[go: up one dir, main page]

CN105975747A - CSTR (Continuous Stirred Tank Reactor) model parameter identification method based on unscented Kalman filtering algorithm - Google Patents

CSTR (Continuous Stirred Tank Reactor) model parameter identification method based on unscented Kalman filtering algorithm Download PDF

Info

Publication number
CN105975747A
CN105975747A CN201610272832.8A CN201610272832A CN105975747A CN 105975747 A CN105975747 A CN 105975747A CN 201610272832 A CN201610272832 A CN 201610272832A CN 105975747 A CN105975747 A CN 105975747A
Authority
CN
China
Prior art keywords
time
covariance
formula
state
indicates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610272832.8A
Other languages
Chinese (zh)
Inventor
周琪
于占东
王焕清
王巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bohai University
Original Assignee
Bohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bohai University filed Critical Bohai University
Priority to CN201610272832.8A priority Critical patent/CN105975747A/en
Publication of CN105975747A publication Critical patent/CN105975747A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于无迹卡尔曼滤波算法的CSTR模型参数辨识方法。该方法首先依据CSTR连续系统模型,获得了状态分量包含待辨识参数的状态空间表达式;接着,借助欧拉算法对获取的非线性连续状态空间表达式进行了离散化处理,得到了相应的离散迭代模型。最后,运用无迹卡尔曼滤波算法进行多次迭代辨识,获得了准确的辨识结果。该算法收敛性好,且易于与已有软件相结合,具有很好的工程应用前景。

The invention discloses a CSTR model parameter identification method based on an unscented Kalman filter algorithm. This method first obtains the state space expression of the state component including the parameters to be identified based on the CSTR continuous system model; then, the obtained nonlinear continuous state space expression is discretized with the help of the Euler algorithm, and the corresponding discrete Iterate the model. Finally, the unscented Kalman filter algorithm is used for multiple iterations of identification, and accurate identification results are obtained. The algorithm has good convergence and is easy to combine with existing software, so it has a good prospect of engineering application.

Description

一种基于无迹卡尔曼滤波算法的CSTR模型参数辨识方法A CSTR Model Parameter Identification Method Based on Unscented Kalman Filter Algorithm

技术领域technical field

本发明涉及一种基于无迹卡尔曼滤波算法的CSTR模型参数辨识方法,属于系统建模与参数辨识技术领域。The invention relates to a CSTR model parameter identification method based on an unscented Kalman filter algorithm, and belongs to the technical field of system modeling and parameter identification.

背景技术Background technique

连续搅拌釜式反应器(CSTR)是化工生产过程中典型的、高度非线性的化学反应系统。在化工生产的核心设备中占有相当重要的地位,在染料、医药试剂、食品及合成材料工业中,CSTR系统得到了广泛的应用。The continuous stirred tank reactor (CSTR) is a typical and highly nonlinear chemical reaction system in the chemical production process. It occupies a very important position in the core equipment of chemical production. In the dyestuff, pharmaceutical reagent, food and synthetic material industries, CSTR system has been widely used.

由于CSTR在化工生产中的重要作用,所以有必要对该过程进行详细的研究。在对CSTR建立模型进行分析时,模型的参数有时是未知的,所以对CSTR的模型参数辨识方法进行研究,具有重要的工程意义。然而,已有的方法如扩展卡尔曼滤波等,这些方法辨识结果有时会出现发散,得不到正确的结果。为了提高辨识效率和精度,研究运用无迹卡尔曼滤波算法进行CSTR模型参数辨识,具有重要的意义。Due to the important role of CSTR in chemical production, it is necessary to study the process in detail. When analyzing the model of CSTR, the parameters of the model are sometimes unknown, so it is of great engineering significance to study the identification method of the model parameters of CSTR. However, the existing methods such as extended Kalman filter, etc., the identification results of these methods sometimes diverge, and the correct results cannot be obtained. In order to improve the identification efficiency and accuracy, it is of great significance to study the use of unscented Kalman filter algorithm for CSTR model parameter identification.

