CN105988228B - Three-dimensional display device and three-dimensional display method thereof - Google Patents
Three-dimensional display device and three-dimensional display method thereof Download PDFInfo
- Publication number
- CN105988228B CN105988228B CN201510080194.5A CN201510080194A CN105988228B CN 105988228 B CN105988228 B CN 105988228B CN 201510080194 A CN201510080194 A CN 201510080194A CN 105988228 B CN105988228 B CN 105988228B
- Authority
- CN
- China
- Prior art keywords
- microlens array
- image
- display
- sub
- display device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Abstract
Description
技术领域technical field
本发明涉及裸眼三维显示技术领域,具体而言,本发明涉及一种三维显示设备及其三维显示方法。The present invention relates to the technical field of naked-eye three-dimensional display, and in particular, the present invention relates to a three-dimensional display device and a three-dimensional display method thereof.
背景技术Background technique
与二维显示技术相比,三维显示技术能够一定程度上真实地再现客观世界的景象,让人们有身临其境的感觉,因此,在科研、娱乐、医疗、军事等领域都受到越来越多的关注。Compared with the two-dimensional display technology, the three-dimensional display technology can truly reproduce the scene of the objective world to a certain extent, making people feel immersed in the scene. much attention.
根据成像原理的不同,三维显示技术分为两大类:第一类是基于双目视差的非裸眼三维显示技术,但其需要佩戴特殊设备(比如偏光眼镜或头盔)才能看到三维立体成像,减少了观看时的娱乐性和自然性,且长时间观看还伴随视觉疲劳、舒适度下降等问题。第二类是以全息式、体三维式和光栅式为代表的裸眼三维显示技术。其中,需要相干光照明的全息式立体显示系统,以及需要高速旋转显示屏的体三维立体显示系统的结构都较为复杂。According to the different imaging principles, 3D display technology is divided into two categories: the first category is the non-naked eye 3D display technology based on binocular parallax, but it needs to wear special equipment (such as polarized glasses or helmet) to see 3D stereoscopic imaging, The entertainment and naturalness of viewing is reduced, and long-term viewing is also accompanied by problems such as visual fatigue and decreased comfort. The second category is naked-eye three-dimensional display technology represented by holographic, volume three-dimensional and grating. Among them, the holographic stereoscopic display system requiring coherent light illumination and the volume 3D stereoscopic display system requiring high-speed rotation of the display screen have complex structures.
相比于系统复杂的全息式、体三维式,设备简单、具有连续观察点的光栅式裸眼三维显示技术应用更为广泛。Compared with the complex holographic and volume 3D systems, the grating-type naked-eye 3D display technology with simple equipment and continuous observation points is more widely used.
目前,光栅式裸眼三维显示设备,其主要采用光栅式结构的一层微透镜阵列来实现裸眼三维显示。具体地,可以将其实现三维显示的过程分为:记录和再现两部分。记录时,可以利用光栅式结构的微透镜阵列记录不同视角的物体空间信息,形成元素图像阵列;再现时,通过显示屏显示元素图像阵列,根据光路可逆原理,通过上述微透镜阵列中的各个微透镜,从不同视角对显示屏中显示的图像进行成像,以此形成原物形貌。At present, the grating type naked-eye three-dimensional display device mainly adopts a layer of microlens array with a grating type structure to realize the naked-eye three-dimensional display. Specifically, the process of realizing three-dimensional display can be divided into two parts: recording and reproduction. During recording, the microlens array of grating structure can be used to record the object space information of different viewing angles to form an element image array; during reproduction, the element image array is displayed through the display screen. The lens is used to image the image displayed on the display screen from different viewing angles to form the original appearance.
但是,目前的裸眼三维显示设备在显示方面还存有许多局限性。比如,显示分辨率不高;用户在较小的显示视角内、或与显示屏在一个较小的距离范围内观看,才能看到正确的三维图像,否则会出现重影。However, the current naked-eye three-dimensional display devices still have many limitations in display. For example, the display resolution is not high; the user can only see the correct three-dimensional image when viewing within a small display viewing angle or within a small distance from the display screen, otherwise ghosting will occur.
因此,有必要提供一种能够提高显示质量的三维显示设备。Therefore, it is necessary to provide a three-dimensional display device capable of improving display quality.
发明内容SUMMARY OF THE INVENTION
针对上述现有技术存在的缺陷,本发明提供了一种三维显示设备及其三维显示方法,能够提高三维显示质量。In view of the above-mentioned defects in the prior art, the present invention provides a three-dimensional display device and a three-dimensional display method thereof, which can improve the quality of three-dimensional display.
本发明提供了一种三维显示设备,包括:The present invention provides a three-dimensional display device, comprising:
至少两层微透镜阵列、显示装置以及偏振装置,其中:At least two-layer microlens array, display device and polarization device, wherein:
设置于所述显示装置与所述微透镜阵列之间的偏振装置,以时分复用方式转换光的偏振方向,使得各层微透镜阵列依次进行光折射。The polarization device disposed between the display device and the microlens array converts the polarization direction of light in a time-division multiplexing manner, so that each layer of the microlens array performs light refraction in sequence.
较佳地,所述显示装置用于以时分复用方式显示一帧三维图像的各子图像。Preferably, the display device is used for displaying each sub-image of a frame of three-dimensional image in a time-division multiplexing manner.
根据本发明的另一方面,还提供了一种三维显示方法,所述方法包括:According to another aspect of the present invention, there is also provided a three-dimensional display method, the method comprising:
显示装置显示三维图像;The display device displays a three-dimensional image;
设置于显示装置与多层微透镜阵列之间的偏振装置以时分复用方式转换光的偏振方向,使得各层微透镜阵列依次进行光折射。The polarization device disposed between the display device and the multi-layer microlens array converts the polarization direction of light in a time-division multiplexing manner, so that each layer of the microlens array performs light refraction in sequence.
较佳地,所述显示装置以时分复用方式显示一帧三维图像的各子图像。Preferably, the display device displays each sub-image of a frame of three-dimensional image in a time-division multiplexing manner.
本发明的方案中,三维显示设备中采用至少两层微透镜阵列交替起折光作用进行三维显示,由于微透镜阵列可以提供水平和垂直两个方向的视差,因此,可以使得三维显示设备显示出的三维图像更接近于真实的物体。In the solution of the present invention, at least two layers of microlens arrays are used in the three-dimensional display device to alternately perform the function of refraction for three-dimensional display. Since the microlens array can provide parallax in both horizontal and vertical directions, the three-dimensional display device can display 3D images are closer to real objects.
而且,本发明的技术方案中,调整各层微透镜阵列的焦距、以及各层微透镜阵列相对显示装置中显示屏的位置关系后,可以采用时分复用的方法,在一帧三维图像显示周期中,利用偏振装置按照设定的偏振转换周期转换光的偏振方向,同时显示装置显示与当前起到折光作用的微透镜阵列对应的子图像,使得各层微透镜阵列交替进行三维显示,提高了显示分辨率、显示深度范围或显示视角等三维显示质量。Moreover, in the technical solution of the present invention, after adjusting the focal lengths of the microlens arrays of each layer and the positional relationship of the microlens arrays of each layer relative to the display screen in the display device, the method of time division multiplexing can be used to display one frame of three-dimensional images during a period of time. In the method, the polarizing device is used to convert the polarization direction of the light according to the set polarization conversion period, and the display device displays the sub-image corresponding to the microlens array currently playing the role of refraction, so that the three-dimensional display of the microlens array of each layer is alternately performed, which improves the 3D display quality such as display resolution, display depth range, or display viewing angle.
本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the present invention will be set forth in part in the following description, which will be apparent from the following description, or may be learned by practice of the present invention.
