[go: up one dir, main page]

CN105956314A - Numerical test method capable of creating different earth-rock mixing ratios - Google Patents

Numerical test method capable of creating different earth-rock mixing ratios Download PDF

Info

Publication number
CN105956314A
CN105956314A CN201610323741.2A CN201610323741A CN105956314A CN 105956314 A CN105956314 A CN 105956314A CN 201610323741 A CN201610323741 A CN 201610323741A CN 105956314 A CN105956314 A CN 105956314A
Authority
CN
China
Prior art keywords
model
flac3d
soil
numerical
coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610323741.2A
Other languages
Chinese (zh)
Inventor
王苏生
徐卫亚
王如宾
孙梦成
林志南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201610323741.2A priority Critical patent/CN105956314A/en
Publication of CN105956314A publication Critical patent/CN105956314A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种生成不同土石混合比的数值试验方法,首先生成单元数是N*N的Flac3d模型。确定土石混合比后,将初始的模型单元分为由土体和石块组成,并将其写入到Flac3d计算文件中去。采用Flac3d软件进行数值试验,通过统计轴向荷载和轴向位移模拟试验曲线。本发明不仅可以解决模型建立问题,克服真实试验参数研究中取样困难、试样扰动、结果离散性大等问题,同时具有采用有限差分法建模方便、收敛速度快等优点,可以很好地为工程数值模拟提供服务,具有很强的实用性。

The invention discloses a numerical test method for generating different soil-rock mixing ratios. Firstly, a Flac3d model whose unit number is N*N is generated. After determining the soil-rock mixing ratio, the initial model unit is divided into soil and stone, and written into the Flac3d calculation file. The numerical test is carried out by using Flac3d software, and the test curve is simulated by statistics of axial load and axial displacement. The present invention can not only solve the problem of model establishment, but also overcome the problems of sampling difficulty, sample disturbance, and large discreteness of results in the study of real test parameters. Engineering numerical simulation provides services with strong practicability.

Description

一种生成不同土石混合比的数值试验方法A Numerical Test Method for Generating Different Soil-rock Mixing Ratio

技术领域technical field

本发明属于土木工程数值分析领域,具体涉及一种生成不同土石混合比的数值试验方法。The invention belongs to the field of civil engineering numerical analysis, in particular to a numerical test method for generating different soil-rock mixing ratios.

背景技术Background technique

堆积体属于一种非连续、不均匀的二元介质,它是介于土体与岩体之间的一种特殊地质体,目前人们对于它的研究还处于探索之中。堆积体力学性质不仅取决于土与石的物理力学特性,更受控于其内部结构特征,诸如土石混合比、石块级配、石块形状、石块倾向等因素均对堆积体力学性能有较大影响。而实验室确定堆积体物理力学参数存在取样扰动、各试样土石混合特征不一致、实验误差大等缺点,造成试验结果离散性较大,规律性不强。更重要的,实验室试块受尺度限制,不能很好的反映土石混合特征对堆积体物理力学性质的影响。The accumulation body belongs to a discontinuous and heterogeneous binary medium, which is a special geological body between soil and rock mass, and people's research on it is still in exploration. The mechanical properties of accumulations not only depend on the physical and mechanical properties of soil and stone, but also are controlled by their internal structural characteristics. Factors such as soil-rock mixing ratio, stone gradation, stone shape, and stone tendency all have an impact on the mechanical properties of accumulations. greater impact. However, the physical and mechanical parameters of the accumulation body determined by the laboratory have shortcomings such as sampling disturbance, inconsistent soil-rock mixing characteristics of each sample, and large experimental errors, resulting in large dispersion and weak regularity of the test results. More importantly, the laboratory test block is limited by its scale and cannot well reflect the influence of soil-rock mixing characteristics on the physical and mechanical properties of the accumulation body.