发明内容Contents of the invention

为了有效的了解化工生产中CSTR化学反应系统,本发明提出了一种基于无迹卡尔曼滤波算法的CSTR模型参数辨识方法,有效的实现了CSTR模型的参数辨识。In order to effectively understand the CSTR chemical reaction system in chemical production, the present invention proposes a CSTR model parameter identification method based on an unscented Kalman filter algorithm, which effectively realizes the parameter identification of the CSTR model.

本发明的技术解决方案是:一种基于无迹卡尔曼滤波算法的CSTR模型参数辨识方法,其步骤如下:The technical solution of the present invention is: a kind of CSTR model parameter identification method based on unscented Kalman filter algorithm, its steps are as follows:

(1)、获取扩维状态向量中包含CSTR模型待辨识参数的状态空间表达式;(1) Obtain the state space expression containing the parameters to be identified of the CSTR model in the expanded dimension state vector;

(2)、运用欧拉算法对连续的状态空间表达式进行离散化,获得离散化的状态空间表达式;(2) Using the Euler algorithm to discretize the continuous state space expression to obtain the discretized state space expression;

(3)、初始化,包括:设定参数辨识的初值初始参数辨识误差协方差以及过程噪声和量测噪声所满足的协方差矩阵Q和R,算法迭代次数最大值L;(3) Initialization, including: setting the initial value of parameter identification initial parameter identification error covariance And the covariance matrices Q and R satisfied by the process noise and measurement noise, the maximum number of algorithm iterations L;

(4)、选取k-1时刻的sigma点,计算公式为:(4), select the sigma point at time k-1, the calculation formula is:

δδ kk -- 11 == xx ^^ kk -- 11 xx ^^ kk -- 11 ++ γγ ·· pp ^^ xx ,, kk -- 11 xx ^^ kk -- 11 -- γγ ·· pp ^^ xx ,, kk -- 11

γγ == nno ++ λλ ,, λλ == αα 22 ·· (( nno ++ kk ff )) -- nno

式中,表示k-1时刻的状态估计值,表示k-1时刻的状态估计误差协方差,γ表示尺度参数,n表示的维数;常数α决定sigma点围绕均值的波动范围,通常α∈[10-4,1];常数kf是另一尺度参数,用于状态估计和参数辨识时通常取0。In the formula, Indicates the estimated value of the state at time k-1, Indicates the state estimation error covariance at time k-1, γ indicates the scale parameter, and n indicates The dimension; the constant α determines the sigma point around the mean The fluctuation range of , usually α∈[10 -4 ,1]; the constant k f is another scale parameter, which is usually taken as 0 when used for state estimation and parameter identification.

(5)、在上一步基础上,计算k-1时刻的sigma点的增值点,计算公式为:(5), on the basis of the previous step, calculate the value-added point of the sigma point at k-1 time, the calculation formula is:

(( ff kk -- 11 ** )) ii == ff (( (( δδ kk -- 11 )) ii ,, uu kk -- 11 ))

(( hh kk -- 11 ** )) ii == hh (( (( δδ kk -- 11 )) ii ,, uu kk -- 11 ))

式中,f(·)是对应具体问题系统方程的非线性函数,h(·)是对应具体问题输出方程中的非线性函数,uk-1是k-1时刻输入控制矩阵,下标i表示对应于第i个sigma点的相关取值,i=0…2n。In the formula, f(·) is the nonlinear function corresponding to the system equation of the specific problem, h(·) is the nonlinear function in the output equation corresponding to the specific problem, u k-1 is the input control matrix at time k-1, and the subscript i Indicates the correlation value corresponding to the i-th sigma point, i=0...2n.

(6)、计算k-1时刻的状态向量均值和协方差,计算公式为:(6) Calculate the mean value and covariance of the state vector at time k-1, the calculation formula is:

xx ^^ kk -- 11 -- == ΣΣ ii == 00 22 nno ww ii mm (( ff kk -- 11 ** )) ii

pp ^^ xx ,, kk -- 11 -- == ΣΣ ii == 00 22 nno ww ii cc (( (( ff kk -- 11 ** )) ii -- xx ^^ kk -- 11 -- )) (( (( ff kk -- 11 ** )) ii -- xx ^^ kk -- 11 -- )) TT ++ QQ kk -- 11