附图说明Description of drawings
图1为本发明实施例的三维显示设备的架构示意图;FIG. 1 is a schematic structural diagram of a three-dimensional display device according to an embodiment of the present invention;
图2a为本发明实施例的微透镜为正透镜的微透镜阵列的示意图;2a is a schematic diagram of a microlens array in which a microlens is a positive lens according to an embodiment of the present invention;
图2b为本发明实施例的微透镜为负透镜的微透镜阵列的示意图;2b is a schematic diagram of a microlens array in which the microlenses are negative lenses according to an embodiment of the present invention;
图3a、3b为本发明实施例的提高分辨率的三维显示设备的架构示意图;3a and 3b are schematic structural diagrams of a three-dimensional display device with increased resolution according to an embodiment of the present invention;
图3c为本发明实施例的两层微透镜阵列的排列示意图;3c is a schematic diagram of the arrangement of a two-layer microlens array according to an embodiment of the present invention;
图3d为本发明实施例的提高分辨率时显示屏与微透镜阵列的对应关系;3d is a corresponding relationship between a display screen and a microlens array when the resolution is improved according to an embodiment of the present invention;
图4a、4b为本发明实施例的提高视角的三维显示设备的架构示意图;4a and 4b are schematic structural diagrams of a three-dimensional display device with improved viewing angle according to an embodiment of the present invention;
图4c为本发明实施例的提高视角时显示屏与微透镜阵列的对应关系;4c is a corresponding relationship between a display screen and a microlens array when the viewing angle is improved according to an embodiment of the present invention;
图5a、5b为本发明实施例的提高显深的三维显示设备的架构示意图;5a and 5b are schematic diagrams of the structure of a three-dimensional display device with increased display depth according to an embodiment of the present invention;
图5c为本发明实施例的提高显深时显示屏与微透镜阵列的对应关系。FIG. 5c is the corresponding relationship between the display screen and the microlens array when the depth of view is increased according to the embodiment of the present invention.
具体实施方式Detailed ways
以下将结合附图对本发明的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施例,都属于本发明所保护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
本申请使用的“模块”、“系统”等术语旨在包括与计算机相关的实体,例如但不限于硬件、固件、软硬件组合、软件或者执行中的软件。例如,模块可以是,但并不仅限于:处理器上运行的进程、处理器、对象、可执行程序、执行的线程、程序和/或计算机。举例来说,计算设备上运行的应用程序和此计算设备都可以是模块。一个或多个模块可以位于执行中的一个进程和/或线程内,一个模块也可以位于一台计算机上和/或分布于两台或更多台计算机之间。Terms such as "module" and "system" used in this application are intended to include computer-related entities such as, but not limited to, hardware, firmware, a combination of hardware and software, software, or software in execution. For example, a module may be, but is not limited to, a process running on a processor, a processor, an object, an executable program, a thread of execution, a program, and/or a computer. For example, both an application running on a computing device and the computing device can be modules. One or more modules can reside within a process and/or thread of execution, and a module can also reside on one computer and/or be distributed between two or more computers.
本发明的发明人考虑到,可以使用至少两层微透镜阵列来实现物体的更真实显示、以及显示质量的增强。具体地,可以采用时分复用的方法,利用偏振控制单元控制偏振转换器件转换光的偏振方向,使得各层微透镜阵列交替起到光学折光作用,同时显示屏在显示图像引擎的控制下显示与当前起到折光作用的微透镜阵列对应的子图像。这样,可以根据显示屏中显示的子图像、偏振方向、以及微透镜阵列之间的协调,增加人眼反应时间内的成像角度、或成像的微透镜数目,以此实现显示视角、或显示分辨率的提高;或者根据各层微透镜阵列的不同焦距所形成的多个显示深度范围,达到提高三维显示设备的综合的显示深度范围的效果。The inventors of the present invention have considered that at least two layers of microlens arrays can be used to achieve a more realistic display of objects, as well as enhanced display quality. Specifically, the method of time division multiplexing can be used, and the polarization control unit is used to control the polarization direction of the converted light of the polarization conversion device, so that the microlens arrays of each layer alternately play the role of optical refraction, and at the same time, the display screen displays and displays under the control of the display image engine. The sub-image corresponding to the microlens array that currently plays the role of refraction. In this way, according to the sub-image displayed on the display screen, the polarization direction, and the coordination between the microlens arrays, the imaging angle or the number of imaging microlenses can be increased within the reaction time of the human eye, so as to realize the display viewing angle or display resolution. or according to the multiple display depth ranges formed by the different focal lengths of the microlens arrays of each layer, so as to achieve the effect of improving the comprehensive display depth range of the three-dimensional display device.
下面结合附图详细说明本发明的技术方案。The technical solutions of the present invention will be described in detail below with reference to the accompanying drawings.
本发明提供了一种三维显示设备,如图1所示,包括:显示装置110、至少两层微透镜阵列102、设置于显示装置与微透镜阵列之间的偏振装置120。The present invention provides a three-dimensional display device, as shown in FIG. 1 , comprising: a
其中,偏振装置120以时分复用方式转换光的偏振方向,使得各层微透镜阵列依次进行光折射。The
进一步,显示装置110以时分复用方式显示一帧三维图像的各子图像。Further, the
其中,显示装置110中具体包括:显示屏101,以及显示图像引擎106。The
偏振装置120具体包括:偏振转换器件104、偏振控制单元105。The
实际应用中,每层微透镜阵列102可以与显示屏101平行设置;微透镜阵列102中的每个微透镜具有相同的结构,微透镜以矩形或六边形排列,且相邻微透镜间的节距相等。实际应用中,微透镜阵列中的微透镜可以为正透镜,或者微透镜也可以为负透镜,如图2a、2b所示。In practical applications, each layer of the
本发明的三维显示设备中,为了实现在不同偏振方向的入射光下各层微透镜阵列能够交替起折光作用,相邻层的微透镜阵列的晶体光轴之间可以呈设定夹角。In the three-dimensional display device of the present invention, in order to realize that the microlens arrays of each layer can alternately refract light under the incident light of different polarization directions, the crystal optical axes of the microlens arrays of adjacent layers can form a predetermined angle.
本发明的三维显示设备中,微透镜阵列可以具有多个折射率,即在不同偏振方向的光下,微透镜阵列的折射率不同。In the three-dimensional display device of the present invention, the microlens array may have multiple refractive indices, that is, the refractive indices of the microlens array are different under light of different polarization directions.
