复使用率,提高了金属卟啉的利用率。以上特点使得该种金属卟啉-无机晶体复合微球在金属卟啉催化氧化、生物传感等领域有极大的应用前景。
附图说明
图1为实施例1中磷酸铜晶体与金属卟啉-磷酸铜晶体复合微球的XRD及标准卡片对比图。
图2为实施例1所制备的金属卟啉-磷酸铜晶体复合微球的扫描电镜图。
图3为实施例2所制备的金属卟啉-磷酸铜晶体复合微球的扫描电镜图。
图4为实施例3所制备的金属卟啉-磷酸铜晶体复合微球的扫描电镜图。
图5为实施例4所制备的金属卟啉-磷酸铜晶体复合微球的扫描电镜图。
图6为实施例5所制备的金属卟啉-磷酸铜晶体复合微球的扫描电镜图。
图7为实施例6所制备的金属卟啉-磷酸铜晶体复合微球的扫描电镜图。
图8为实施例7所制备的金属卟啉-磷酸铜晶体复合微球的扫描电镜图。
图9为实施例1所制备的金属卟啉-磷酸铜晶体复合微球催化环己烯环氧化的转化率和选择性的关系曲线。
图10为实施例1所制备的金属卟啉-磷酸铜晶体复合微球催化环己烯环氧化的催化剂的重复使用性能图。
具体实施方式
下述实施例中所示用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
PBS缓冲液(pH=7.4)的配方:10mM HPO4 2-,2mM H2PO4 -,137mM NaCl和2.7mM KCl。
下述实施例中金属卟啉的活性:
下述实施例金属卟啉的负载量L由以下公式得到:
w1=(C1-C2)×V
其中W1和W2分别表示负载于微球上的金属卟啉的质量(mg)与金属卟啉-无机复合微球总质量(mg),C1和C2分别表示形成微球前后溶液中的金属卟啉的浓度(mg/mL),V表示使用金属卟啉溶液的总体积(mL)。
金属卟啉溶液的浓度均使用紫外可见光谱仪进行测定。
实施例1、meso-四(4-N-吡啶基)钴卟啉(CoTPyP)-磷酸铜晶体复合微球的制备:
1.配制金属卟啉浓度为0.3mg/mL的CoTPyP的N,N-二甲基甲酰胺溶液以及磷酸盐缓冲溶液和200mM的五水硫酸铜水溶液。
2.取步骤1中所配制的磷酸盐缓冲液20mL于烧杯中,加入5mL步骤1中的CoTPyP溶液,混合均匀,加入1mL步骤1中的硫酸铜溶液,混合均匀后于25℃培养箱中静置72h。
3.将步骤2所得的混合物过滤后收集沉淀,用去离子水洗涤3次,再次过滤收集沉淀,真空干燥4h即得meso-四(4-N-吡啶基)钴卟啉-磷酸铜晶体复合微球。
本实施例制备的复合微球的物相组成通过X射线衍射(XRD)表征并与相应晶体标准卡片进行比对,如图1所示,金属卟啉负载微球与没有金属卟啉负载的微球分析图形基本一致,且与Cu3(PO4)2·3H2O的标准卡片匹配,证实微球的无机晶体组成为三水磷酸铜
本实施例中制备得到的复合微球的扫描电镜图如图2所示,由图2可知,复合微球的粒径约为4μm,本实施例制备的复合微球中金属卟啉的负载量为8%。
实施例2~3、meso-四(4-N-吡啶基)铜卟啉-磷酸铜晶体复合微球和meso-四(4-N-吡啶基)锰卟啉-磷酸铜晶体复合微球的制备:
分别将实施实例1制备步骤1中的meso-四(4-N-吡啶基)钴卟啉替换为meso-四(4-N-吡啶基)铜卟啉-磷酸铜和meso-四(4-N-吡啶基)锰卟啉-磷酸铜,其他操作步骤相同。
meso-四(4-N-吡啶基)铜卟啉-磷酸铜晶体复合微球的扫描电镜图如图3所示,由图3可知,复合微球的粒径约为4μm。晶体复合微球中的金属卟啉的负载量为8%。
meso-四(4-N-吡啶基)锰卟啉-磷酸铜晶体复合微球的扫描电镜图如图4所示,由图4可知,复合微球的粒径约为4μm。晶体复合微球中的金属卟啉的负载量为8%。