式中,表示k-1时刻的状态向量均值,表示k-1时刻的状态协方差,Qk-1表示k-1时刻系统噪声所满足的协方差矩阵,权重系数取值的计算公式如下:In the formula, Indicates the mean value of the state vector at time k-1, Represents the state covariance at time k-1, Q k-1 represents the covariance matrix satisfied by the system noise at time k-1, and the weight coefficient and The formula for calculating the value is as follows:

ww 00 mm == λλ nno ++ λλ ,, ww 00 cc == λλ nno ++ λλ ++ (( 11 -- αα 22 ++ ββ ))

ww ii mm == ww ii cc == 11 22 (( nno ++ λλ )) ,, ii == 11 ...... 22 nno

式中β通常是包含x分布的先验知识,对高斯分布来说,其最优值一般取2。In the formula, β usually contains prior knowledge of x distribution, and for Gaussian distribution, its optimal value is generally 2.

(7)、计算k-1时刻量测向量均值和协方差,计算公式为:(7) Calculate the mean value and covariance of the measurement vector at time k-1, the calculation formula is:

ythe y kk -- 11 -- == ΣΣ ii == 00 22 nno ww ii mm (( hh kk -- 11 ** )) ii

pp ^^ ythe y ,, kk -- 11 -- == ΣΣ ii == 00 22 nno ww ii cc (( (( hh kk -- 11 ** )) ii -- ythe y kk -- 11 -- )) (( (( hh kk -- 11 ** )) ii -- ythe y kk -- 11 -- )) TT ++ RR kk -- 11

式中表示k-1时刻量测向量均值,表示k-1量测向量的协方差,Rk-1表示k-1时刻的量测噪声所满足的协方差矩阵。In the formula Indicates the mean value of the measured vector at time k-1, Represents the covariance of k-1 measurement vectors, and R k-1 represents the covariance matrix satisfied by the measurement noise at time k-1.

(8)、计算交互协方差,计算公式如下:(8) Calculate the interaction covariance, the calculation formula is as follows:

pp ^^ xx ythe y ,, kk -- 11 -- == ΣΣ ii == 00 22 nno ww ii cc (( (( ff kk -- 11 ** )) ii -- xx ^^ kk -- 11 -- )) (( (( hh kk -- 11 ** )) ii -- ythe y kk -- 11 -- )) TT

式中,表示k-1时刻的交互协方差。In the formula, Indicates the interaction covariance at time k-1.

(9)、在上一步的基础上,计算k-1时刻的卡尔曼滤波增益,其遵循的计算公式为:(9), on the basis of the previous step, calculate the Kalman filter gain at k-1 moment, the calculation formula that it follows is:

KK kk -- 11 == pp ^^ xx ythe y ,, kk -- 11 -- ·&Center Dot; (( pp ^^ ythe y ,, kk -- 11 -- )) -- 11

式中,Kk-1表示k-1时刻的卡尔曼滤波增益。In the formula, K k-1 represents the Kalman filter gain at time k-1.

(10)、运用无迹卡尔曼滤波更新步,获得k时刻的状态估计值和协方差,计算公式为:(10), use the unscented Kalman filter update step to obtain the state estimate and covariance at time k, the calculation formula is:

xx ^^ kk == xx ^^ kk -- 11 -- ++ KK kk -- 11 ·&Center Dot; (( ythe y kk -- 11 -- ythe y kk -- 11 -- ))

pp ^^ xx ,, kk == pp ^^ xx ,, kk -- 11 -- -- KK kk -- 11 ·&Center Dot; pp ^^ ythe y ,, kk -- 11 -- ·&Center Dot; KK kk -- 11 TT

式中,表示k时刻的状态估计值,yk-1表示k-1时刻量测输出真实值,表示k时刻的估计协方差。In the formula, Indicates the estimated value of the state at time k, y k-1 indicates the true value of the measured output at time k-1, Denotes the estimated covariance at time k.

(11)、依据上述步骤进行多次迭代辨识,直至k≥L时,结束迭代过程,输出辨识结果。(11) Carry out multiple iterative identification according to the above steps until k≥L, end the iterative process, and output the identification result.