为了使得微透镜阵列能够在一定情形下具有折光作用,在各层微透镜阵列102之间可以设置间隔材料层103,且间隔材料层的折射率与微透镜阵列的折射率之一相同。其中,间隔材料层103的厚度可以设置在微米量级。In order to enable the microlens array to have a refractive effect under certain circumstances, a
这样,在微透镜阵列的当前折射率与间隔材料层103的折射率相同时,不具有光折射作用;在微透镜阵列的当前折射率与间隔材料层103的折射率不同时,可以进行光折射。In this way, when the current refractive index of the microlens array is the same as the refractive index of the
考虑到空气也具有一定的折射率,因此,实际应用中,各层微透镜阵列之间也可以不设置间隔材料层;相应地,在微透镜阵列102的折射率与微透镜阵列之间的空气的折射率不同时,微透镜阵列102具有折光作用。Considering that air also has a certain refractive index, in practical applications, no spacer material layer may be provided between the microlens arrays; correspondingly, the refractive index of the
本发明的方案中,三维显示设备中的微透镜阵列102可以为两层,相应地,微透镜阵列102为双折射率;显示装置110以时分复用方式显示一帧三维图像的两个子图像;偏振装置120与显示装置110同步转换,以时分复用方式转换两种光的偏振方向,使得各层微透镜阵列依次进行光折射,分别折光显示各子图像。In the solution of the present invention, the
或者,三维显示设备中的微透镜阵列102可以为三层,相应地,微透镜阵列102为三折射率;显示装置110以时分复用方式显示一帧三维图像的三个子图像;偏振装置120与显示装置110同步转换,以时分复用方式转换三种光的偏振方向,使得各层微透镜阵列分别折光显示各子图像。Alternatively, the
或者,三维显示设备中的微透镜阵列102可以为四层,相应地,微透镜阵列102为四折射率;显示装置110以时分复用方式显示一帧三维图像的四个子图像;偏振装置120与显示装置110同步转换,以时分复用方式转换四种光的偏振方向,使得各层微透镜阵列分别折光显示各子图像。Alternatively, the
例如,在三维显示设备中的微透镜阵列102具体为两层、微透镜阵列102具体为双折射率的情况下,即三维显示设备包括第一微透镜阵列1021和第二微透镜阵列1022时,相邻层的第一微透镜阵列1021和第二微透镜阵列1022的晶体光轴之间可以正交。比如,在三维显示设备中的微透镜阵列102具体为两层、微透镜阵列102具体为双折射率的情况下,其中一层微透镜阵列102的晶体光轴的方向平行于显示屏101,另一层微透镜阵列102的晶体光轴的方向垂直于显示屏101。For example, when the
在三维显示设备中的微透镜阵列102具体为两层、微透镜阵列102具体为双折射率的情况下,对于单折射率的间隔材料层103,其折射率可以与微透镜阵列102的双折射率中的一个折射率相同。假设微透镜阵列102的双折射率的取值在n1和n2之间跳变,则间隔材料层103的折射率可以取值为其中的n2。这样,当微透镜阵列102的双折射率取值为n2,光通过微透镜阵列102、间隔材料层103时不会发生折射。In the case where the
本发明的三维显示设备中,偏振装置120的偏振转换器件104设置于显示屏101与微透镜阵列102之间;偏振装置120的偏振控制单元105用于控制偏振转换器件104转换光的偏振方向。In the three-dimensional display device of the present invention, the
实际应用中,偏振转换器件104转换光的偏振方向后,在该偏振方向的入射光下,晶体光轴与该偏振方向相同的微透镜阵列102的折射率与间隔材料层103的折射率取值不同;而晶体光轴与该偏振方向不同的其它层的微透镜阵列102的折射率与间隔材料层103的折射率取值相同。因此,根据各层微透镜阵列102的晶体光轴方向与显示屏的关系,可以通过偏振控制单元105控制偏振转换器件104转换入射光的偏振方向,来改变各层微透镜阵列102的折射率的取值。In practical applications, after the
在三维显示设备中的微透镜阵列102具体为两层、微透镜阵列102具体为双折射率的情况下,偏振装置120可以按照设定偏振转换周期转换光的偏振方向,使光在平行于显示装置110的方向和垂直于显示装置110的方向中进行转换。When the
本发明实施例中,一帧三维图像显示周期中可以包括两个设定显示切换周期,显示装置可以按照设定显示切换周期切换显示一帧三维图像的各子图像。因此,为了完成一帧三维图像的三维显示,偏振装置120的设定偏振转换周期可以与设定显示切换周期相同。这样,在三维图像显示周期中,偏振装置转换光的偏振方向的同时,显示装置可以切换显示一帧三维图像的子图像,以此完成一帧三维图像的三维显示。In this embodiment of the present invention, one frame of three-dimensional image display period may include two set display switching periods, and the display device may switch and display each sub-image of one frame of three-dimensional image according to the set display switching period. Therefore, in order to complete the three-dimensional display of one frame of three-dimensional images, the set polarization conversion period of the
例如,在一帧三维图像显示周期中,一个时间段转换光的偏振方向平行于显示装置110;另一个时间段转换光的偏振方向垂直于显示装置110。For example, in one frame of three-dimensional image display period, the polarization direction of the converted light in one time period is parallel to the
具体地,偏振装置120中的偏振控制单元105在一帧三维图像的显示周期中,一个时间段控制偏振转换器件104转换光的偏振方向平行于显示屏101;另一个时间段控制偏振转换器件104转换光的偏振方向垂直于显示屏101。Specifically, the
这样,在光的偏振方向平行于显示屏101时,晶体光轴的方向平行于显示屏的微透镜阵列102的折射率与间隔材料层103的折射率的取值不同,晶体光轴的方向垂直于显示屏的微透镜阵列102的折射率与间隔材料层103的折射率的取值相同。In this way, when the polarization direction of the light is parallel to the
进一步地,考虑到偏振转换器件104转换光的偏振方向后,在该偏振方向的入射光下,与间隔材料层103具有不同折射率的微透镜阵列102具有折光作用;而与间隔材料层103具有相同折射率的微透镜阵列102没有折光作用,表现为一块光学平板。Further, considering that after the
因此,在本发明的三维显示设备中,显示装置110的显示图像引擎105可以根据偏振转换器件104转换的光的偏振方向,控制显示装置110的显示屏101显示与在该偏振方向的入射光下具有折光作用的微透镜阵列102对应的子图像。Therefore, in the three-dimensional display device of the present invention, the
其中,与在该偏振方向的入射光下具有折光作用的微透镜阵列102对应的子图像,可以基于该微透镜阵列102的焦距、该微透镜阵列102的中心与显示屏101中心的夹角等因素,对待显示的物体的三维图像进行变换得到。关于三维图像的变换可以采用本领域技术人员公知的技术手段,在此不在详述。Wherein, the sub-image corresponding to the
基于上述三维显示设备,本发明还提供了一种三维显示设备的三维显示方法,该方法主要包括:Based on the above three-dimensional display device, the present invention also provides a three-dimensional display method of the three-dimensional display device, the method mainly includes:
显示装置显示三维图像;设置于显示装置110与至少两层微透镜阵列之间的偏振装置120以时分复用方式转换光的偏振方向,使得各层微透镜阵列依次进行光折射。The display device displays a three-dimensional image; the
其中,显示装置110具体以时分复用方式显示一帧图像的多个子图像。Specifically, the
这样,在一帧三维图像显示周期中,在不同的时间段,根据光的偏振方向的转换,各微透镜阵列102交替起折光作用,并对显示装置110中的显示屏101显示的相应子图像进行成像。In this way, in a frame of three-dimensional image display period, in different time periods, according to the conversion of the polarization direction of the light, each
实际应用中,对于与具有折光作用的微透镜阵列102对应的子图像,其内容与待显示的物体经过该微透镜阵列折光后的成像内容相同。这样,根据光路可逆的原理,在显示屏中显示与该微透镜阵列对应的子图像后,通过该微透镜阵列可以实现待显示的物体的三维显示。In practical applications, the content of the sub-image corresponding to the
而且,由于微透镜阵列可以提供水平和垂直方向的视差,因此,通过微透镜阵列所显示出的三维图像与待显示的物体较为接近。Moreover, since the microlens array can provide parallax in the horizontal and vertical directions, the three-dimensional image displayed by the microlens array is relatively close to the object to be displayed.