通过数值方法研究堆积体参数近年来发展比较迅速,该类方法能很好的克服真实试验参数研究中取样困难、试样扰动、结果离散性大、试验尺度相较于堆积体内部结构尺度偏小等问题。数值方法研究堆积体参数存在两大问题:(1)模型建立问题,即根据堆积体各项内部结构参数(如:土石混合比、石块级配、石块形状、石块倾向等)生成符合数值试验要求的堆积体试块;(2)采用何种数值计算手段模拟真实的堆积体参数试验。The numerical method to study the parameters of accumulations has developed rapidly in recent years. This type of method can well overcome the difficulty of sampling, sample disturbance, large dispersion of results, and small test scale compared with the internal structure of accumulations in the study of real test parameters. And other issues. There are two major problems in the study of accumulation parameters by numerical method: (1) The problem of model establishment, that is, according to the internal structural parameters of the accumulation (such as: soil-rock mixing ratio, stone gradation, stone shape, stone tendency, etc.) The pile test block required by the numerical test; (2) Which numerical calculation method is used to simulate the real pile parameter test.

发明内容Contents of the invention

本发明针对现有技术的不足,提供了一种生成不同土石混合比的数值试验方法,建模方便,收敛速度快。Aiming at the deficiencies of the prior art, the invention provides a numerical test method for generating different soil-rock mixing ratios, which is convenient for modeling and fast in convergence.

本发明采用以下技术方案:The present invention adopts following technical scheme:

一种生成不同土石混合比的数值试验方法,包括以下步骤:A numerical test method for generating different soil-rock mixing ratios, comprising the following steps:

第一步:生成单元数是N*N的Flac3d模型:定义模型单元数是由N*N个方格构成,模型的尺寸为1*1*1/N(m),对单元结点坐标和每个单元对应的结点进行编号并赋初始值,将赋值完成的结点坐标写入文件Fracture.flac3d中;The first step: Generate the Flac3d model with the number of units being N*N: define that the number of units in the model is composed of N*N squares, the size of the model is 1*1*1/N(m), and the coordinates of the unit nodes and The nodes corresponding to each unit are numbered and assigned initial values, and the coordinates of the assigned nodes are written into the file Fracture.flac3d;

第二步:将初始的模型单元分为由土体和石块组成,并依次将结点及其对应的坐标、单元及其对应的结点编号写入Flac3d计算文件中,生成不同土石混合比的数值模型;Step 2: Divide the initial model unit into soil and rock, and write the nodes and their corresponding coordinates, units and their corresponding node numbers into the Flac3d calculation file in order to generate different soil-rock mixing ratios numerical model of

第三步:将构建好的Flac3d文件导入Flac3d软件,进行分组,并对分组后的模型赋参数,设置边界条件,将模型的y方向顶部和底部进行约束,然后施加围压,按位移方式进行加载,统计每一计算步中轴向荷载和轴向位移,模拟试验曲线。Step 3: Import the constructed Flac3d file into Flac3d software, group it, and assign parameters to the grouped models, set boundary conditions, constrain the top and bottom of the model in the y direction, and then apply confining pressure in a displacement manner Loading, counting the axial load and axial displacement in each calculation step, and simulating the test curve.

作为优选,第一步对模型单元和结点进行编号包括以下步骤:单元编号是从最底层开始从左至右依次增大,则第j行i列的单元号是N*j+i,每个单元对应8结点,其对应的坐标是N*(j-1)+i,N*(j-1)+i+1;N*(j-1)+i+N,N*(j-1)+i+N+1,N*N+N*(j-1)+i,N*N+N*(j-1)+i+1,N*N+N*(j-1)+i+N,N*N+N*(j-1)+i+N+1。Preferably, the first step of numbering the model units and nodes includes the following steps: the unit number increases from left to right from the bottom, then the unit number of the jth row i column is N*j+i, each A unit corresponds to 8 nodes, and its corresponding coordinates are N*(j-1)+i, N*(j-1)+i+1; N*(j-1)+i+N, N*(j -1)+i+N+1, N*N+N*(j-1)+i, N*N+N*(j-1)+i+1, N*N+N*(j-1 )+i+N, N*N+N*(j-1)+i+N+1.