本发明的有益效果是:运用无迹卡尔曼滤波对CSTR模型参数辨识,由于无迹卡尔曼滤波采用了不同于扩展卡尔曼滤波的线性化方法,因此,克服了扩展卡尔曼滤波辨识过程中出现发散的情况,提高了辨识效率和精度。The beneficial effect of the present invention is: use the unscented Kalman filter to identify the CSTR model parameters, because the unscented Kalman filter adopts a linearization method different from the extended Kalman filter, therefore, overcomes the occurrence of the extended Kalman filter identification process. In the case of divergence, the identification efficiency and accuracy are improved.

附图说明Description of drawings

图1为本发明实施例的方法流程图;Fig. 1 is the method flowchart of the embodiment of the present invention;

图2为实施例采用本发明所提方法的辨识结果;Fig. 2 is the identification result of the embodiment adopting the method proposed by the present invention;

图3为实施例辨识结果的相对误差;Fig. 3 is the relative error of embodiment identification result;

具体实施方式detailed description

下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。Below in conjunction with specific embodiment, further illustrate the present invention, should be understood that these embodiments are only used to illustrate the present invention and are not intended to limit the scope of the present invention, after having read the present invention, those skilled in the art will understand various equivalent forms of the present invention All modifications fall within the scope defined by the appended claims of the present application.

如图1所示,CSTR模型参数辨识方法,其包含如下步骤:As shown in Figure 1, the CSTR model parameter identification method includes the following steps:

(1)、获取状态分量中包含CSTR模型待辨识参数的状态空间表达式。(1) Obtain the state space expression including the parameters to be identified of the CSTR model in the state component.

(2)、运用欧拉算法对连续的状态空间表达式进行离散化,获得离散化的状态空间表达式。(2) Using the Euler algorithm to discretize the continuous state space expression to obtain the discretized state space expression.

(3)、初始化,包括:设定参数辨识的初值初始参数辨识误差协方差以及过程噪声和量测噪声所满足的协方差矩阵Q和R,算法迭代次数最大值L。(3) Initialization, including: setting the initial value of parameter identification initial parameter identification error covariance And the covariance matrices Q and R satisfied by the process noise and measurement noise, and the maximum number of algorithm iterations L.

(4)、选取k-1时刻的sigma点。(4) Select the sigma point at time k-1.

(5)、在上一步基础上,计算k-1时刻的sigma点的增值点。(5) On the basis of the previous step, calculate the value-added point of the sigma point at time k-1.

(6)、计算k-1时刻的状态向量均值和协方差。(6) Calculate the mean value and covariance of the state vector at time k-1.

(7)、计算k-1时刻量测向量均值和协方差。(7) Calculate the mean value and covariance of the measurement vector at time k-1.

(8)、计算k-1时刻的交互协方差。(8) Calculate the interaction covariance at time k-1.

(9)、在上一步的基础上,计算k-1时刻的卡尔曼滤波增益。(9) On the basis of the previous step, calculate the Kalman filter gain at time k-1.

(10)、运用无迹卡尔曼滤波更新步,获得k时刻的状态估计值和协方差。(10), using the unscented Kalman filter update step to obtain the state estimation value and covariance at time k.

(11)、依据上述步骤进行多次迭代辨识,直至k≥L时,结束迭代过程,输出辨识结果。(11) Carry out multiple iterative identification according to the above steps until k≥L, end the iterative process, and output the identification result.

假设在连续搅拌釜式反应器(CSTR)内发生放热的、不可逆反应。反应物为A、生成物为B。根据物料平衡和能量平衡关系,得到如下的反应过程模型(CSTR状态空间描述):An exothermic, irreversible reaction is assumed to occur in a continuous stirred tank reactor (CSTR). The reactant is A and the product is B. According to the material balance and energy balance relationship, the following reaction process model (CSTR state space description) is obtained:

CC ·&Center Dot; AA == qq VV (( CC AA ff -- CC AA )) -- kk 00 ee -- EE. RR TT CC AA TT ·· == qq VV (( TT ff -- TT )) ++ (( -- ΔΔ Hh )) ρCρC pp kk 00 ee -- EE. RR TT CC AA ++ Uu AA VρCVρC pp (( TT cc -- TT ))