更优地,本发明的三维显示设备中,微透镜阵列102可以采用电控多折射率材料;在微透镜阵列102上施加设定电压时,微透镜阵列102具有与间隔材料层103相同的折射率。也就是说,入射光的偏振方向发生转换时,微透镜阵列102的折射率不变,且与间隔材料层的折射率相同,因此不具有折光作用。这样,三维显示设备可以进行二维图像的显示。而在需要显示三维图像时,则可以在微透镜阵列102上施加另一个设定电压,使得微透镜阵列102恢复上述多折射率的特性。这样,通过控制施加在三维显示设备中的微透镜阵列102的电压,可以实现二维显示模型和三维显示模型的切换,提高用户的体验。More preferably, in the three-dimensional display device of the present invention, the
更优地,本发明的三维显示设备中,可以通过调整三维显示设备中的各层微透镜阵列的焦距、各层微透镜阵列相对显示装置中的显示屏的位置关系、以及显示屏中显示的子图像,实现三维显示质量的提高,为用户提供更好的视觉效果。More preferably, in the three-dimensional display device of the present invention, the focal length of each layer of microlens arrays in the three-dimensional display device, the positional relationship of each layer of microlens arrays relative to the display screen in the display device, and the Sub-images can improve the quality of 3D display and provide users with better visual effects.
基于上述三维显示设备及其三维显示方法,本发明提供了三个具体实施例的技术方案。Based on the above-mentioned three-dimensional display device and three-dimensional display method thereof, the present invention provides technical solutions of three specific embodiments.
其中,在实施例一的技术方案中,为了提高三维显示分辨率,可以将多层微透镜阵列中的微透镜交错排列,并针对在转换光的偏振方向后具有折光作用的微透镜阵列,在显示屏中的相应位置显示相应的子图像。Among them, in the technical solution of the first embodiment, in order to improve the resolution of the three-dimensional display, the microlenses in the multi-layer microlens array can be staggered, and for the microlens array that has a refraction effect after converting the polarization direction of the light, in the The corresponding sub-image is displayed in the corresponding position in the display screen.
在实施例二的技术方案中,为了提高三维显示视角,可以将多层微透镜阵列中的微透镜交错排列,并针对在转换光的偏振方向后具有折光作用的微透镜阵列,在显示屏中的相同的显示位置显示相应的子图像。In the technical solution of the second embodiment, in order to improve the three-dimensional display viewing angle, the microlenses in the multi-layer microlens array can be staggered, and for the microlens array that has a refraction effect after converting the polarization direction of light, in the display screen The corresponding sub-images are displayed in the same display position of .
在实施例三的技术方案中,为了提高三维显示深度,可以将焦距相同的多层微透镜阵列中的微透镜对齐排列,并针对在转换光的偏振方向后具有折光作用的微透镜阵列,在显示屏中的相同的显示位置显示相应的子图像。In the technical solution of the third embodiment, in order to improve the depth of the three-dimensional display, the microlenses in the multi-layer microlens array with the same focal length can be aligned, and for the microlens array that has a refraction effect after converting the polarization direction of the light, in the The corresponding sub-image is displayed in the same display position in the display screen.
实施例一Example 1
如图3a、3b所示,本发明实施例一的三维显示设备中包括:显示装置1110、至少两层微透镜阵列1102、设置于显示装置与微透镜阵列之间的偏振装置1120。As shown in FIGS. 3 a and 3 b , the three-dimensional display device according to the first embodiment of the present invention includes: a
其中,显示装置1110中具体包括:显示屏1101、显示图像引擎1106。The
偏振装置1120具体包括:偏振转换器件104、偏振控制单元105。The
进一步地,三维显示设备中还可以包括:设置于各层微透镜阵列1102之间的间隔材料层103。Further, the three-dimensional display device may further include: a
其中,实施例一的三维显示设备中,每层微透镜阵列1102与显示屏1101平行设置;各层微透镜阵列1102的焦距相同,且各层微透镜阵列1102中的微透镜相对于相邻微透镜阵列1102中的微透镜交错排列。Wherein, in the three-dimensional display device of the first embodiment, each layer of the
例如,在三维显示设备中的微透镜阵列1102具体为两层、微透镜阵列1102具体为双折射率的情况下,第二微透镜阵列1122中的微透镜,相对于第一微透镜阵列1121中的微透镜交错排列。For example, when the
其中,微透镜间的偏移量可以由本领域技术人员根据经验进行设置。比如,第二微透镜阵列1122中的微透镜,与第一微透镜阵列1121中与之相邻的微透镜,在水平和垂直方向相差m个节距;其中,m为1/2,或其它非整数。图3c给出了一种微透镜相差1/2个节距的两层微透镜阵列的排列情况。The offset between the microlenses can be set by those skilled in the art based on experience. For example, the microlenses in the
由于第一微透镜阵列、第二微透镜阵列中的微透镜在水平和垂直位置上存在差异;对于同一物体,分别经过第一微透镜阵列、第二微透镜阵列后的成像,在位置和显示内容上都是不相同的。Because the microlenses in the first microlens array and the second microlens array are different in horizontal and vertical positions; for the same object, the imaging after passing through the first microlens array and the second microlens array, respectively, is in position and display. The content is different.
因此,为了使得用户在观看位置上感知的是同一物体,且在该位置上感知到更加丰富的三维立体成像,即分辨率更高的三维立体成像。Therefore, in order to make the user perceive the same object at the viewing position, and perceive more abundant three-dimensional stereoscopic imaging at this position, that is, three-dimensional stereoscopic imaging with higher resolution.
本发明实施例一的技术方案中,偏振装置1120可以按照设定偏振转换周期转换光的偏振方向,使光在平行于显示装置1110的方向和垂直于显示装置1110的方向中进行转换;同时,显示装置1110按照设定显示切换周期切换显示一帧三维图像的第一子图像和第二子图像;其中,第一子图像在显示屏1101的第一显示位置显示,第二子图像在显示屏1101的第二显示位置显示。In the technical solution of the first embodiment of the present invention, the
例如,偏振装置1120在一帧三维图像显示周期中,一个时间段转换光的偏振方向平行于显示装置1110;另一个时间段转换光的偏振方向垂直于显示装置1110;同时显示装置1110可以在一帧三维图像显示周期中,一个时间段在显示屏1101的第一显示位置显示第一子图像;另一个时间段在显示屏1101的第二显示位置显示第二子图像。For example, in a frame of three-dimensional image display period of the
具体地,如图3d所示,显示图像引擎1106可以在一帧三维图像显示周期中的一个时间段控制显示屏1101在第一显示位置显示第一子图像;另一个时间段控制显示屏1101在第二显示位置显示第二子图像。Specifically, as shown in FIG. 3d , the
本发明实施例一的技术方案中,第一显示位置和第二显示位置在水平和垂直方向相差m个节距;第一子图像、第二子图像是对三维图像基于不同成像角度变换得到的。In the technical solution of the first embodiment of the present invention, the first display position and the second display position differ by m pitches in the horizontal and vertical directions; the first sub-image and the second sub-image are obtained by transforming the three-dimensional image based on different imaging angles .