实施例4、meso-四苯基钴卟啉(CoTPP)-磷酸铜晶体复合微球的制备:
1.配制金属卟啉浓度为0.3mg/mL的CoTPP的甲醇溶液以及磷酸盐缓冲溶液和200mM的五水硫酸铜水溶液。
2.取步骤1中所配制的磷酸盐缓冲液20mL于烧杯中,加入5mL步骤1中的CoTPP溶液,混合均匀,加入1mL步骤1中的硫酸铜溶液,混合均匀后于25℃培养箱中静置24h。
3.将步骤2所得的混合物过滤后收集沉淀,用去离子水洗涤3次,再次过滤收集沉淀,真空干燥4h即得meso-四苯基钴卟啉-磷酸铜晶体复合微球。
本实施例制备的复合微球的扫描电镜如图5所示,由图5可知,复合微球的粒径约为4μm。本实施例制备的复合微球中的金属卟啉的负载量为8%。
实施例5~6、meso-四苯基锡卟啉(SnTPP)-磷酸铜和meso-四苯基锰卟啉(MnTPP)-磷酸铜晶体复合微球的制备:
分别将实施实例5制备步骤中的meso-四苯基钴卟啉替换为meso-四苯基锡卟啉和meso-四苯基锰卟啉,其他操作步骤相同。
meso-四苯基钴卟啉-磷酸铜晶体复合微球的扫描电镜图如图6所示,由图6可知,复合微球的粒径约为4μm。meso-四苯基钴卟啉-磷酸铜晶体复合微球中的金属卟啉的负载量为8%。
meso-四苯基锰卟啉-磷酸铜晶体复合微球的扫描电镜图如图7所示,由图7可知,复合微球的粒径约为4μm。meso-四苯基锰卟啉-磷酸铜晶体复合微球中的金属卟啉的负载量为8%。
实施例7、meso-四-(4-苯基磺酸基)钴卟啉(CoTPPS)-meso-四苯基钴卟啉-磷酸铜晶体复合微球的制备:
1.配制金属卟啉浓度为0.3mg/mL的CoTPP和CoTPPS的甲醇溶液以及磷酸盐缓冲溶液和200mM的五水硫酸铜水溶液。
2.取步骤1中所配制的磷酸盐缓冲液20mL于烧杯中,加入2.5mL步骤1中的CoTPP和CoTPPS溶液,混合均匀,加入1mL步骤1中的硫酸铜溶液,混合均匀后于25℃培养箱中静置24h。
3.将步骤2所得的混合物过滤后收集沉淀,用去离子水洗涤3次,再次过滤收集沉淀,真空干燥4h即得meso-四苯基钴卟啉-meso-四-(4-苯基磺酸基)钴卟啉-磷酸铜晶体复合微球
本实施例制备的复合微球的扫描电镜如图8所示,由图8可知,复合微球的粒径约为4μm。本实施例制备的复合微球中的金属卟啉的负载量为8%。
金属卟啉-无机晶体复合微球中酶的活性和稳定性及对环己烯的检测:
金属卟啉的活性的测定方法:为了验证复合微球中金属卟啉的活性,本实施例对实施例1制备所得的复合微球体系的活性进行了测定。
通过分别测定复合微球和自由金属卟啉对环己烯的转化率和选择性的关系曲线,通过计算金属卟啉的具体的活性参数来比较金属卟啉的活性,具体操作步骤如下:分别称取50mg实施例1中制备的金属卟啉复合微球和自由金属卟啉加入不同的25mL的烧瓶中,加入到4mmol环己烯中,加入20mmol异丁醛,加入10ml 1,2-二氯乙烷作溶剂通入氧气,每隔半小时取样,使用气相色谱仪测定转化率和选择性,实验结果如图9所示,由图9可知,复合微球和自由金属卟啉相比,金属卟啉的活性提高了10%左右。
金属卟啉稳定性的测定方法:为了验证复合微球中金属卟啉的稳定性,本发明考察了复合微球的重复使用性能。具体操作步骤如下:将50mg实施例1中制备的金属卟啉复合微球,加入到4mmol环己烯中,加入20mmol异丁醛,通入氧气,反应4h,使用气相色谱仪测定转化率和选择性,回收复合微球催化剂,重复上述实验步骤,即得到复合微球的重复使用性能图。