该非线性系统具有两个状态变量即:反应器中组分A的浓度CA(状态变量x1),反应温度T(状态变量x2);一个控制输入变量Tc(输入u)。在下面的实施例仿真分析时假设ρ和是待辨识的参数,它们的真值分别是1000和8750。模型中其他参数的物理意义及取值如表1。The nonlinear system has two state variables: the concentration CA of component A in the reactor (state variable x 1 ), the reaction temperature T (state variable x 2 ); and a control input variable T c (input u). Assume that ρ and are the parameters to be identified, and their true values are 1000 and 8750, respectively. The physical meanings and values of other parameters in the model are shown in Table 1.

表1 CSTR模型中相关参数的物理意义及取值Table 1 The physical meaning and value of relevant parameters in the CSTR model

为了运用无迹卡尔曼滤波对模型中的未知参数进行辨识,首先需要获取状态分量中包含待辨识参数的状态空间表达式,为此假设ρ为状态分量x3为状态分量x4,则整理后的扩维状态空间表达式为(带入相关的模型参数):In order to use the unscented Kalman filter to identify the unknown parameters in the model, it is first necessary to obtain the state space expression containing the parameters to be identified in the state components. For this reason, it is assumed that ρ is the state components x 3 , is the state component x 4 , then the expanded dimension state space expression after sorting out is (introducing relevant model parameters):

状态方程为: The state equation is:

输出方程为: The output equation is:

式中wi(i=1,2,3,4)是系统噪声,vi(i=1,2)是量测噪声,它们均为零均值的高斯白噪声,且分别满足协方差矩阵Qk和Rk,即:In the formula, w i (i=1,2,3,4) is the system noise, v i (i=1,2) is the measurement noise, they are Gaussian white noise with zero mean, and respectively satisfy the covariance matrix Q k and R k , namely:

QQ kk == EE. [[ ww kk ww kk TT ]] ,, RR kk == EE. [[ vv kk vv kk TT ]]

采用欧拉算法对上述状态方程进行离散化,得到了对应的离散状态方程,在此基础上,则就可以运用无迹卡尔曼滤波进行多次迭代辨识。在辨识过程中,无迹卡尔曼滤波的相关参数取值为:The Euler algorithm is used to discretize the above state equation, and the corresponding discrete state equation is obtained. On this basis, the unscented Kalman filter can be used for multiple iterative identification. In the identification process, the relevant parameters of the unscented Kalman filter are:

QQ == 1010 -- 55 00 00 00 00 1010 -- 33 00 00 00 00 1010 -- 55 00 00 00 00 1010 -- 55 ,, RR == 1010 -- 44 00 00 1010 -- 22 ,, uu == 290290

基于上述分析,通过多次迭代辨识,获得了准确的辨识结果。图1为实施例所用的算法流程图,图2为实施例的参数辨识结果,图3为运用本发明所提出的方法对实施例辨识结果的相对误差。Based on the above analysis, through multiple iterations of identification, accurate identification results are obtained. Fig. 1 is a flow chart of the algorithm used in the embodiment, Fig. 2 is the parameter identification result of the embodiment, and Fig. 3 is the relative error of the identification result of the embodiment using the method proposed by the present invention.

Claims (1)

1.一种基于无迹卡尔曼滤波算法的CSTR模型参数辨识方法,其特征在于,包含如下步骤:1. A CSTR model parameter identification method based on unscented Kalman filter algorithm, is characterized in that, comprises the steps: (1)、获取状态分量中包含CSTR模型待辨识参数的状态空间表达式。(1) Obtain the state space expression including the parameters to be identified of the CSTR model in the state component. (2)、运用欧拉算法对连续的状态空间表达式进行离散化,获得离散的状态空间表达式。(2) Using the Euler algorithm to discretize the continuous state space expression to obtain a discrete state space expression. (3)、初始化,包括:设定参数辨识的初值初始参数辨识误差协方差以及过程噪声和量测噪声所满足的协方差矩阵Q和R,算法迭代次数最大值L。(3) Initialization, including: setting the initial value of parameter identification initial parameter identification error covariance And the covariance matrices Q and R satisfied by the process noise and measurement noise, and the maximum number of algorithm iterations L. (4)、选取k-1时刻的sigma点,计算公式为:(4), select the sigma point at time k-1, the calculation formula is: δδ kk -- 11 == xx ^^ kk -- 11 xx ^^ kk -- 11 ++ γγ ·· pp ^^ xx ,, kk -- 11 xx ^^ kk -- 11 -- γγ ·&Center Dot; pp ^^ xx ,, kk -- 11 γγ == nno ++ λλ ,, λλ == αα 22 ·&Center Dot; (( nno ++ kk ff )) -- nno 式中,表示k-1时刻的状态估计值,表示k-1时刻的状态估计误差协方差,γ表示尺度参数,n表示的维数;常数α决定sigma点围绕均值的波动范围,通常α∈[10-4,1];常数kf是另一尺度参数,用于状态估计和参数辨识时通常取0。In the formula, Indicates the estimated value of the state at time k-1, Indicates the state estimation error covariance at time k-1, γ indicates the scale parameter, and n indicates The dimension; the constant α determines the sigma point around the mean The fluctuation range of , usually α∈[10 -4 ,1]; the constant k f is another scale parameter, which is usually taken as 0 when used for state estimation and parameter identification. (5)、在上一步基础上,计算k-1时刻的sigma点的增值点,计算公式为:(5), on the basis of the previous step, calculate the value-added point of the sigma point at k-1 time, the calculation formula is: (( ff kk -- 11 ** )) ii == ff (( (( δδ kk -- 11 )) ii ,, uu kk -- 11 )) (( hh kk -- 11 ** )) ii == hh (( (( δδ kk -- 11 )) ii ,, uu kk -- 11 )) 式中,f(·)是对应具体问题系统方程的非线性函数,h(·)是对应具体问题输出方程中的非线性函数,uk-1是k-1时刻输入控制矩阵,下标i表示对应于第i个sigma点的相关取值,i=0…2n。In the formula, f(·) is the nonlinear function corresponding to the system equation of the specific problem, h(·) is the nonlinear function in the output equation corresponding to the specific problem, u k-1 is the input control matrix at time k-1, and the subscript i Indicates the correlation value corresponding to the i-th sigma point, i=0...2n. (6)、计算k-1时刻的状态向量均值和协方差,计算公式为:(6), calculate the mean value and covariance of the state vector at k-1 time, the calculation formula is: xx ^^ kk -- 11 -- == ΣΣ ii == 00 22 nno ww ii mm (( ff kk -- 11 ** )) ii pp ^^ xx ,, kk -- 11 -- == ΣΣ ii == 00 22 nno ww ii cc (( (( ff kk -- 11 ** )) ii -- xx ^^ kk -- 11 -- )) (( (( ff kk -- 11 ** )) ii -- xx ^^ kk -- 11 -- )) TT ++ QQ kk -- 11 式中,表示k-1时刻的状态向量均值,表示k-1时刻的状态协方差,Qk-1表示k-1时刻系统噪声所满足的协方差矩阵,权重系数取值的计算公式如下:In the formula, Indicates the mean value of the state vector at time k-1, Represents the state covariance at time k-1, Q k-1 represents the covariance matrix satisfied by the system noise at time k-1, and the weight coefficient and The formula for calculating the value is as follows: ww 00 mm == λλ nno ++ λλ ,, ww 00 cc == λλ nno ++ λλ ++ (( 11 -- αα 22 ++ ββ )) ww ii mm == ww ii cc == 11 22 (( nno ++ λλ )) ,, ii == 11 ...... 22 nno 式中β通常是包含x分布的先验知识,对高斯分布来说,其最优值一般取2。In the formula, β usually contains prior knowledge of x distribution, and for Gaussian distribution, its optimal value is generally 2. (7)、计算k-1时刻量测向量均值和协方差,计算公式为:(7) Calculate the mean value and covariance of the measurement vector at time k-1, the calculation formula is: ythe y kk -- 11 -- == ΣΣ ii == 00 22 nno ww ii mm (( hh kk -- 11 ** )) ii pp ^^ ythe y ,, kk -- 11 -- == ΣΣ ii == 00 22 nno ww ii cc (( (( hh kk -- 11 ** )) ii -- ythe y kk -- 11 -- )) (( (( hh kk -- 11 ** )) ii -- ythe y kk -- 11 -- )) TT ++ RR kk -- 11 式中表示k-1时刻量测向量均值,表示k-1量测向量的协方差,Rk-1表示k-1时刻的量测噪声所满足的协方差矩阵。In the formula Indicates the mean value of the measured vector at time k-1, Represents the covariance of k-1 measurement vectors, and R k-1 represents the covariance matrix satisfied by the measurement noise at time k-1. (8)、计算交互协方差,计算公式如下:(8) Calculate the interaction covariance, the calculation formula is as follows: pp ^^ xx ythe y ,, kk -- 11 -- == ΣΣ ii == 00 22 nno ww ii cc (( (( ff kk -- 11 ** )) ii -- xx ^^ kk -- 11 -- )) (( (( hh kk -- 11 ** )) ii -- ythe y kk -- 11 -- )) TT 式中,表示k-1时刻的交互协方差。In the formula, Indicates the interaction covariance at time k-1. (9)、在上一步的基础上,计算k-1时刻的卡尔曼滤波增益,其遵循的计算公式为:(9), on the basis of the previous step, calculate the Kalman filter gain at k-1 moment, the calculation formula that it follows is: KK kk -- 11 == pp ^^ xx ythe y ,, kk -- 11 -- ·&Center Dot; (( pp ^^ ythe y ,, kk -- 11 -- )) -- 11 式中,Kk-1表示k-1时刻的卡尔曼滤波增益。In the formula, K k-1 represents the Kalman filter gain at time k-1. (10)、运用无迹卡尔曼滤波更新步,获得k时刻的状态估计值和协方差,计算公式为:(10), use the unscented Kalman filter update step to obtain the state estimate and covariance at time k, the calculation formula is: xx ^^ kk == xx ^^ kk -- 11 -- ++ KK kk -- 11 ·&Center Dot; (( ythe y kk -- 11 -- ythe y kk -- 11 -- )) pp ^^ xx ,, kk == pp ^^ xx ,, kk -- 11 -- -- KK kk -- 11 ·&Center Dot; pp ^^ ythe y ,, kk -- 11 -- ·&Center Dot; KK kk -- 11 TT 式中,表示k时刻的状态估计值,yk-1表示k-1时刻量测输出真实值,表示k时刻的估计协方差。In the formula, Indicates the estimated value of the state at time k, y k-1 indicates the true value of the measured output at time k-1, Denotes the estimated covariance at time k. (11)、依据上述步骤进行多次迭代辨识,直至k≥L时,结束迭代过程,输出辨识结果。(11) Carry out multiple iterative identification according to the above steps until k≥L, end the iterative process, and output the identification result.
CN201610272832.8A 2016-04-27 2016-04-27 CSTR (Continuous Stirred Tank Reactor) model parameter identification method based on unscented Kalman filtering algorithm Pending CN105975747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610272832.8A CN105975747A (en) 2016-04-27 2016-04-27 CSTR (Continuous Stirred Tank Reactor) model parameter identification method based on unscented Kalman filtering algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610272832.8A CN105975747A (en) 2016-04-27 2016-04-27 CSTR (Continuous Stirred Tank Reactor) model parameter identification method based on unscented Kalman filtering algorithm