具体地,根据两层微透镜阵列中的第一微透镜阵列1121的中心与显示屏1101中心的夹角确定第一成像角度;根据两层微透镜阵列中的第二微透镜阵列1122的中心与显示屏1101中心的夹角确定第二成像角度。这样,分别基于第一、二成像角度对三维图像进行变换,得到第一子图像、第二子图像。也就是说,第一子图像是与第一微透镜阵列1121对应的子图像,第二子图像是与第二微透镜阵列1122对应的子图像。Specifically, the first imaging angle is determined according to the angle between the center of the
实际应用中,可以假设第一微透镜阵列1121的晶体光轴的方向垂直于显示屏1101,第二微透镜阵列1122的晶体光轴的方向平行于显示屏1101。In practical applications, it can be assumed that the direction of the crystal optical axis of the
基于本发明实施例一的三维显示设备,为了提高三维显示分辨率,可以采用如下方法进行三维显示:Based on the three-dimensional display device according to the first embodiment of the present invention, in order to improve the three-dimensional display resolution, the following methods can be used to perform three-dimensional display:
在一帧三维图像显示周期中的一个时间段,显示图像引擎1106控制显示屏1101在第一显示位置显示第一子图像的同时,偏振控制单元104控制偏振转换器件105将光的偏振方向转换为垂直于显示屏1101,如图3a所示。During a period of time in a frame of three-dimensional image display cycle, while the
这样,在该偏振方向下,第一微透镜阵列1121的折射率与间隔材料层103的折射率取值不同,能够发挥一个透镜的功能,根据显示屏1101在第一显示位置显示的与第一微透镜阵列1121相对应的第一子图像,进行三维显示。而第二微透镜阵列1122的折射率与间隔材料层103的折射率取值相同,表现为一块光学平板。In this way, in this polarization direction, the refractive index of the
进而,如图3b所示,在一帧三维图像显示周期中的另一个时间段,显示图像引擎1106控制显示屏1101在第二显示位置显示第二子图像的同时,偏振控制单元104控制偏振转换器件105将光的偏振方向转换为平行于显示屏1101。Furthermore, as shown in FIG. 3b, in another time period in the display period of one frame of three-dimensional image, the
这样,在该偏振方向下,第二微透镜阵列1122的折射率与间隔材料层103的折射率取值不同,根据显示屏1101在第二显示位置显示的与第二微透镜阵列1122相对应的第二子图像,进行三维显示。而第一微透镜阵列1121的折射率与间隔材料层103的折射率取值相同,表现为一块光学平板。In this way, in this polarization direction, the refractive index of the
本发明实施例一的技术方案中,由于第二微透镜阵列1122中的微透镜与第一微透镜阵列1121中的微透镜交错排列,通过偏振控制单元104以高于人眼反映时间的频率高速控制偏振转换器件105切换偏振方向,同时显示图像引擎1106控制显示屏1101在相应的位置显示相应的子图像,可以使得第一微透镜阵列1121和第二微透镜阵列1122交替成像,其综合成像效果在客观上可以等同于增加参加成像显示的微透镜的数目后的成像效果。因此,可以实现人眼感知的是同一个三维物体,且提高了分辨率。In the technical solution of the first embodiment of the present invention, since the microlenses in the
实施例二
如图4a、4b所示,本发明实施例二的三维显示设备中包括:显示装置2110、至少两层微透镜阵列1202、设置于显示装置与微透镜阵列之间的偏振装置2120。As shown in Figures 4a and 4b, the three-dimensional display device according to the second embodiment of the present invention includes: a
其中,显示装置2110中具体包括:显示屏1201、显示图像引擎1206。The
偏振装置2120具体包括:偏振转换器件104、偏振控制单元105。The
进一步地,三维显示设备中还可以包括:设置于各层微透镜阵列1202之间的间隔材料层103。Further, the three-dimensional display device may further include: a
其中,本发明实施例二的三维显示设备中,每层微透镜阵列1202与显示屏1201平行设置;各层微透镜阵列1202的焦距相同,且各层微透镜阵列1202中的微透镜相对于相邻微透镜阵列1202中的微透镜交错排列。Among them, in the three-dimensional display device according to the second embodiment of the present invention, each layer of the
例如,在三维显示设备中的微透镜阵列1202具体为两层、微透镜阵列1202具体为双折射率的情况下,第一微透镜阵列1221的晶体光轴的方向垂直于显示屏1201,第二微透镜阵列1222的晶体光轴的方向平行于显示屏1201;且第二微透镜阵列1222中的微透镜,与第一微透镜阵列1221中与之相邻的微透镜,在水平和垂直方向相差m个节距;其中,m为1/2,或其它非整数。For example, when the
考虑到大的三维显示视角可以保证用户观看三维显示内容的舒适性,不会因为用户的头部的简单运动而产生视角跳变,出现重影的情况。而事实上,在各层微透镜阵列中的微透镜相对于相邻微透镜阵列中的微透镜交错排列的情况下,对于同一物体,分别经过各层微透镜阵列后的成像在位置和显示内容上都是不相同的。Considering that the large three-dimensional display viewing angle can ensure the user's comfort in viewing the three-dimensional display content, the viewing angle jumps and ghosting will not occur due to the simple movement of the user's head. In fact, when the microlenses in the microlens arrays of each layer are staggered relative to the microlenses in the adjacent microlens arrays, for the same object, the images after passing through the microlens arrays of each layer are in position and display content. above are not the same.
因此,更优地,本发明实施例二的技术方案中,为了使得用户在更大的视角内看到没有重影的三维立体图像,偏振装置2120按照设定偏振转换转换光的偏振方向,使光在平行于显示装置2110的方向和垂直于显示装置2110的方向中进行转换;同时,显示装置2110按照设定显示切换周期切换显示一帧三维图像的第一子图像和第二子图像;其中,第一子图像与第二子图像在显示屏的相同位置处显示。Therefore, more preferably, in the technical solution of the second embodiment of the present invention, in order to enable the user to see a three-dimensional image without ghost images in a larger viewing angle, the
例如,偏振装置2120在一帧三维图像显示周期中,一个时间段转换光的偏振方向平行于显示装置2110;另一个时间段转换光的偏振方向垂直于显示装置2110;同时,显示装置2110可以在一帧三维图像显示周期中,一个时间段在显示屏显示第一子图像;另一个时间段在显示屏相同位置处显示第二子图像。For example, in one frame of three-dimensional image display period of the
具体地,如图4c所示,显示装置2110中的显示图像引擎1206在一帧三维图像显示周期中的一个时间段控制显示屏1201显示第一子图像;另一个时间段控制显示屏1201在相同位置处显示第二子图像。Specifically, as shown in FIG. 4c, the
本发明实施例二的技术方案中,第一子图像、第二子图像是对三维图像基于不同成像角度变换得到的。具体地,根据两层微透镜阵列中的第一微透镜阵列1221的中心与显示屏1201中心的夹角确定第一成像角度;根据两层微透镜阵列中的第二微透镜阵列1222的中心与显示屏1201中心的夹角确定第二成像角度。这样,分别基于第一成像角度、第二成像角度对三维图像进行变换,得到第一子图像、第二子图像。In the technical solution of the second embodiment of the present invention, the first sub-image and the second sub-image are obtained by transforming the three-dimensional image based on different imaging angles. Specifically, the first imaging angle is determined according to the angle between the center of the
实际应用中,可以假设第一微透镜阵列1221的晶体光轴的方向垂直于显示屏1201,第二微透镜阵列1222的晶体光轴的方向平行于显示屏1201。In practical applications, it can be assumed that the direction of the crystal optical axis of the
基于本发明实施例二的三维显示设备,为了提高三维显示视角,可以采用如下方法进行三维显示:Based on the three-dimensional display device according to the second embodiment of the present invention, in order to improve the three-dimensional display viewing angle, the following methods can be used for three-dimensional display:
如图4a所示,在一帧三维图像显示周期中的一个时间段,显示图像引擎1206控制显示屏1201在第一显示位置显示第一子图像的同时,偏振控制单元104控制偏振转换器件105将光的偏振方向转换为垂直于显示屏1201。这样,在该偏振方向下,第一微透镜阵列1221的折射率与间隔材料层103的折射率取值不同,因此,可以根据显示屏1201在第一显示位置显示的与第一微透镜阵列1221相对应的第一子图像,进行三维显示。As shown in FIG. 4a, during a period of time in a frame of three-dimensional image display cycle, while the
继而,如图4b所示,在一帧三维图像显示周期中的另一个时间段,显示图像引擎1206控制显示屏1201在第二显示位置显示第二子图像的同时,偏振控制单元104控制偏振转换器件105将光的偏振方向转换为平行于显示屏1201。这样,在该偏振方向下,第二微透镜阵列1222的折射率与间隔材料层103的折射率取值不同,因此,可以根据显示屏1201在第二显示位置显示的与第二微透镜阵列1222相对应的第二子图像,进行三维显示。Then, as shown in FIG. 4b, in another time period in the display period of one frame of three-dimensional image, the
本发明实施例二的技术方案中,由于第二微透镜阵列1222中的微透镜与第一微透镜阵列1221中的微透镜交错排列,通过偏振控制单元104以高于人眼反映时间的频率高速控制偏振转换器件105切换偏振方向,同时显示图像引擎1206控制显示屏1201在相同位置显示相应的子图像,可以使得第一微透镜阵列1221和第二微透镜阵列1222交替成像,其综合成像效果在客观上可以等同于快速移动一层微透镜阵列使其在不同的角度进行成像的成像效果,因此,相比利用一层微透镜阵列进行成像,可以获得更大的三维显示视角。In the technical solution of the second embodiment of the present invention, since the microlenses in the
实施例三Embodiment 3
如图5a、5b所示,本发明实施例三的三维显示设备中包括:显示装置3110、至少两层微透镜阵列1302、设置于显示装置与微透镜阵列之间的偏振装置3120。As shown in Figures 5a and 5b, the three-dimensional display device according to the third embodiment of the present invention includes: a
其中,显示装置3110中具体包括:显示屏1301、显示图像引擎1306。The
偏振装置3120具体包括:偏振转换器件104、偏振控制单元105。The
进一步地,三维显示设备中还可以包括:设置于各层微透镜阵列1302之间的间隔材料层103。Further, the three-dimensional display device may further include: a
本发明的发明人发现,在光栅式裸眼三维显示技术中,透镜的焦距决定了中心深度平面,而三维显示的显示深度范围是在中心深度平面周围形成的,也就是说,三维显示的显示深度范围与透镜的焦距有关。The inventor of the present invention found that in the raster naked-eye three-dimensional display technology, the focal length of the lens determines the center depth plane, and the display depth range of the three-dimensional display is formed around the center depth plane, that is, the display depth of the three-dimensional display The range is related to the focal length of the lens.