Claims (4)

1.一种金属卟啉-无机晶体复合微球,其特征在于由金属离子与金属卟啉组成,其质量比为0.1~5∶1;
所述金属卟啉的结构式为:
M=:Zn,Mn(II),Cu(II),Co,Sn,Fe(II),V(II),Mg,Ni(II)
R1、R2、R3、R4
R5、R6:H,SO3 -,Cl,NO2,CH3,CH2CH3
所述金属离子为铜离子、铁离子、亚铁离子、钡离子、锌离子或二价镍离子中的一种;
制备方法包括如下步骤:
将金属卟啉溶解于溶剂中,将金属离子溶解于水中,将金属卟啉溶液加入磷酸缓冲液中,再加入金属离子溶液,在静置条件下,于0~50℃的温度下得到金属卟啉-无机晶体复合微球。
2.根据权利要求1所述的金属卟啉-无机晶体复合微球,其特征在于:所述金属卟啉的分子量为300-3000。
3.根据权利要求1所述的金属卟啉-无机晶体复合微球,其特征在于:所述溶剂为水、乙二醇、二甲基亚砜、甲醇、N,N-二甲基甲酰胺、苯胺、乙醇、丙酮、乙腈、吡啶或异丙醇中的一种。
4.根据权利要求1所述的金属卟啉-无机晶体复合微球,其特征在于:所述磷酸缓冲液中包括磷酸二氢根和磷酸氢根;磷酸二氢根和磷酸氢二根的浓度均为1~1000mM;所述金属卟啉与所述磷酸盐缓冲液组成的混合液中,所述金属卟啉的浓度为0.01mg· mL-1 ~10mg·mL-1;磷酸缓冲液的pH为5.0~9.0。
CN201610387498.0A 2016-06-01 2016-06-01 一种金属卟啉-无机晶体复合微球及其制备方法 Active CN106000468B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610387498.0A CN106000468B (zh) 2016-06-01 2016-06-01 一种金属卟啉-无机晶体复合微球及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610387498.0A CN106000468B (zh) 2016-06-01 2016-06-01 一种金属卟啉-无机晶体复合微球及其制备方法

Publications (2)

Publication Number Publication Date
CN106000468A CN106000468A (zh) 2016-10-12
CN106000468B true CN106000468B (zh) 2019-04-19

Family

ID=57089294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610387498.0A Active CN106000468B (zh) 2016-06-01 2016-06-01 一种金属卟啉-无机晶体复合微球及其制备方法

Country Status (1)

Country Link
CN (1) CN106000468B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405131A (zh) * 2002-10-29 2003-03-26 郭灿城 金属卟啉催化空气氧化环己烷的方法
CN1521153A (zh) * 2003-02-08 2004-08-18 湖南大学 选择性催化空气氧化甲苯和取代甲苯成醛和醇的方法
WO2010019976A2 (de) * 2008-08-19 2010-02-25 Universität Innsbruck Porphyrine und metallporphyrine
CN105457682A (zh) * 2015-11-13 2016-04-06 广西大学 硫化铅固载四(五氟苯基)金属卟啉催化剂的制备方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972677A (zh) * 2010-09-30 2011-02-16 广西大学 一种纳米氧化锌固载金属卟啉催化剂的制备方法及其在催化氧化甲苯中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405131A (zh) * 2002-10-29 2003-03-26 郭灿城 金属卟啉催化空气氧化环己烷的方法
CN1521153A (zh) * 2003-02-08 2004-08-18 湖南大学 选择性催化空气氧化甲苯和取代甲苯成醛和醇的方法
WO2010019976A2 (de) * 2008-08-19 2010-02-25 Universität Innsbruck Porphyrine und metallporphyrine
CN105457682A (zh) * 2015-11-13 2016-04-06 广西大学 硫化铅固载四(五氟苯基)金属卟啉催化剂的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Protein-inorganic hybrid nanoflwers;Jun Ge, et al;《Nature Nanotechnology》;20120703;第7卷;第428页左栏第2段、第428页左栏第2段