作为优选,第一步对模型主视图上单元结点坐标进行赋值包括以下步骤:设置第j行i列的结点x,y,z坐标分别是1.0*i/(N-1),a[N*j+i][1]=1.0*j/(N-1),a[N*j+i][2]=0.0,对模型背面上单元结点坐标进行赋值,其规律特点是第j行i列的结点x,y,z坐标分别是1.0*i/(N-1),a[N*j+i][1]=1.0*j/(N-1),a[N*j+i][2]=1.0/(N-1)。Preferably, the first step is to assign values to the unit node coordinates on the main view of the model, including the following steps: setting the x, y, and z coordinates of the j-th row and i-column node to be 1.0*i/(N-1), a[ N*j+i][1]=1.0*j/(N-1), a[N*j+i][2]=0.0, to assign values to the coordinates of the unit nodes on the back of the model, its regular feature is that The x, y, and z coordinates of the nodes in row j and column i are 1.0*i/(N-1), a[N*j+i][1]=1.0*j/(N-1), a[N *j+i][2]=1.0/(N-1).

作为优选,第二步是在Flac3d模型上随机挑选出sum个单元,将其属性定义为土体,通过改变sum的值改变土石混合比,生成不同的数值模型。Preferably, the second step is to randomly select sum units on the Flac3d model, define their properties as soil, and change the soil-rock mixing ratio by changing the value of sum to generate different numerical models.

作为优选,第三步采用mohr-coulomb本构模型进行数值计算。Preferably, the third step uses the mohr-coulomb constitutive model for numerical calculation.

有益效果:本发明通过确定土石混合比,快速生成不同土石混合比模型,并通过Flac3d进行数值试验模拟,不仅可以解决模型建立问题,克服真实试验参数研究中取样困难、试样扰动、结果离散性大等问题,同时采用有限差分法建模方便、收敛速度快。Beneficial effects: the present invention quickly generates models of different soil-rock mixing ratios by determining the soil-rock mixing ratio, and performs numerical test simulation through Flac3d, which can not only solve the problem of model establishment, but also overcome sampling difficulties, sample disturbances, and discrete results in the study of real test parameters At the same time, the finite difference method is used for modeling convenience and fast convergence.

附图说明Description of drawings

图1是本发明的设计流程图;Fig. 1 is a design flow chart of the present invention;

图2是Flac3d六面块体网格;Figure 2 is a Flac3d hexahedral block grid;

图3是土石混合体含石量为50%模型图;Fig. 3 is that the stone content of earth-rock mixture is 50% model figure;

图4是土石混合体含石量为60%模型图;Fig. 4 is that the stone content of earth-rock mixture is 60% model figure;

图5是土石混合体含石量为90%模型图;Fig. 5 is a model diagram of 90% stone content of the soil-rock mixture;

图6是不同土石混合比轴向应力和轴向应变关系图。Figure 6 is a diagram of the relationship between axial stress and axial strain for different soil-rock mixing ratios.

具体实施方式detailed description

下面结合附图与具体实施方式对本发明进行详细说明:The present invention is described in detail below in conjunction with accompanying drawing and specific embodiment:

一种生成不同土石混合比的数值试验方法,如图1所示,包括以下步骤:A numerical test method for generating different soil-rock mixing ratios, as shown in Figure 1, includes the following steps:

第一步:生成单元数是N*N的Flac3d模型,模型的尺寸为1*1*1/N(m)。具体如下:Step 1: Generate a Flac3d model with N*N units, and the size of the model is 1*1*1/N(m). details as follows:

a对模型单元和结点进行编号,单元编号规律是从最底层开始从左至右依次增大,则第j行i列的单元号是N*j+i,每个单元对应8结点,其对应的坐标是N*(j-1)+i,N*(j-1)+i+1;N*(j-1)+i+N,N*(j-1)+i+N+1,N*N+N*(j-1)+i,N*N+N*(j-1)+i+1,N*N+N*(j-1)+i+N,N*N+N*(j-1)+i+N+1;a. Number the model units and nodes. The unit numbering rule is to increase from left to right from the bottom layer. The unit number of the jth row i column is N*j+i, and each unit corresponds to 8 nodes. The corresponding coordinates are N*(j-1)+i, N*(j-1)+i+1; N*(j-1)+i+N, N*(j-1)+i+N +1, N*N+N*(j-1)+i, N*N+N*(j-1)+i+1, N*N+N*(j-1)+i+N, N *N+N*(j-1)+i+N+1;