因此,本发明实施例三的三维显示设备中,各层微透镜阵列1302中的微透镜对齐排列;且各层微透镜阵列1302的焦距不同。Therefore, in the three-dimensional display device of the third embodiment of the present invention, the microlenses in the
在三维显示设备中的微透镜阵列1302具体为两层、微透镜阵列1302具体为双折射率的情况下,两层微透镜阵列(即第一微透镜阵列1321、第二微透镜阵列1322)中的微透镜为对齐排列的;且两层微透镜阵列中的微透镜的焦距不同。In the case where the
由于第一微透镜阵列1321、第二微透镜阵列1322的焦距不同,因此,对于同一物体,分别经过第一微透镜阵列、第二微透镜阵列后的成像内容是不同的。Since the focal lengths of the
为了使得用户在观看位置上看到的三维物体是同一个,本发明实施例三的技术方案中,偏振装置3120按照设定偏振转换周期转换光的偏振方向,使光在平行于显示装置3110的方向和垂直于显示装置3110的方向中进行转换;同时,显示装置3110按照设定显示切换周期切换显示一帧三维图像的第一子图像和第二子图像;其中,第一子图像与第二子图像在显示屏的相同位置处显示。In order to make the three-dimensional object seen by the user at the viewing position the same, in the technical solution of the third embodiment of the present invention, the
例如,偏振装置3120在一帧三维图像显示周期中,一个时间段转换光的偏振方向平行于显示装置3110;另一个时间段转换光的偏振方向垂直于显示装置3110;同时显示装置3110可以在一帧三维图像显示周期中,一个时间段在显示屏1301显示第一子图像;另一个时间段在显示屏1301相同位置处显示第二子图像。For example, in a frame of three-dimensional image display cycle of the
具体地,显示装置3110中的显示图像引擎1306可以在一帧三维图像显示周期中的一个时间段控制显示屏1301显示第一子图像;另一个时间段控制显示屏1301在相同位置处显示第二子图像。Specifically, the
本发明实施例三的技术方案中,第一子图像、第二子图像是对三维图像基于不同的焦距变换得到的;第一焦距系数为第一微透镜阵列1321的焦距;第二焦距系数为第二微透镜阵列1322的焦距。In the technical solution of the third embodiment of the present invention, the first sub-image and the second sub-image are obtained by transforming the three-dimensional image based on different focal lengths; the first focal length coefficient is the focal length of the
实际应用中,可以假设第一微透镜阵列1321的晶体光轴的方向垂直于显示屏1301,第二微透镜阵列1322的晶体光轴的方向平行于显示屏1301。In practical applications, it can be assumed that the direction of the crystal optical axis of the
基于本发明实施例三的三维显示设备,为了提高三维显示深度范围,可以采用如下方法进行三维显示:Based on the three-dimensional display device according to the third embodiment of the present invention, in order to improve the depth range of the three-dimensional display, the following methods can be used for three-dimensional display:
在一帧三维图像显示周期中的一个时间段,显示图像引擎1306控制显示屏1301在显示第一子图像的同时,偏振控制单元104控制偏振转换器件105将光的偏振方向转换为垂直于显示屏1301,如图5a所示。During a period of time in a frame of three-dimensional image display cycle, the
这样,在该偏振方向下,第一微透镜阵列1321的折射率与间隔材料层103的折射率取值不同,能够发挥一个透镜的功能,根据显示屏1301在显示的与第一微透镜阵列1321相对应的第一子图像,进行三维显示。In this way, in this polarization direction, the refractive index of the
进而,如图5b所示,在一帧三维图像显示周期中的另一个时间段,显示图像引擎1306控制显示屏1301在相同位置处显示第二子图像的同时,偏振控制单元104控制偏振转换器件105将光的偏振方向转换为平行于显示屏1301。Further, as shown in FIG. 5b, in another time period in the display period of one frame of three-dimensional image, while the
这样,在该偏振方向下,第二微透镜阵列1322的折射率与间隔材料层103的折射率取值不同,根据显示屏1301显示的与第二微透镜阵列1322相对应的第二子图像,进行三维显示。In this way, in this polarization direction, the refractive index of the
本发明的实施例三的技术方案中,由于对齐排列的第一微透镜阵列1321与第二微透镜阵列1322的焦距不同,通过偏振控制单元104以高于人眼反映时间的频率高速控制偏振转换器件105切换偏振方向,同时显示图像引擎1306控制显示屏1301在相同位置显示相应的子图像,可以使得第一微透镜阵列1321和第二微透镜阵列1322交替成像。如图5c所示,分别对应第一微透镜阵列1321和第二微透镜阵列1322的两个显示深度范围叠加后,可以得到一个较大的三维显示深度范围,从而提高三维显示质量。In the technical solution of the third embodiment of the present invention, since the focal lengths of the aligned
本发明的技术方案中,三维显示设备中采用至少两层微透镜阵列进行三维显示,而微透镜阵列可以提供水平和垂直两个方向的视差,因此,使得三维显示设备显示出的三维图像更接近于真实的物体。In the technical solution of the present invention, at least two layers of microlens arrays are used in the three-dimensional display device to perform three-dimensional display, and the microlens array can provide parallax in two directions, horizontal and vertical, so that the three-dimensional image displayed by the three-dimensional display device is closer to the on real objects.