Publications (1)

Publication Number Publication Date
CN105975747A true CN105975747A (en) 2016-09-28

Family

ID=56993295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610272832.8A Pending CN105975747A (en) 2016-04-27 2016-04-27 CSTR (Continuous Stirred Tank Reactor) model parameter identification method based on unscented Kalman filtering algorithm

Country Status (1)

Country Link
CN (1) CN105975747A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106599541A (en) * 2016-11-23 2017-04-26 华南理工大学 Online structure and parameter identification method for dynamic power load model
CN109100649A (en) * 2018-06-25 2018-12-28 南京南瑞继保电气有限公司 Parameter estimation method for generator excitation system and speed regulation system based on phasor measurement
CN109990786A (en) * 2019-02-28 2019-07-09 深圳大学 Mobile target tracking method and device
WO2020052213A1 (en) * 2018-09-11 2020-03-19 东南大学 Iterative cubature unscented kalman filtering method
CN113537440A (en) * 2021-07-05 2021-10-22 沈阳化工大学 CSTR period operating parameter optimization method based on Grey wolf algorithm
CN117446664A (en) * 2023-10-26 2024-01-26 渤海大学 A tower crane control method based on fast finite time command filter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106599541A (en) * 2016-11-23 2017-04-26 华南理工大学 Online structure and parameter identification method for dynamic power load model
CN106599541B (en) * 2016-11-23 2019-04-19 华南理工大学 An Online Structure and Parameter Identification Method for Dynamic Power Load Model
CN109100649A (en) * 2018-06-25 2018-12-28 南京南瑞继保电气有限公司 Parameter estimation method for generator excitation system and speed regulation system based on phasor measurement
CN109100649B (en) * 2018-06-25 2020-10-16 南京南瑞继保电气有限公司 Parameter estimation method for generator excitation system and speed regulation system based on phasor measurement
WO2020052213A1 (en) * 2018-09-11 2020-03-19 东南大学 Iterative cubature unscented kalman filtering method
CN109990786A (en) * 2019-02-28 2019-07-09 深圳大学 Mobile target tracking method and device
CN109990786B (en) * 2019-02-28 2020-10-13 深圳大学 Maneuvering target tracking method and device
CN113537440A (en) * 2021-07-05 2021-10-22 沈阳化工大学 CSTR period operating parameter optimization method based on Grey wolf algorithm
CN117446664A (en) * 2023-10-26 2024-01-26 渤海大学 A tower crane control method based on fast finite time command filter
CN117446664B (en) * 2023-10-26 2024-05-07 渤海大学 Tower crane control method based on fast finite time instruction filter

Similar Documents

Publication Publication Date Title
CN105975747A (en) CSTR (Continuous Stirred Tank Reactor) model parameter identification method based on unscented Kalman filtering algorithm
CN105843073B (en) A kind of wing structure aeroelastic stability analysis method not knowing depression of order based on aerodynamic force
Jin et al. Multiple model LPV approach to nonlinear process identification with EM algorithm
Hangos et al. Analysis and control of nonlinear process systems
Marchetti et al. A dual modifier-adaptation approach for real-time optimization
CN110957011B (en) Online production parameter estimation method of continuous stirring reactor under unknown time-varying measurement noise
CN107273609A (en) One kind is based on Kriging model gear drive reliability estimation methods
Ostrovsky et al. Optimal design of chemical processes with chance constraints
CN110609476A (en) A Model Predictive Control Method for Multivariable Nonlinear Dynamic System Based on Gaussian Process Model
CN103955892A (en) Target tracking method and expansion truncation no-trace Kalman filtering method and device
CN108121856A (en) A kind of full flight domain aerocraft dynamic stability analysis method
CN107403196A (en) Instant learning modeling method based on spectral clustering analysis
CN108762072A (en) Predictive Control Method Based on Nuclear Norm Subspace Method and Augmented Vector Method
CN105046046A (en) Ensemble Kalman filter localization method
CN105868465A (en) A Modified LM Method for Thermal Conductivity Identification with Temperature Variation
CN107818328A (en) With reference to the deficiency of data similitude depicting method of local message
CN105044531B (en) A kind of dynamic signal parameter discrimination method based on EKF and FSA
CN103914430A (en) Multiple fluid phase mixed system chemical equilibrium calculating system
CN105956565A (en) Dynamic oscillation signal parameter identification method taking measurement signal loss into consideration
CN110398942A (en) A Parameter Identification Method for Industrial Production Process Control
CN105654053A (en) Improved constrained EKF algorithm-based dynamic oscillation signal parameter identification method
CN108009362A (en) A kind of nonlinear system modeling method based on stable constraint RBF-ARX models
Du et al. Super resolution generative adversarial networks for multi-fidelity pressure distribution prediction
CN102662324A (en) Non-linear model predication control method of tank reactor based on on-line support vector machine
Almodaresi et al. Computing stability domains in the space of time delay and controller coefficients for FOPDT and SOPDT systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160928

RJ01 Rejection of invention patent application after publication