b对模型主视图上单元结点坐标进行赋值,其规律特点是第j行i列的结点x,y,z坐标分别是1.0*i/(N-1),a[N*j+i][1]=1.0*j/(N-1),a[N*j+i][2]=0.0,对模型背面上单元结点坐标进行赋值,其规律特点是第j行i列的结点x,y,z坐标分别是1.0*i/(N-1),a[N*j+i][1]=1.0*j/(N-1),a[N*j+i][2]=1.0/(N-1)。b Assign values to the coordinates of the unit nodes on the main view of the model. The regularity is that the x, y, and z coordinates of the nodes in the jth row and column i are 1.0*i/(N-1), a[N*j+i ][1]=1.0*j/(N-1), a[N*j+i][2]=0.0, assign values to the coordinates of the unit nodes on the back of the model. Node x, y, z coordinates are 1.0*i/(N-1), a[N*j+i][1]=1.0*j/(N-1), a[N*j+i] [2]=1.0/(N-1).

上述步骤采用C语言编程完成,如图2所示,Flac3d模型结点有独特的排列格式,对单元结点坐标和每个单元对应的结点赋初始值,用数组a[2*N*N][3]={0}和node[N*N][8]={0}表示。The above steps are completed by programming in C language, as shown in Figure 2, the nodes of the Flac3d model have a unique arrangement format, assign initial values to the coordinates of the unit nodes and the corresponding nodes of each unit, and use the array a[2*N*N ][3]={0} and node[N*N][8]={0}.

首先对模型主视图上单元结点坐标进行赋值,其编程如下:First, assign the coordinates of the unit nodes on the main view of the model, and the programming is as follows:

其次对模型背面单元结点坐标进行计算赋值,其编程如下:Secondly, calculate and assign the coordinates of the node nodes on the back of the model, and the programming is as follows:

最后,将赋值完成的结点坐标写入文件Fracture.flac3d中,由于Flac3d有着自己的数据格式,编程完成如下:Finally, write the assigned node coordinates into the file Fracture.flac3d. Since Flac3d has its own data format, the programming is completed as follows:

第二步:将初始的模型单元分为由土体和石块组成,并将其写入Flac3d计算文件中,通过改变sum的值可以改变土石混合比,生成不同土石混合比的数值模型。具体如下:Step 2: Divide the initial model unit into soil and rock, and write it into the Flac3d calculation file. By changing the value of sum, the soil-rock mixing ratio can be changed to generate numerical models of different soil-rock mixing ratios. details as follows:

首先写入结点及其对应的坐标,然后写入单元及其对应的结点编号,最后进行分组,确定土石混合比,采用随机分布进行分组(在第一步生成的模型基础上随机挑选出sum个单元,在后续的处理中将其属性定义为土体),为避免重复选取单元,使用递归思想将重复的单元重新选取。First write the nodes and their corresponding coordinates, then write the units and their corresponding node numbers, and finally perform grouping, determine the soil-rock mixing ratio, and use random distribution for grouping (randomly selected on the basis of the model generated in the first step sum units, and its attribute is defined as soil in the subsequent processing), in order to avoid repeated selection of units, recursive thinking is used to re-select the repeated units.

具体编程如下:The specific programming is as follows:

第三步:将构建好的Flac3d文件导入Flac3d软件,采用Flac3d软件进行数值试验,通过统计轴向荷载和轴向位移模拟试验曲线。具体如下:Step 3: Import the constructed Flac3d file into Flac3d software, use Flac3d software to conduct numerical experiments, and simulate the test curves by counting axial load and axial displacement. details as follows:

首先将FLAC3d文件导入模型FLAC3d软件中,进行分组,并对分组后的模型赋参数。选取用mohr-coulomb本构模型。First, import the FLAC3d files into the model FLAC3d software, group them, and assign parameters to the grouped models. Select the mohr-coulomb constitutive model.