而且,本发明调整各层微透镜阵列的焦距、以及各层微透镜阵列相对显示屏的位置关系后,可以采用时分复用的方法,利用偏振控制单元控制偏振转换器件转换光的偏振方向,使得各层微透镜阵列交替起到光学折光作用,同时显示屏在显示图像引擎的控制下显示与当前起到折光作用的微透镜阵列对应的子图像,以此提高显示分辨率、显示深度范围或显示视角等三维显示质量。Moreover, after adjusting the focal lengths of the microlens arrays of each layer and the positional relationship of the microlens arrays of each layer relative to the display screen, the present invention can adopt the method of time division multiplexing, and use the polarization control unit to control the polarization direction of the converted light by the polarization conversion device, so that The micro-lens arrays of each layer alternately play the role of optical refraction, and the display screen displays the sub-images corresponding to the micro-lens array currently playing the role of refraction under the control of the display image engine, so as to improve the display resolution, display depth range or display. 3D display quality such as viewing angle.
本技术领域技术人员可以理解,本发明包括涉及用于执行本申请中所述操作中的一项或多项的设备。这些设备可以为所需的目的而专门设计和制造,或者也可以包括通用计算机中的已知设备。这些设备具有存储在其内的计算机程序,这些计算机程序选择性地激活或重构。这样的计算机程序可以被存储在设备(例如,计算机)可读介质中或者存储在适于存储电子指令并分别耦联到总线的任何类型的介质中,所述计算机可读介质包括但不限于任何类型的盘(包括软盘、硬盘、光盘、CD-ROM、和磁光盘)、ROM(Read-Only Memory,只读存储器)、RAM(Random Access Memory,随即存储器)、EPROM(Erasable ProgrammableRead-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically ErasableProgrammable Read-Only Memory,电可擦可编程只读存储器)、闪存、磁性卡片或光线卡片。也就是,可读介质包括由设备(例如,计算机)以能够读的形式存储或传输信息的任何介质。As will be appreciated by those skilled in the art, the present invention includes apparatuses for performing one or more of the operations described in this application. These devices may be specially designed and manufactured for the required purposes, or they may include those known in general purpose computers. These devices have computer programs stored in them that are selectively activated or reconfigured. Such a computer program may be stored in a device (eg, computer) readable medium including, but not limited to, any type of medium suitable for storing electronic instructions and coupled to a bus, respectively Types of disks (including floppy disks, hard disks, optical disks, CD-ROMs, and magneto-optical disks), ROM (Read-Only Memory, read-only memory), RAM (Random Access Memory, random access memory), EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory, Electrically Erasable Programmable Read-Only Memory), flash memory, magnetic card or optical card. That is, a readable medium includes any medium that stores or transmits information in a form that can be read by a device (eg, a computer).
本技术领域技术人员可以理解,可以用计算机程序指令来实现这些结构图和/或框图和/或流图中的每个框以及这些结构图和/或框图和/或流图中的框的组合。本技术领域技术人员可以理解,可以将这些计算机程序指令提供给通用计算机、专业计算机或其他可编程数据处理方法的处理器来实现,从而通过计算机或其他可编程数据处理方法的处理器来执行本发明公开的结构图和/或框图和/或流图的框或多个框中指定的方案。Those skilled in the art will understand that computer program instructions can be used to implement each block of these structural diagrams and/or block diagrams and/or flow diagrams, and combinations of blocks in these structural diagrams and/or block diagrams and/or flow diagrams . Those skilled in the art can understand that these computer program instructions can be provided to a general-purpose computer, a professional computer or a processor of other programmable data processing methods to implement, so that the present invention can be executed by a processor of a computer or other programmable data processing method. The block or blocks specified in the block or blocks of the block diagrams and/or block diagrams and/or flow diagrams of the invention are disclosed.
本技术领域技术人员可以理解,本发明中已经讨论过的各种操作、方法、流程中的步骤、措施、方案可以被交替、更改、组合或删除。进一步地,具有本发明中已经讨论过的各种操作、方法、流程中的其他步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。进一步地,现有技术中的具有与本发明中公开的各种操作、方法、流程中的步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。Those skilled in the art can understand that the various operations, methods, steps, measures, and solutions discussed in the present invention may be alternated, modified, combined or deleted. Further, other steps, measures, and solutions in the various operations, methods, and processes that have been discussed in the present invention may also be alternated, modified, rearranged, decomposed, combined, or deleted. Further, steps, measures and solutions in the prior art with various operations, methods, and processes disclosed in the present invention may also be alternated, modified, rearranged, decomposed, combined or deleted.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made, and these improvements and modifications should also be It is regarded as the protection scope of the present invention.
Claims (25)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510080194.5A CN105988228B (en) | 2015-02-13 | 2015-02-13 | Three-dimensional display device and three-dimensional display method thereof |
KR1020150125640A KR102447098B1 (en) | 2015-02-13 | 2015-09-04 | 3d display apparatus and method thereof |
US14/987,972 US10356397B2 (en) | 2015-02-13 | 2016-01-05 | Three-dimensional (3D) display apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510080194.5A CN105988228B (en) | 2015-02-13 | 2015-02-13 | Three-dimensional display device and three-dimensional display method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105988228A CN105988228A (en) | 2016-10-05 |
CN105988228B true CN105988228B (en) | 2020-07-31 |
Family
ID=56875536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510080194.5A Active CN105988228B (en) | 2015-02-13 | 2015-02-13 | Three-dimensional display device and three-dimensional display method thereof |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102447098B1 (en) |
CN (1) | CN105988228B (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106842597B (en) * | 2017-02-28 | 2019-06-11 | 浙江大学 | Three-dimensional display method of large depth of field and near-eye light field |
CN107040773B (en) * | 2017-04-27 | 2020-12-08 | 京东方科技集团股份有限公司 | A display device and control method thereof |
WO2019014843A1 (en) * | 2017-07-18 | 2019-01-24 | 辛特科技有限公司 | Method for using lens to restore light field |
TWI630444B (en) | 2017-08-14 | 2018-07-21 | 友達光電股份有限公司 | Display apparatus and display method |
CN107367845B (en) * | 2017-08-31 | 2020-04-14 | 京东方科技集团股份有限公司 | Display system and display method |
CN109425993B (en) * | 2017-09-01 | 2020-09-04 | 中山大学 | Space-time hybrid multiplexing three-dimensional display system and method |
CN109471256A (en) * | 2017-09-07 | 2019-03-15 | 中强光电股份有限公司 | Optical components and display devices |
CN107942526A (en) * | 2017-12-29 | 2018-04-20 | 张家港康得新光电材料有限公司 | Integration imaging display system |
CN108181708B (en) | 2018-01-02 | 2020-12-15 | 京东方科技集团股份有限公司 | Head-up display system and control method thereof |
CN108761817A (en) * | 2018-08-16 | 2018-11-06 | 深圳市眸合科技有限公司 | A kind of bore hole 3D optical films |
CN109870822B (en) * | 2019-04-19 | 2021-01-26 | 京东方科技集团股份有限公司 | Display system, control method thereof and medium |
CN110491292B (en) * | 2019-08-14 | 2021-07-23 | 深圳市华星光电半导体显示技术有限公司 | Multilayer display device and electronic apparatus |
CN113574445B (en) * | 2020-02-24 | 2023-11-28 | 京东方科技集团股份有限公司 | Electronic device, display device, and driving method thereof |