Also Published As

Publication number Publication date
CN106000468A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
Zhao et al. Two-dimensional BCN matrix inlaid with single-atom-Cu driven electrochemical nitrate reduction reaction to achieve sustainable industrial-grade production of ammonia
Li et al. Tri-functional Fe–Zr bi-metal–organic frameworks enable high-performance phosphate ion ratiometric fluorescent detection
Truong et al. Expanding applications of zeolite imidazolate frameworks in catalysis: synthesis of quinazolines using ZIF-67 as an efficient heterogeneous catalyst
Dong et al. Metal–organic framework MIL-53 (Fe): facile microwave-assisted synthesis and use as a highly active peroxidase mimetic for glucose biosensing
Li et al. 2D Zn‐Porphyrin‐Based Co (II)‐MOF with 2‐Methylimidazole Sitting Axially on the Paddle–Wheel Units: An Efficient Electrochemiluminescence Bioassay for SARS‐CoV‐2
Zhang et al. Novel pillar [5] arene-based supramolecular organic framework gel for ultrasensitive response Fe3+ and F− in water
Gogoi et al. Diamino group-functionalized Zr-based metal–organic framework for fluorescence sensing of free chlorine in the aqueous phase and Knoevenagel condensation
Liao et al. Construction of bifunctional materials with high adsorption and deep photodegradation of bisphenol A by In-MOF decorated with Ag/Ag3PO4
Guo et al. Enhancement in the active site exposure in a porphyrin-based PIL/graphene composite catalyst for the highly efficient conversion of CO 2
Pei et al. Synthesis of Quinone‐Amine‐Linked Covalent Organic Frameworks for Boosting the Photocatalytic Removal of Uranium
Wang et al. Unsupported nanoporous palladium catalyst for highly selective hydrogenation of carbon dioxide and sodium bicarbonate into formate
Rajpurohit et al. A stable and efficient electrochemical sensor for hydroquinone and catechol detection in real-world water samples using mesoporous CaM@ rGO nanocomposite
CN102451756B (zh) 负载型三氟甲烷磺酸锌催化剂及其制备方法和丁酮-乙二醇缩酮的制备方法
CN114478648A (zh) 一种类吡啶吡咯钌配合物及其制备方法和作为电催化氨氧化催化剂的应用
Albalad et al. Elucidating pore chemistry within metal–organic frameworks via single crystal X-ray diffraction; from fundamental understanding to application
You et al. Designed synthesis of an sp 2 carbon-conjugated fluorescent covalent organic framework for selective detection of Fe 3+
CN112794857B (zh) 一种可用于亚铁离子检测的荧光探针及制备和应用
Dai et al. Cu-Catalysed sustainable synthesis of formamide with glycerol derivatives as a carbonyl source via a radical-relay mechanism
JP2018034152A (ja) 多電子酸化還元触媒
Chin et al. Small molecule activation of nitriles coordinated to the [Re 6 Se 8] 2+ core: formation of oxazine, oxazoline and carboxamide complexes
Matz et al. Synthesis, structural studies, kinetic stability, and oxidation catalysis of the late first row transition metal complexes of 4, 10-dimethyl-1, 4, 7, 10-tetraazabicyclo [6.5. 2] pentadecane
CN106000468B (zh) 一种金属卟啉-无机晶体复合微球及其制备方法
CN109535129B (zh) 一种荧光探针分子及其制备与应用
Liang et al. Catalysis of aptamer-modified AuPd nanoalloy probe and its application to resonance scattering detection of trace UO22+
Ghanta et al. Ni (II)‐Complex Anchored Over Functionalized Mesoporous SBA‐15: A Nanocatalyst for the Synthesis of Aminophenoxazinone Derivatives

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20250227

Address after: Floors 5-6, Zuohu Building, No. 399 Dingmaoqiao Road, Jingkou District, Zhenjiang City, Jiangsu Province, China 212016

Patentee after: JIANGSU ZHONGJIANG MATERIALS TECHNOLOGY RESEARCH INSTITUTE Co.,Ltd.

Country or region after: China

Address before: 516081 room 205, building a, R & D building, No.5, Keji Road, science and Technology Innovation Park, Dayawan West District, Huizhou City, Guangdong Province

Patentee before: HUIZHOU RESEARCH INSTITUTE, SUN YAT-SEN University

Country or region before: China