然后设置边界条件,将模型的y方向顶部和底部进行约束,然后施加围压,按位移方式进行加载。Then set the boundary conditions, constrain the top and bottom of the model in the y direction, and then apply the confining pressure to load according to the displacement.

最后统计每一计算步中轴向荷载和轴向位移,绘制出应力~位移试验曲线。Finally, the axial load and axial displacement in each calculation step are counted, and the stress-displacement test curve is drawn.

应用实例:将上述方法应用到土石混合体模型,其中石块的参数为:体积模量25Gpa,剪切模量12Gpa,密度2900kg/m3,黏聚力为4Gpa,摩擦角45°,抗拉强度2Mpa,剪胀角15°;土体的参数为:体积模量40Mpa,剪切模量15Mpa,密度2200kg/m3,黏聚力为0.08Mpa,摩擦角28°,抗拉强度9Kpa,剪胀角10°。Application example: Apply the above method to the soil-rock mixture model, where the parameters of the stone are: bulk modulus 25Gpa, shear modulus 12Gpa, density 2900kg/m 3 , cohesion 4Gpa, friction angle 45°, tensile strength The strength is 2Mpa, the dilation angle is 15°; the parameters of the soil are: bulk modulus 40Mpa, shear modulus 15Mpa, density 2200kg/m 3 , cohesion 0.08Mpa, friction angle 28°, tensile strength 9Kpa, shear The expansion angle is 10°.

具体步骤如下:Specific steps are as follows:

(1)按上述方法通过C语言编程生成不同土石混合比模型。(1) Generate different soil-rock mixture ratio models through C language programming according to the above method.

(2)将生成的模型导入Flac3d软件,采用mohr-coulomb本抅模型,加载速率为5*10-5m/step加载。计算过程中,统计轴向荷载和轴向位移。如图3-5所示,分别是土石混合体含石量为50%、60%和90%的模型图。(2) Import the generated model into the Flac3d software, adopt the mohr-coulomb original model, and load at a loading rate of 5*10 -5 m/step. During the calculation process, the axial load and axial displacement are counted. As shown in Figure 3-5, they are model diagrams of soil-rock mixture with stone content of 50%, 60% and 90%, respectively.

(3)将步骤(2)的结果出图显示,如图6所示,显示轴向应力~轴向应变关系。(3) The results of step (2) are plotted and displayed, as shown in Figure 6, which shows the relationship between axial stress and axial strain.

Claims (5)

1.一种生成不同土石混合比的数值试验方法,其特征在于,包括以下步骤:1. A numerical test method that generates different soil-rock mixing ratios, is characterized in that, comprises the following steps: 第一步:生成单元数是N*N的Flac3d模型:定义模型单元数是由N*N个方格构成,模型的尺寸为1*1*1/N(m),对单元结点坐标和每个单元对应的结点进行编号并赋初始值,将赋值完成的结点坐标写入文件Fracture.flac3d中;The first step: Generate the Flac3d model with the number of units being N*N: define that the number of units in the model is composed of N*N squares, the size of the model is 1*1*1/N(m), and the coordinates of the unit nodes and The nodes corresponding to each unit are numbered and assigned initial values, and the coordinates of the assigned nodes are written into the file Fracture.flac3d; 第二步:将初始的模型单元分为由土体和石块组成,并依次将结点及其对应的坐标、单元及其对应的结点编号写入Flac3d计算文件中,生成不同土石混合比的数值模型;Step 2: Divide the initial model unit into soil and rock, and write the nodes and their corresponding coordinates, units and their corresponding node numbers into the Flac3d calculation file in order to generate different soil-rock mixing ratios numerical model of 第三步:将构建好的Flac3d文件导入Flac3d软件,进行分组,并对分组后的模型赋参数,设置边界条件,将模型的y方向顶部和底部进行约束,然后施加围压,按位移方式进行加载,统计每一计算步中轴向荷载和轴向位移,模拟试验曲线。Step 3: Import the constructed Flac3d file into Flac3d software, group it, and assign parameters to the grouped models, set boundary conditions, constrain the top and bottom of the model in the y direction, and then apply confining pressure in a displacement manner Loading, counting the axial load and axial displacement in each calculation step, and simulating the test curve. 2.根据权利要求1所述的生成不同土石混合比的数值试验方法,其特征在于,第一步对模型单元和结点进行编号包括以下步骤:单元编号是从最底层开始从左至右依次增大,则第j行i列的单元号是N*j+i,每个单元对应8结点,其对应的坐标是N*(j-1)+i,N*(j-1)+i+1;N*(j-1)+i+N,N*(j-1)+i+N+1,N*N+N*(j-1)+i,N*N+N*(j-1)+i+1,N*N+N*(j-1)+i+N,N*N+N*(j-1)+i+N+1。2. the numerical test method that generates different soil-rock mixing ratios according to claim 1, is characterized in that, the first step is numbered to model unit and node and comprises the following steps: unit numbering is to start from the bottom layer from left to right successively Increase, the unit number of the jth row i column is N*j+i, each unit corresponds to 8 nodes, and its corresponding coordinates are N*(j-1)+i, N*(j-1)+ i+1; N*(j-1)+i+N, N*(j-1)+i+N+1, N*N+N*(j-1)+i, N*N+N* (j-1)+i+1, N*N+N*(j-1)+i+N, N*N+N*(j-1)+i+N+1. 3.根据权利要求2所述的生成不同土石混合比的数值试验方法,其特征在于,第一步对模型主视图上单元结点坐标进行赋值包括以下步骤:设置第j行i列的结点x,y,z坐标分别是1.0*i/(N-1),a[N*j+i][1]=1.0*j/(N-1),a[N*j+i][2]=0.0,对模型背面上单元结点坐标进行赋值,其规律特点是第j行i列的结点x,y,z坐标分别是1.0*i/(N-1),a[N*j+i][1]=1.0*j/(N-1),a[N*j+i][2]=1.0/(N-1)。3. the numerical test method that generates different soil-rock mixing ratios according to claim 2, is characterized in that, the first step assigns the unit node coordinates on the main view of the model and comprises the following steps: setting the node of j row i column The x, y, and z coordinates are 1.0*i/(N-1), a[N*j+i][1]=1.0*j/(N-1), a[N*j+i][2 ]=0.0, assign values to the coordinates of the unit nodes on the back of the model, and its regular feature is that the x, y, and z coordinates of the nodes in the j-th row and i-column are 1.0*i/(N-1), a[N*j +i][1]=1.0*j/(N-1), a[N*j+i][2]=1.0/(N-1). 4.根据权利要求1所述的生成不同土石混合比的数值试验方法,其特征在于,第二步是在Flac3d模型上随机挑选出sum个单元,将其属性定义为土体,通过改变sum的值改变土石混合比,生成不同的数值模型。4. the numerical test method that generates different soil-rock mixing ratios according to claim 1, is characterized in that, the second step is to select sum units at random on the Flac3d model, and its attribute is defined as soil mass, by changing the value of sum Values change the soil-rock mixture ratio, generating different numerical models. 5.根据权利要求1所述的生成不同土石混合比的数值试验方法,其特征在于,第三步采用mohr-coulomb本构模型进行数值计算。5. the numerical test method that generates different soil-rock mixing ratios according to claim 1, is characterized in that, the 3rd step adopts mohr-coulomb constitutive model to carry out numerical calculation.
CN201610323741.2A 2016-05-16 2016-05-16 Numerical test method capable of creating different earth-rock mixing ratios Pending CN105956314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610323741.2A CN105956314A (en) 2016-05-16 2016-05-16 Numerical test method capable of creating different earth-rock mixing ratios

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610323741.2A CN105956314A (en) 2016-05-16 2016-05-16 Numerical test method capable of creating different earth-rock mixing ratios

Publications (1)

Publication Number Publication Date
CN105956314A true CN105956314A (en) 2016-09-21

Family

ID=56911663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610323741.2A Pending CN105956314A (en) 2016-05-16 2016-05-16 Numerical test method capable of creating different earth-rock mixing ratios

Country Status (1)

Country Link
CN (1) CN105956314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107084895A (en) * 2017-04-27 2017-08-22 中国地质大学(武汉) A simulation method and system for soil-rock mixture compaction test based on block shape

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080319675A1 (en) * 2007-06-22 2008-12-25 Sayers Colin M Method, system and apparatus for determining rock strength using sonic logging
CN102621009A (en) * 2012-03-21 2012-08-01 武汉大学 Test method for simulating long-term deformation of rockfill
CN104036538A (en) * 2014-06-25 2014-09-10 清华大学 Method and system for reconstruction and analysis of earth-rock aggregate three-dimensional microstructure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080319675A1 (en) * 2007-06-22 2008-12-25 Sayers Colin M Method, system and apparatus for determining rock strength using sonic logging
CN102621009A (en) * 2012-03-21 2012-08-01 武汉大学 Test method for simulating long-term deformation of rockfill
CN104036538A (en) * 2014-06-25 2014-09-10 清华大学 Method and system for reconstruction and analysis of earth-rock aggregate three-dimensional microstructure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
廖秋林: "基于ANSYS平台复杂地质体FLAC3D模型的自动生成", 《岩石力学与工程学报》 *
王琳: "土石混填地基隧道结构稳定性及补强措施研究", 《中国优秀硕士学位论文全文数据库-工程科技II辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107084895A (en) * 2017-04-27 2017-08-22 中国地质大学(武汉) A simulation method and system for soil-rock mixture compaction test based on block shape
CN107084895B (en) * 2017-04-27 2019-11-12 中国地质大学(武汉) A simulation method and system for soil-rock mixture compaction test based on block shape

Similar Documents

Publication Publication Date Title
Yang et al. Three-dimensional fracture propagation with numerical manifold method
CN106960070A (en) A kind of seepage simulation method that coal body is reconstructed based on finite element discretization member CT
CN106650141B (en) A kind of Uncertainty Analysis Method of predetermined period material property
CN109241588A (en) A kind of analogy method of the monolete extension based on quasi-continuous geomechanics model
CN112818611B (en) A Numerical Simulation Method of Fluid-solid Interaction in Single-fracture Rock Hydraulic Fracturing Process
CN103425833A (en) Implement method of parallel fluid calculation based on entropy lattice Boltzmann model
CN104615840B (en) The modification method and system of a kind of digital simulation model
CN113611377A (en) Method for simulating hybrid control creep fatigue deformation by using crystal plastic model
CN115659741A (en) A Method for Seismic Response Analysis of Mountain Tunnel Entrance Structural Structure under SV Wave Oblique Incidence
CN118133437B (en) Ship local structural strength analysis method, device, computer equipment and medium
CN117350029A (en) Numerical simulation methods, devices, media and equipment considering the fracture of rock and soil masses
CN111209680B (en) Simulation method, device and equipment for uniform stretching of flexible substrate
TQ et al. Unveiling the potential of an evolutionary approach for accurate compressive strength prediction of engineered cementitious composites
CN107563071A (en) A kind of emulation mode of synthetic chemistry laboratory
CN116542050A (en) A multi-scale simulation method for excavation stability of jointed rock mass
CN114547953B (en) A method and system for optimizing fracturing construction parameters based on optimized design board
CN105956314A (en) Numerical test method capable of creating different earth-rock mixing ratios
CN106682347B (en) Discontinuous Deformation Analysis Method based on rock mass discontinuity random strength
CN118395680A (en) A method for constructing a three-dimensional equivalent continuum constitutive model for layered jointed rock masses
Li et al. A coupling algorithm for simulating multiple hydraulic fracture propagation based on extended finite element method
CN103236087B (en) A kind of construction method of triangular prism geologic model
CN102830430A (en) Horizon speed modeling method
CN116956406A (en) SPH analysis method and system for the whole process of landslide dynamic rupture movement
CN111222215A (en) Geometric damage rheological model analysis method for mechanical properties of jointed rock mass
CN115600346A (en) A Mesoscopic Modeling and Analysis Method for UHPC Structures

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160921