CN113242418A (en) * | 2021-04-16 | 2021-08-10 | 江苏新通达电子科技股份有限公司 | Naked eye 3D display system in vehicle-mounted system based on light field and vehicle-mounted system |
CN115685584B (en) * | 2021-07-21 | 2025-05-16 | 京东方科技集团股份有限公司 | Display panel, display device and display method |
CN115802848A (en) * | 2022-12-26 | 2023-03-14 | 京东方科技集团股份有限公司 | Display device and method for manufacturing the same |
TWI847750B (en) * | 2023-06-07 | 2024-07-01 | 遠傳電信股份有限公司 | Holographic display system capable of automatically adapting to ambient light source and adjustment method thereof |
TWI872602B (en) * | 2023-07-12 | 2025-02-11 | 凌巨科技股份有限公司 | Display device of switching display modes |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1140527A (en) * | 1994-10-14 | 1997-01-15 | 菲利浦电子有限公司 | Colour liquid crystal projection display system |
CN1804680A (en) * | 2004-12-27 | 2006-07-19 | 日本板硝子株式会社 | Stereo image formation apparatus and stereo image display unit |
CN1836453A (en) * | 2003-07-10 | 2006-09-20 | 奥奎蒂有限公司 | Structure of lens array |
CN1908734A (en) * | 2005-08-04 | 2007-02-07 | 三星电子株式会社 | High-resolution autostereoscopic display |
CN101242545A (en) * | 2007-02-07 | 2008-08-13 | 三星电子株式会社 | 2D-3D image switching display system |
CN101547374A (en) * | 2008-03-28 | 2009-09-30 | 株式会社东芝 | Stereoscopic-image display apparatus and stereoscopic-image display method |
CN102282500A (en) * | 2009-01-22 | 2011-12-14 | 索尼公司 | Spatial image display device |
CN102597865A (en) * | 2009-10-30 | 2012-07-18 | 皇家飞利浦电子股份有限公司 | Multiview display device |
CN102749717A (en) * | 2012-07-27 | 2012-10-24 | 深圳超多维光电子有限公司 | Autostereoscopic display device |
CN103033941A (en) * | 2012-11-15 | 2013-04-10 | 友达光电股份有限公司 | Display device |
CN103048842A (en) * | 2012-12-10 | 2013-04-17 | 京东方科技集团股份有限公司 | Liquid crystal lens and three-dimensional display device |
CN103097919A (en) * | 2010-06-22 | 2013-05-08 | 光学物理有限责任公司 | An optical system demonstrating improved resistance to optically degrading external effects |
KR20140003313A (en) * | 2012-06-29 | 2014-01-09 | 엘지디스플레이 주식회사 | Stereoscopic image display device and method for driving the same |
CN103926704A (en) * | 2013-06-09 | 2014-07-16 | 天马微电子股份有限公司 | Lens display device, liquid crystal display device and display drive method |
CN105009582A (en) * | 2013-03-11 | 2015-10-28 | 皇家飞利浦有限公司 | Transparent display |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3756481B2 (en) * | 2002-11-06 | 2006-03-15 | 日本電信電話株式会社 | 3D display device |
CN102768410B (en) * | 2012-07-26 | 2015-09-02 | 李志扬 | A kind of relevant three-dimensional stereo display device rebuild based on optical wavefront |
CN102830495A (en) * | 2012-08-17 | 2012-12-19 | 京东方科技集团股份有限公司 | 3D (Three Dimensional) display device |
CN103246076B (en) * | 2013-04-16 | 2015-08-05 | 深圳超多维光电子有限公司 | Many people watch 3 d display device and stereo display method |
-
2015
- 2015-02-13 CN CN201510080194.5A patent/CN105988228B/en active Active
- 2015-09-04 KR KR1020150125640A patent/KR102447098B1/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1140527A (en) * | 1994-10-14 | 1997-01-15 | 菲利浦电子有限公司 | Colour liquid crystal projection display system |
CN1836453A (en) * | 2003-07-10 | 2006-09-20 | 奥奎蒂有限公司 | Structure of lens array |
CN1804680A (en) * | 2004-12-27 | 2006-07-19 | 日本板硝子株式会社 | Stereo image formation apparatus and stereo image display unit |
CN1908734A (en) * | 2005-08-04 | 2007-02-07 | 三星电子株式会社 | High-resolution autostereoscopic display |
CN101242545A (en) * | 2007-02-07 | 2008-08-13 | 三星电子株式会社 | 2D-3D image switching display system |
CN101547374A (en) * | 2008-03-28 | 2009-09-30 | 株式会社东芝 | Stereoscopic-image display apparatus and stereoscopic-image display method |
CN102282500A (en) * | 2009-01-22 | 2011-12-14 | 索尼公司 | Spatial image display device |
CN102597865A (en) * | 2009-10-30 | 2012-07-18 | 皇家飞利浦电子股份有限公司 | Multiview display device |
CN103097919A (en) * | 2010-06-22 | 2013-05-08 | 光学物理有限责任公司 | An optical system demonstrating improved resistance to optically degrading external effects |
KR20140003313A (en) * | 2012-06-29 | 2014-01-09 | 엘지디스플레이 주식회사 | Stereoscopic image display device and method for driving the same |
CN102749717A (en) * | 2012-07-27 | 2012-10-24 | 深圳超多维光电子有限公司 | Autostereoscopic display device |
CN103033941A (en) * | 2012-11-15 | 2013-04-10 | 友达光电股份有限公司 | Display device |
CN103048842A (en) * | 2012-12-10 | 2013-04-17 | 京东方科技集团股份有限公司 | Liquid crystal lens and three-dimensional display device |
CN105009582A (en) * | 2013-03-11 | 2015-10-28 | 皇家飞利浦有限公司 | Transparent display |
CN103926704A (en) * | 2013-06-09 | 2014-07-16 | 天马微电子股份有限公司 | Lens display device, liquid crystal display device and display drive method |
Also Published As
Publication number | Publication date |
---|---|
KR102447098B1 (en) | 2022-09-26 |
CN105988228A (en) | 2016-10-05 |
KR20160100197A (en) | 2016-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105988228B (en) | Three-dimensional display device and three-dimensional display method thereof | |
KR102707610B1 (en) | Virtual and augmented reality systems and methods having improved diffractive grating structures | |
US10375372B2 (en) | 3D system including a marker mode | |
KR102500734B1 (en) | Improved manufacturing for virtual and augmented reality systems and components | |
Holliman et al. | Three-dimensional displays: a review and applications analysis | |
EP1946180B1 (en) | Optical system for 3-dimensional display | |
CN102692805B (en) | Multilayer liquid crystal-based projection type three-dimensional display device and method | |
US10356397B2 (en) | Three-dimensional (3D) display apparatus and method | |
CN112230443B (en) | Integrated imaging display device based on adjustable liquid crystal micro-lens array | |
CN106094231B (en) | Display substrate and display device | |
Surman et al. | Glasses-free 3-D and augmented reality display advances: from theory to implementation | |
CN115685584B (en) | Display panel, display device and display method | |
US20170142391A1 (en) | 3d system including rendering with variable displacement | |
CN108537835A (en) | Holographic image generation and display method and equipment | |
Swash | Holoscopic 3D imaging and display technology: Camera/processing/display | |
CN205643885U (en) | 3D control unit and 3D display device who includes it | |
CN202631853U (en) | Penetrating 3D multi-view imaging structure | |
CN203012248U (en) | Naked-eye 3D for realizing invariable brightness by utilizing uniaxial crystal | |
TWI684027B (en) | Stereoscopic image display device and stereoscopic image display method | |
Kim et al. | A tangible floating display system for interaction | |
KR102838833B1 (en) | Virtual and augmented reality systems and methods having improved diffractive grating structures | |
Li et al. | Vector light field 3D display with multi-directional backlight | |
US10284837B2 (en) | 3D system including lens modeling | |
Akpinar | LENS ARRAY BASED TECHNIQUES FOR 3D SCENE CAP-TURE AND DISPLAY | |
CN203241624U (en) | Panoramic three-dimensional display system based on cylindrical lens raster and OLED |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |