[go: up one dir, main page]

CN105954714A - Tunnel personnel positioning system and method - Google Patents

Tunnel personnel positioning system and method Download PDF

Info

Publication number
CN105954714A
CN105954714A CN201610316778.2A CN201610316778A CN105954714A CN 105954714 A CN105954714 A CN 105954714A CN 201610316778 A CN201610316778 A CN 201610316778A CN 105954714 A CN105954714 A CN 105954714A
Authority
CN
China
Prior art keywords
formula
module
tunnel
node
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610316778.2A
Other languages
Chinese (zh)
Inventor
王海英
梁鹏
王少平
阮祺
邱喜华
吕东源
常肖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN201610316778.2A priority Critical patent/CN105954714A/en
Publication of CN105954714A publication Critical patent/CN105954714A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0027Transmission from mobile station to base station of actual mobile position, i.e. position determined on mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种隧道人员定位系统及方法,包括若干电子标签和若干参考节点,若干参考节点对应收发信息的电子标签,每个参考节点通过对应的网关连接远程通讯网络,远程通讯网络连接中心服务器,中心服务器连接远程监控电脑终端和显示屏,将传统的现场管理模式推广到远程管理模式,隧道外的管理人员可以通过远程监控电脑终端对作业人员进行考勤和追踪定位,当出现危险的时候,管理人员可以通过远程监控电脑终端向隧道内的作业人员下达报警信息,从而使施工人员可以迅速离开危险区域。

The invention discloses a tunnel personnel positioning system and method, including a plurality of electronic tags and a plurality of reference nodes, the plurality of reference nodes correspond to electronic tags for sending and receiving information, each reference node is connected to a remote communication network through a corresponding gateway, and the remote communication network is connected to a center The server, the central server is connected to the remote monitoring computer terminal and the display screen, and the traditional on-site management mode is extended to the remote management mode. The management personnel outside the tunnel can use the remote monitoring computer terminal to check the attendance and track the location of the workers. When there is danger , the management personnel can issue alarm information to the operators in the tunnel through the remote monitoring computer terminal, so that the construction personnel can quickly leave the dangerous area.

Description

一种隧道人员定位系统及方法A tunnel personnel positioning system and method

技术领域technical field

本发明隧道人员安全领域,具体涉及一种隧道人员定位系统及方法。The invention relates to the field of tunnel personnel safety, in particular to a tunnel personnel positioning system and method.

背景技术Background technique

随着全面深入改革不断取得新的成效,中国的经济进入了稳定的发展时期,各种交通建设迅速发展,公路与铁路建设的主战场逐渐扩展到地质条件较为复杂的山区,相应的桥隧建筑也在增加,从而对山区道路建设提出了更严的标准。目前,隧道工程普遍存在工作面广、施工时间长、地质情况变化莫测等特点,这些特点不但增加了施工的难度,也会出现一些突发事故,从而导致工程延期,不能按时完成施工,更严重的是有些突发事故可能会引起人员伤亡,造成巨大的损失。传统的隧道施工管理技术暴露出很多问题,不能保证隧道施工的安全高效,一旦发生施工事故,如果缺乏对作业人员位置和遇险人员的撤退路线的掌握,救灾抢险工作就很难实施,作业人员的生命安全也无法得到保障,这给国家和社会带来了巨大的损失。With the comprehensive and in-depth reforms continuously achieving new results, China's economy has entered a period of stable development, various transportation constructions have developed rapidly, and the main battlefield of road and railway construction has gradually expanded to mountainous areas with complex geological conditions. is also increasing, thus putting forward stricter standards for road construction in mountainous areas. At present, tunnel engineering generally has the characteristics of wide working area, long construction time, and unpredictable geological conditions. What is serious is that some unexpected accidents may cause casualties and cause huge losses. The traditional tunnel construction management technology has exposed many problems, which cannot guarantee the safety and efficiency of tunnel construction. Once a construction accident occurs, if there is no grasp of the location of the operators and the evacuation route of the distressed personnel, it will be difficult to carry out disaster relief work. Life safety cannot be guaranteed, which has brought huge losses to the country and society.

综上所述,由于隧道自身的结构特点和隧道建设项目没有系统的安全生产管理体系,从而导致隧道事故不断发生。当事故发生后,隧道外的管理人员不能及时与隧道里的工作人员即时通信,不能及时掌握隧道里工作人员的分布及作业情况,难以进行人员的精准定位,从而不能保证事后救援效率。To sum up, due to the structural characteristics of the tunnel itself and the lack of a systematic safety production management system for the tunnel construction project, tunnel accidents continue to occur. When an accident occurs, the management personnel outside the tunnel cannot communicate with the staff in the tunnel in real time, and cannot grasp the distribution and operation status of the staff in the tunnel in time, making it difficult to accurately locate the personnel, so that the efficiency of rescue after the event cannot be guaranteed.

发明内容Contents of the invention

本发明的目的在于克服上述不足,提供一种隧道人员定位系统及方法,能提高工作人员的管理水平,实时了解工作人员的位置和动态,特别是在紧急情况下能够进行快速营救,对其进行精确定位有着十分重要的意义。The purpose of the present invention is to overcome the above-mentioned deficiencies, and provide a tunnel personnel positioning system and method, which can improve the management level of the staff, understand the position and dynamics of the staff in real time, and can carry out quick rescue especially in emergency situations, and carry out Accurate positioning is of great significance.

为了达到上述目的,一种隧道人员定位系统,包括若干电子标签和若干参考节点,若干参考节点对应收发信息的电子标签,每个参考节点通过对应的网关连接远程通讯网络,远程通讯网络连接中心服务器,中心服务器连接远程监控电脑终端和显示屏;In order to achieve the above purpose, a tunnel personnel positioning system includes a number of electronic tags and a number of reference nodes, a number of reference nodes correspond to electronic tags for sending and receiving information, each reference node is connected to a remote communication network through a corresponding gateway, and the remote communication network is connected to a central server , the central server is connected to the remote monitoring computer terminal and display screen;

所述网关采用ZigBee节点,ZigBee节点包括与通用接口连接的数据采集模块和其他模块,通用接口连接微处理模块,微处理模块连接无线通信模块,通用接口、微处理模块和无线通信模块连接电源模块。Described gateway adopts ZigBee node, and ZigBee node comprises the data acquisition module and other modules that are connected with general interface, and general interface connects microprocessing module, and microprocessing module connects wireless communication module, and general interface, microprocessing module and wireless communication module connect power supply module .

所述数据采集模块包括传感器和数模转换模块,其他模块包括按键模块和LED模块。The data acquisition module includes a sensor and a digital-to-analog conversion module, and other modules include a button module and an LED module.

所述微处理模块包括微控制器和存储器,无线通信模块包括用于接收电子标签信息的天线和用于发送信息的ZigBee射频模块。The micro-processing module includes a microcontroller and a memory, and the wireless communication module includes an antenna for receiving electronic tag information and a ZigBee radio frequency module for sending information.

所述网关通过有线通信与远程通信网络连接,远程通信网络包括以太网、GPRS、CDMA中的至少一种。The gateway is connected to a telecommunication network through wired communication, and the telecommunication network includes at least one of Ethernet, GPRS and CDMA.

所述中心服务器通过GPRS-DTU模块与显示屏连接,GPRS-DTU模块均通过RS232与中心服务器和显示屏连接。The central server is connected with the display screen through the GPRS-DTU module, and the GPRS-DTU modules are connected with the central server and the display screen through RS232.

一种隧道人员定位方法,包括以下步骤:A tunnel personnel positioning method, comprising the following steps:

步骤一,采用基于RSSI的隧道人员定位算法,节点距离d可由无线信道的式1得出,Step 1, using the RSSI-based tunnel personnel positioning algorithm, the node distance d can be obtained from the formula 1 of the wireless channel,

PP (( dd )) == PP (( dd 00 )) -- 1010 nno ll gg (( dd dd 00 )) ++ ξξ -- -- -- (( 11 ))

其中,P(d)指离发射端间距为d时接收端获得的RSSI值;P(d0)指离发射端间距为d0时接收端获得的RSSI值;n表示路径损耗指数,它的取值范围为2~5,通常需要在现场测得;ξ指传播损耗随距离增大的速率;Among them, P(d) refers to the RSSI value obtained by the receiving end when the distance from the transmitting end is d; P(d 0 ) refers to the RSSI value obtained by the receiving end when the distance from the transmitting end is d 0 ; n represents the path loss index, and its The value ranges from 2 to 5, and usually needs to be measured on site; ξ refers to the rate at which propagation loss increases with distance;

在工程建设中,我们经常把式1简化为式2:In engineering construction, we often simplify formula 1 to formula 2:

RSSI=A-10nlgd (2)RSSI=A-10nlgd (2)

其中,A表示信号收发端间距为1m时接收端获得的RSSI值,n与式1中的n相同;Among them, A represents the RSSI value obtained by the receiving end when the distance between the transmitting and receiving ends of the signal is 1m, and n is the same as n in formula 1;

步骤二,网关把RSSI值传输至计算机,然后由计算出定位节点的坐标,由式2可得,参考节点和定位节点的间距为:Step 2, the gateway transmits the RSSI value to the computer, and then calculates the coordinates of the positioning node. From formula 2, the distance between the reference node and the positioning node is:

dd == 1010 AA -- RR SS SS II 1010 nno -- -- -- (( 33 ))

步骤三,因变量y与自变量x1,x2,L,xm满足以下回归模型:Step 3, dependent variable y and independent variables x 1 , x 2 , L, x m satisfy the following regression model:

ythe y == aa 00 ++ aa 11 xx 11 ++ aa 22 xx 22 ++ LL ++ aa mm xx mm ++ ξξ EE. ξξ == 00 -- -- -- (( 44 ))

对因变量y和自变量x1,x2,L,xm之间的关系进行测试,从而得到s组数据:Test the relationship between the dependent variable y and the independent variables x 1 , x 2 , L, x m to obtain s group of data:

(xi1,xi2,L,xim;yi);i=1,2,L,s(x i1 , x i2 , L, x im ; y i ); i=1,2,L,s

步骤四,根据s组测试数据可推测出线性回归系数,由多元线性回归模型式4及s组测试数据可得到下式:Step 4, according to the test data of the s group, the linear regression coefficient can be inferred, and the following formula can be obtained from the multiple linear regression model formula 4 and the test data of the s group:

ythe y 11 == aa 00 ++ aa 11 xx 1111 ++ aa 22 xx 1212 ++ LL ++ aa mm xx 11 mm ++ ξξ 11 ythe y 22 == aa 00 ++ aa 11 xx 21twenty one ++ aa 22 xx 22twenty two ++ LL ++ aa mm xx 22 mm ++ ξξ 22 LL LL ythe y sthe s == aa 00 ++ aa 11 xx sthe s 11 ++ aa 22 xx sthe s 22 ++ LL ++ aa mm xx sthe s mm ++ ξξ sthe s -- -- -- (( 55 ))

在式5中,ξ12,L,ξs为随机变量,是各个表达式的残差,这n次测试的残差平方和可表示为:In Equation 5, ξ 1 , ξ 2 , L, ξ s are random variables, which are the residuals of each expression. The sum of squared residuals of n tests can be expressed as:

RR (( aa 00 ,, aa 11 ,, LL ,, aa mm )) == ΣΣ ii sthe s (( ythe y ii -- aa 00 -- aa 11 xx ii 11 -- LL -- aa mm xx ii mm )) 22 -- -- -- (( 66 ))

在式6中,R(a0,a1,L,am)可以度量这s组测试数据与回归函数之间的拟合程度;In formula 6, R(a 0 ,a 1 ,L,am ) can measure the fitting degree between the s test data and the regression function;

步骤五,求R(a0,a1,L,am)的最小值则有:Step five, find the minimum value of R(a 0 ,a 1 ,L,a m ) Then there are:

∂∂ RR (( aa 00 ,, aa 11 ,, LL ,, aa mm )) ∂∂ aa 00 == 00 ∂∂ RR (( aa 00 ,, aa 11 ,, LL ,, aa mm )) ∂∂ aa 11 == 00 LL LL ∂∂ RR (( aa 00 ,, aa 11 ,, LL ,, aa mm )) ∂∂ aa mm == 00 -- -- -- (( 77 ))

为简化式7,可定义以下矩阵:To simplify Equation 7, the following matrix can be defined:

YY == ythe y 11 ythe y 22 Mm ythe y sthe s ,, xx == 11 xx 1111 LL xx 11 mm 11 xx 22 11 LL xx 22 mm Mm Mm Mm 11 xx sthe s 11 LL xx sthe s mm ,, ββ == aa 11 aa 22 Mm aa mm ,, ee == ξξ 11 ξξ 22 Mm ξξ sthe s

则5式可简化为:Then Equation 5 can be simplified as:

Y=Xβ+e (8)Y=Xβ+e (8)

式6可简化为:Formula 6 can be simplified as:

R(β)=(Y-Xβ)′(Y-Xβ)=Y′Y-2Y′Xβ+β′X′Xβ (9)R(β)=(Y-Xβ)'(Y-Xβ)=Y'Y-2Y'Xβ+β'X'Xβ (9)

在式9中,R(β)对β求导:In Equation 9, R(β) is derived with respect to β:

∂∂ RR (( ββ )) ∂∂ ββ == 00 -- -- -- (( 1010 ))

由式9及式10可得:From Equation 9 and Equation 10, we can get:

X′Xβ=X′Y (11)X'Xβ=X'Y (11)

当X′X可逆时,由式11可得:When X′X is reversible, it can be obtained from formula 11:

β=(X′X)-1X′Y (12)β=(X′X) -1 X′Y (12)

式12中的β为回归系数,令m=1,则可以得到:β in formula 12 is the regression coefficient, let m=1, then we can get:

ββ == ythe y ‾‾ (( ΣxΣx ii 22 )) -- xx ‾‾ (( ΣxΣx ii ythe y ii )) ΣΣ (( xx ii -- xx ‾‾ )) 22 ΣΣ (( xx ii -- xx ‾‾ )) (( ythe y ii -- ythe y ‾‾ )) ΣΣ (( xx ii -- xx ‾‾ )) 22 -- -- -- (( 1313 ))

令yi=RSSIi,xi=logdi,i=1,2,…,s,将计算得到的xi值及实测的RSSIi值带入式13,即可得回归系数β;Let y i =RSSI i , xi =logd i ,i=1,2,…,s, put the calculated value of xi and the measured value of RSSI i into formula 13, and the regression coefficient β can be obtained;

步骤六,将得到的A和n代入式2和式3中,即可求得定位节点与参考节点的距离,然后通过上位机软件的算法即可求出该定位节点在隧道中的位置。Step 6: Substituting the obtained A and n into Equation 2 and Equation 3, the distance between the positioning node and the reference node can be obtained, and then the position of the positioning node in the tunnel can be obtained through the algorithm of the host computer software.

与现有技术相比,本发明的系统将传统的现场管理模式推广到远程管理模式,隧道外的管理人员可以通过远程监控电脑终端对作业人员进行考勤和追踪定位,当出现危险的时候,管理人员可以通过远程监控电脑终端向隧道内的作业人员下达报警信息,从而使施工人员可以迅速离开危险区域,本系统能够使隧道外的管理人员可以根据LED显示屏和电脑终端看到的实际情况下达合理的命令,从而减少了管理人员去施工现场的次数,真正地实现了隧道内作业人员的远程管理,本发明除了用于隧道、矿井等人员定位系统外,还对车路协同和车车通信的研究、隧道智能交通的发展、以及物联网技术在交通领域的推广也有一定的促进作用,本发明实现了隧道内作业人员的标准化管理和精细化管理,有利于隧道内作业人员信息的集成化、企业的管控一体化,具有非常高的工程实用价值。Compared with the existing technology, the system of the present invention extends the traditional on-site management mode to the remote management mode. The management personnel outside the tunnel can check the attendance, track and locate the operators through the remote monitoring computer terminal. When danger occurs, the management The personnel can issue alarm information to the operators in the tunnel through the remote monitoring computer terminal, so that the construction personnel can quickly leave the dangerous area. Reasonable commands, thereby reducing the number of times managers go to the construction site, and truly realizing the remote management of operators in the tunnel. In addition to being used for personnel positioning systems such as tunnels and mines, the present invention also supports vehicle-road coordination and vehicle-vehicle communication. The research of tunnel intelligent transportation, the development of tunnel intelligent transportation, and the promotion of Internet of Things technology in the field of transportation also have a certain role in promoting. The present invention realizes the standardized management and refined management of operators in the tunnel, which is beneficial to the integration of information of operators in the tunnel , Enterprise management and control integration, has a very high engineering practical value.

本发明的方法可以随时对隧道内的作业人员进行定位追踪,能够及时、准确地将隧道内各个区域人员情况动态反映到洞外的远程监控电脑终端,使管理人员能够随时掌握隧道内人员的总数及分布情况,以便进行更加合理的调度管理。The method of the present invention can locate and track the operators in the tunnel at any time, and can dynamically reflect the situation of personnel in each area in the tunnel to the remote monitoring computer terminal outside the tunnel in a timely and accurate manner, so that the management personnel can grasp the total number of personnel in the tunnel at any time And distribution, in order to carry out more reasonable scheduling management.

附图说明Description of drawings

图1为本发明的系统拓扑图;Fig. 1 is a system topology diagram of the present invention;

图2为本发明ZigBee节点结构框图;Fig. 2 is a ZigBee node structural block diagram of the present invention;

图3为本发明隧道人员定位系统设备节点组网示意图;Fig. 3 is a schematic diagram of networking of equipment nodes of the tunnel personnel positioning system of the present invention;

图4为本发明RSSI实测值与线性回归值对比曲线图。Fig. 4 is a graph comparing the measured RSSI value and the linear regression value of the present invention.

具体实施方式detailed description

下面结合附图对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.

参见图1和图2,一种隧道人员定位系统包括若干电子标签和若干参考节点,若干参考节点对应收发信息的电子标签,每个参考节点通过对应的网关连接远程通讯网络,远程通讯网络连接中心服务器,中心服务器连接远程监控电脑终端和显示屏,电子标签作为定位节点;Referring to Fig. 1 and Fig. 2, a tunnel personnel positioning system includes a plurality of electronic tags and a plurality of reference nodes, and a plurality of reference nodes correspond to electronic tags for sending and receiving information, and each reference node is connected to a remote communication network through a corresponding gateway, and the remote communication network is connected to the center The server, the central server is connected to the remote monitoring computer terminal and the display screen, and the electronic label is used as the positioning node;

所述网关采用ZigBee节点,ZigBee节点包括与通用接口连接的数据采集模块和其他模块,通用接口连接微处理模块,微处理模块连接无线通信模块,通用接口、微处理模块和无线通信模块连接电源模块,数据采集模块包括传感器和数模转换模块,其他模块包括按键模块和LED模块,微处理模块包括微控制器和存储器,无线通信模块包括用于接收电子标签信息的天线和用于发送信息的ZigBee射频模块,中心服务器通过GPRS-DTU模块与显示屏连接,GPRS-DTU模块均通过RS232与中心服务器和显示屏连接。Described gateway adopts ZigBee node, and ZigBee node comprises the data acquisition module and other modules that are connected with general interface, and general interface connects microprocessing module, and microprocessing module connects wireless communication module, and general interface, microprocessing module and wireless communication module connect power supply module , the data acquisition module includes sensors and digital-to-analog conversion modules, other modules include button modules and LED modules, the micro-processing module includes microcontrollers and memory, and the wireless communication module includes antennas for receiving electronic tag information and ZigBee for sending information The radio frequency module and the central server are connected to the display screen through the GPRS-DTU module, and the GPRS-DTU module is connected to the central server and the display screen through RS232.

优选的,网关通过有线通信与远程通信网络连接,远程通信网络包括以太网、GPRS、CDMA中的至少一种。Preferably, the gateway is connected to a telecommunication network through wired communication, and the telecommunication network includes at least one of Ethernet, GPRS, and CDMA.

一种隧道人员定位方法包括以下步骤:A method for locating personnel in a tunnel comprises the following steps:

步骤一,采用基于RSSI的隧道人员定位算法,节点距离d可由无线信道的式1得出,Step 1, using the RSSI-based tunnel personnel positioning algorithm, the node distance d can be obtained from the formula 1 of the wireless channel,

PP (( dd )) == PP (( dd 00 )) -- 1010 nno ll gg (( dd dd 00 )) ++ ξξ -- -- -- (( 11 ))

其中,P(d)指离发射端间距为d时接收端获得的RSSI值;P(d0)指离发射端间距为d0时接收端获得的RSSI值;n表示路径损耗指数,它的取值范围为2~5,通常需要在现场测得;ξ指传播损耗随距离增大的速率;Among them, P(d) refers to the RSSI value obtained by the receiving end when the distance from the transmitting end is d; P(d 0 ) refers to the RSSI value obtained by the receiving end when the distance from the transmitting end is d 0 ; n represents the path loss index, and its The value ranges from 2 to 5, and usually needs to be measured on site; ξ refers to the rate at which propagation loss increases with distance;

在工程建设中,我们经常把式1简化为式2:In engineering construction, we often simplify formula 1 to formula 2:

RSSI=A-10nlgd (2)RSSI=A-10nlgd (2)

其中,A表示信号收发端间距为1m时接收端获得的RSSI值,n与式1中的n相同;Among them, A represents the RSSI value obtained by the receiving end when the distance between the transmitting and receiving ends of the signal is 1m, and n is the same as n in formula 1;

步骤二,网关把RSSI值传输至计算机,然后由计算出定位节点的坐标,由式2可得,参考节点和定位节点的间距为:Step 2, the gateway transmits the RSSI value to the computer, and then calculates the coordinates of the positioning node. From formula 2, the distance between the reference node and the positioning node is:

dd == 1010 AA -- RR SS SS II 1010 nno -- -- -- (( 33 ))

步骤三,因变量y与自变量x1,x2,L,xm满足以下回归模型:Step 3, dependent variable y and independent variables x 1 , x 2 , L, x m satisfy the following regression model:

ythe y == aa 00 ++ aa 11 xx 11 ++ aa 22 xx 22 ++ LL ++ aa mm xx mm ++ ξξ EE. ξξ == 00 -- -- -- (( 44 ))

对因变量y和自变量x1,x2,L,xm之间的关系进行测试,从而得到s组数据:Test the relationship between the dependent variable y and the independent variables x 1 , x 2 , L, x m to obtain s group of data:

(xi1,xi2,L,xim;yi);i=1,2,L,s(x i1 , x i2 , L, x im ; y i ); i=1,2,L,s

步骤四,根据s组测试数据可推测出线性回归系数,由多元线性回归模型式4及s组测试数据可得到下式:Step 4, according to the test data of the s group, the linear regression coefficient can be inferred, and the following formula can be obtained from the multiple linear regression model formula 4 and the test data of the s group:

ythe y 11 == aa 00 ++ aa 11 xx 1111 ++ aa 22 xx 1212 ++ LL ++ aa mm xx 11 mm ++ ξξ 11 ythe y 22 == aa 00 ++ aa 11 xx 21twenty one ++ aa 22 xx 22twenty two ++ LL ++ aa mm xx 22 mm ++ ξξ 22 LL LL ythe y sthe s == aa 00 ++ aa 11 xx sthe s 11 ++ aa 22 xx sthe s 22 ++ LL ++ aa mm xx sthe s mm ++ ξξ sthe s -- -- -- (( 55 ))

在式5中,ξ12,L,ξs为随机变量,是各个表达式的残差,这n次测试的残差平方和可表示为:In Equation 5, ξ 1 , ξ 2 , L, ξ s are random variables, which are the residuals of each expression. The sum of squared residuals of n tests can be expressed as:

RR (( aa 00 ,, aa 11 ,, LL ,, aa mm )) == ΣΣ ii sthe s (( ythe y ii -- aa 00 -- aa 11 xx ii 11 -- LL -- aa mm xx ii mm )) 22 -- -- -- (( 66 ))

在式6中,R(a0,a1,L,am)可以度量这s组测试数据与回归函数之间的拟合程度;In formula 6, R(a 0 ,a 1 ,L,am ) can measure the fitting degree between the s test data and the regression function;

步骤五,求R(a0,a1,L,am)的最小值则有:Step five, find the minimum value of R(a 0 ,a 1 ,L,a m ) Then there are:

∂∂ RR (( aa 00 ,, aa 11 ,, LL ,, aa mm )) ∂∂ aa 00 == 00 ∂∂ RR (( aa 00 ,, aa 11 ,, LL ,, aa mm )) ∂∂ aa 11 == 00 LL LL ∂∂ RR (( aa 00 ,, aa 11 ,, LL ,, aa mm )) ∂∂ aa mm == 00 -- -- -- (( 77 ))

为简化式7,可定义以下矩阵:To simplify Equation 7, the following matrix can be defined:

YY == ythe y 11 ythe y 22 Mm ythe y sthe s ,, xx == 11 xx 1111 LL xx 11 mm 11 xx 22 11 LL xx 22 mm Mm Mm Mm 11 xx sthe s 11 LL xx sthe s mm ,, ββ == aa 11 aa 22 Mm aa mm ,, ee == ξξ 11 ξξ 22 Mm ξξ sthe s

则5式可简化为:Then Equation 5 can be simplified as:

Y=Xβ+e (8)Y=Xβ+e (8)

式6可简化为:Formula 6 can be simplified as:

R(β)=(Y-Xβ)′(Y-Xβ)=Y′Y-2Y′Xβ+β′X′Xβ (9)R(β)=(Y-Xβ)'(Y-Xβ)=Y'Y-2Y'Xβ+β'X'Xβ (9)

在式9中,R(β)对β求导:In Equation 9, R(β) is derived with respect to β:

∂∂ RR (( ββ )) ∂∂ ββ == 00 -- -- -- (( 1010 ))

由式9及式10可得:From Equation 9 and Equation 10, we can get:

X′Xβ=X′Y (11)X'Xβ=X'Y (11)

当X′X可逆时,由式11可得:When X′X is reversible, it can be obtained from formula 11:

β=(X′X)-1X′Y (12)β=(X′X) -1 X′Y (12)

式12中的β为回归系数,令m=1,则可以得到:β in formula 12 is the regression coefficient, let m=1, then we can get:

ββ == ythe y ‾‾ (( ΣxΣx ii 22 )) -- xx ‾‾ (( ΣxΣx ii ythe y ii )) ΣΣ (( xx ii -- xx ‾‾ )) 22 ΣΣ (( xx ii -- xx ‾‾ )) (( ythe y ii -- ythe y ‾‾ )) ΣΣ (( xx ii -- xx ‾‾ )) 22 -- -- -- (( 1313 ))

令yi=RSSIi,xi=logdi,i=1,2,…,s,将计算得到的xi值及实测的RSSIi值带入式13,即可得回归系数β;Let y i =RSSI i , xi =logd i ,i=1,2,…,s, put the calculated value of xi and the measured value of RSSI i into formula 13, and the regression coefficient β can be obtained;

步骤六,将得到的A和n代入式2和式3中,即可求得定位节点与参考节点的距离,然后通过上位机软件的算法即可求出该定位节点在隧道中的位置。Step 6: Substituting the obtained A and n into Equation 2 and Equation 3, the distance between the positioning node and the reference node can be obtained, and then the position of the positioning node in the tunnel can be obtained through the algorithm of the host computer software.

参考图3,隧道全长1800m,分为上行线与下行线。根据隧道双向同时施工的特点,将整条隧道分为四个900m区域,本发明的系统的参考节点为线性分布,在每个区域内,每隔20m安置一个参考节点,每隔100m安置一个协调器节点,电子标签随机分布在具有ZigBee网络的隧道内。Referring to Figure 3, the tunnel has a total length of 1800m and is divided into an uplink and a downlink. According to the characteristics of two-way simultaneous construction of the tunnel, the entire tunnel is divided into four 900m areas. The reference nodes of the system of the present invention are linearly distributed. In each area, a reference node is placed every 20m, and a coordination node is placed every 100m. Device nodes, electronic tags are randomly distributed in the tunnel with ZigBee network.

本发明的工作原理及工作过程是:隧道内的作业人员佩戴电子标签在隧道内施工,电子标签可以收发信息,参考节点将电子标签发射的信息接收后传递给网关(协调器节点),网关(协调器节点)通过有线通信方式将作业人员的信息传输给远程通信网络模块(以太网、GPRS、CDMA等),远程通信网络模块(以太网、GPRS、CDMA等)通过数据通信接口将作业人员的信息传输到中心服务器,远程监控电脑终端与中心服务器连接,这样在远程监控电脑终端可以查看工作人员的位置和动态,中心服务器通过GPRS-DTU模块连接LED显示屏,从而使工作人员的位置和动态显示在LED显示屏上。The working principle and working process of the present invention are: the operators in the tunnel wear electronic tags to construct in the tunnel, the electronic tags can send and receive information, and the reference node transmits the information transmitted by the electronic tags to the gateway (coordinator node), and the gateway ( Coordinator node) transmits the operator's information to the remote communication network module (Ethernet, GPRS, CDMA, etc.) through wired communication, and the remote communication network module (Ethernet, GPRS, CDMA, etc.) The information is transmitted to the central server, and the remote monitoring computer terminal is connected to the central server, so that the position and dynamics of the staff can be viewed on the remote monitoring computer terminal. The central server is connected to the LED display through the GPRS-DTU module, so that the staff's position and dynamics displayed on the LED display.

隧道外的管理人员通过远程监控电脑终端可以远程了解到隧道内作业人员的工作状况和位置,减少了去隧道现场检查工作的情况,管理人员可以根据远程了解的情况进行合理的调度,避免了人力资源浪费的情况,当管理人员通过远程监控电脑终端发现隧道内有危险时,可以使用远程监控电脑终端向作业人员发送报警信息,从而使他们避开危险区域,当事故发生后,管理人员可以根据电脑终端显示的作业人员的位置积极开展针对性的救援,从而提高了救援效率。The management personnel outside the tunnel can remotely understand the working status and location of the operators in the tunnel through the remote monitoring computer terminal, which reduces the need to go to the tunnel site to check the work, and the management personnel can make reasonable scheduling according to the remote understanding, avoiding manpower In the case of waste of resources, when the management personnel find danger in the tunnel through the remote monitoring computer terminal, they can use the remote monitoring computer terminal to send alarm information to the operators, so that they can avoid the dangerous area. When the accident occurs, the management personnel can according to The location of the operator displayed on the computer terminal actively carries out targeted rescue, thereby improving the efficiency of rescue.

基于ZigBee的隧道人员安全定位系统可以使管理人员在任意时刻可动态掌握隧道内作业人员的工作状况和位置等信息,并可为后期的统计分析提供数据依据。The tunnel personnel safety positioning system based on ZigBee can enable managers to dynamically grasp information such as the working conditions and positions of operators in the tunnel at any time, and can provide data basis for later statistical analysis.

Claims (6)

1.一种隧道人员定位系统,其特征在于,包括若干电子标签和若干参考节点,若干参考节点对应一个收发信息的电子标签,每个参考节点通过对应的网关连接远程通讯网络,远程通讯网络连接中心服务器,中心服务器连接远程监控电脑终端和显示屏;1. A tunnel personnel positioning system, characterized in that it comprises some electronic tags and some reference nodes, and some reference nodes correspond to an electronic tag for sending and receiving information, and each reference node is connected to a remote communication network through a corresponding gateway, and the remote communication network is connected to The central server, the central server is connected to the remote monitoring computer terminal and display screen; 所述网关采用ZigBee节点,ZigBee节点包括与通用接口连接的数据采集模块和其他模块,通用接口连接微处理模块,微处理模块连接无线通信模块,通用接口、微处理模块和无线通信模块连接电源模块。Described gateway adopts ZigBee node, and ZigBee node comprises the data acquisition module and other modules that are connected with general interface, and general interface connects microprocessing module, and microprocessing module connects wireless communication module, and general interface, microprocessing module and wireless communication module connect power supply module . 2.根据权利要求1所述的一种隧道人员定位系统,其特征在于,所述数据采集模块包括传感器和数模转换模块,其他模块包括按键模块和LED模块。2. A tunnel personnel positioning system according to claim 1, wherein the data acquisition module includes a sensor and a digital-to-analog conversion module, and other modules include a button module and an LED module. 3.根据权利要求1所述的一种隧道人员定位系统,其特征在于,所述微处理模块包括微控制器和存储器,无线通信模块包括用于接收电子标签信息的天线和用于发送信息的ZigBee射频模块。3. A kind of tunnel personnel locating system according to claim 1, is characterized in that, described microprocessing module comprises microcontroller and memory, and wireless communication module comprises the antenna that is used to receive electronic tag information and is used to send information ZigBee RF module. 4.根据权利要求1所述的一种隧道人员定位系统,其特征在于,所述网关通过有线通信与远程通信网络连接,远程通信网络包括以太网、GPRS、CDMA中的至少一种。4. A tunnel personnel positioning system according to claim 1, wherein the gateway is connected to a telecommunication network through wired communication, and the telecommunication network includes at least one of Ethernet, GPRS, and CDMA. 5.根据权利要求1所述的一种隧道人员定位系统,其特征在于,所述中心服务器通过GPRS-DTU模块与显示屏连接,GPRS-DTU模块均通过RS232与中心服务器和显示屏连接。5. a kind of tunnel personnel positioning system according to claim 1, is characterized in that, described central server is connected with display screen through GPRS-DTU module, and GPRS-DTU module is all connected with central server and display screen through RS232. 6.一种隧道人员定位方法,其特征在于,包括以下步骤:6. A method for positioning personnel in a tunnel, comprising the following steps: 步骤一,采用基于RSSI的隧道人员定位算法,节点距离d可由无线信道的式1得出,Step 1, using the RSSI-based tunnel personnel positioning algorithm, the node distance d can be obtained from the formula 1 of the wireless channel, PP (( dd )) == PP (( dd 00 )) -- 1010 nno lglg (( dd dd 00 )) ++ ξξ -- -- -- (( 11 )) 其中,P(d)指离发射端间距为d时接收端获得的RSSI值;P(d0)指离发射端间距为d0时接收端获得的RSSI值;n表示路径损耗指数,它的取值范围为2~5,通常需要在现场测得;ξ指传播损耗随距离增大的速率;Among them, P(d) refers to the RSSI value obtained by the receiving end when the distance from the transmitting end is d; P(d 0 ) refers to the RSSI value obtained by the receiving end when the distance from the transmitting end is d 0 ; n represents the path loss index, and its The value ranges from 2 to 5, and usually needs to be measured on site; ξ refers to the rate at which propagation loss increases with distance; 在工程建设中,我们经常把式1简化为式2:In engineering construction, we often simplify formula 1 to formula 2: RSSI=A-10nlgd (2)RSSI=A-10nlgd (2) 其中,A表示信号收发端间距为1m时接收端获得的RSSI值,n与式1中的n相同;Among them, A represents the RSSI value obtained by the receiving end when the distance between the transmitting and receiving ends of the signal is 1m, and n is the same as n in formula 1; 步骤二,网关把RSSI值传输至计算机,然后由计算出定位节点的坐标,由式2可得,参考节点和定位节点的间距为:Step 2, the gateway transmits the RSSI value to the computer, and then calculates the coordinates of the positioning node. From formula 2, the distance between the reference node and the positioning node is: dd == 1010 AA -- RR SS SS II 1010 nno -- -- -- (( 33 )) 步骤三,因变量y与自变量x1,x2,L,xm满足以下回归模型:Step 3, dependent variable y and independent variables x 1 , x 2 , L, x m satisfy the following regression model: ythe y == aa 00 ++ aa 11 xx 11 ++ aa 22 xx 22 ++ LL ++ aa mm xx mm ++ ξξ EE. ξξ == 00 -- -- -- (( 44 )) 对因变量y和自变量x1,x2,L,xm之间的关系进行测试,从而得到s组数据:Test the relationship between the dependent variable y and the independent variables x 1 , x 2 , L, x m to obtain s group of data: (xi1,xi2,L,xim;yi);i=1,2,L,s(x i1 , x i2 , L, x im ; y i ); i=1,2,L,s 步骤四,根据s组测试数据可推测出线性回归系数,由多元线性回归模型式4及s组测试数据可得到下式:Step 4, according to the test data of the s group, the linear regression coefficient can be inferred, and the following formula can be obtained from the multiple linear regression model formula 4 and the test data of the s group: ythe y 11 == aa 00 ++ aa 11 xx 1111 ++ aa 22 xx 1212 ++ LL ++ aa mm xx 11 mm ++ ξξ 11 ythe y 22 == aa 00 ++ aa 11 xx 21twenty one ++ aa 22 xx 22twenty two ++ LL ++ aa mm xx 22 mm ++ ξξ 22 LL LL ythe y sthe s == aa 00 ++ aa 11 xx sthe s 11 ++ aa 22 xx sthe s 22 ++ LL ++ aa mm xx sthe s mm ++ ξξ sthe s -- -- -- (( 55 )) 在式5中,ξ12,L,ξs为随机变量,是各个表达式的残差,这n次测试的残差平方和可表示为:In Equation 5, ξ 1 , ξ 2 , L, ξ s are random variables, which are the residuals of each expression. The sum of squared residuals of n tests can be expressed as: RR (( aa 00 ,, aa 11 ,, LL ,, aa mm )) == ΣΣ ii sthe s (( ythe y ii -- aa 00 -- aa 11 xx ii 11 -- LL -- aa mm xx ii mm )) 22 -- -- -- (( 66 )) 在式6中,R(a0,a1,L,am)可以度量这s组测试数据与回归函数之间的拟合程度;In formula 6, R(a 0 ,a 1 ,L,am ) can measure the fitting degree between the s test data and the regression function; 步骤五,求R(a0,a1,L,am)的最小值则有:Step five, find the minimum value of R(a 0 ,a 1 ,L,a m ) Then there are: ∂∂ RR (( aa 00 ,, aa 11 ,, LL ,, aa mm )) ∂∂ aa 00 == 00 ∂∂ RR (( aa 00 ,, aa 11 ,, LL ,, aa mm )) ∂∂ aa 11 == 00 LL LL ∂∂ RR (( aa 00 ,, aa 11 ,, LL ,, aa mm )) ∂∂ aa mm == 00 -- -- -- (( 77 )) 为简化式7,可定义以下矩阵:To simplify Equation 7, the following matrix can be defined: YY == ythe y 11 ythe y 22 Mm ythe y sthe s ,, xx == 11 xx 1111 LL xx 11 mm 11 xx 21twenty one LL xx 22 mm Mm Mm Mm 11 xx sthe s 11 LL xx sthe s mm ,, ββ == aa 11 aa 22 Mm aa mm ,, ee == ξξ 11 ξξ 22 Mm ξξ sthe s 则5式可简化为:Then Equation 5 can be simplified as: Y=Xβ+e (8)Y=Xβ+e (8) 式6可简化为:Formula 6 can be simplified as: R(β)=(Y-Xβ)′(Y-Xβ)=Y′Y-2Y′Xβ+β′X′Xβ (9)R(β)=(Y-Xβ)'(Y-Xβ)=Y'Y-2Y'Xβ+β'X'Xβ (9) 在式9中,R(β)对β求导:In Equation 9, R(β) is derived with respect to β: ∂∂ RR (( ββ )) ∂∂ ββ == 00 -- -- -- (( 1010 )) 由式9及式10可得:From Equation 9 and Equation 10, we can get: X′Xβ=X′Y (11)X'Xβ=X'Y (11) 当X′X可逆时,由式11可得:When X′X is reversible, it can be obtained from formula 11: β=(X′X)-1X′Y (12)β=(X′X) -1 X′Y (12) 式12中的β为回归系数,令m=1,则可以得到:β in formula 12 is the regression coefficient, let m=1, then we can get: ββ == ythe y ‾‾ (( ΣxΣx ii 22 )) -- xx ‾‾ (( ΣxΣx ii ythe y ii )) ΣΣ (( xx ii -- xx ‾‾ )) 22 ΣΣ (( xx ii -- xx ‾‾ )) (( ythe y ii -- ythe y ‾‾ )) ΣΣ (( xx ii -- xx ‾‾ )) 22 -- -- -- (( 1313 )) 令yi=RSSIi,xi=logdi,i=1,2,…,s,将计算得到的xi值及实测的RSSIi值带入式13,即可得回归系数β;Let y i =RSSI i , xi =logd i ,i=1,2,…,s, put the calculated value of xi and the measured value of RSSI i into formula 13, and the regression coefficient β can be obtained; 步骤六,将得到的A和n代入式2和式3中,即可求得定位节点与参考节点的距离,然后通过上位机软件的算法即可求出该定位节点在隧道中的位置。Step 6: Substituting the obtained A and n into Equation 2 and Equation 3, the distance between the positioning node and the reference node can be obtained, and then the position of the positioning node in the tunnel can be obtained through the algorithm of the host computer software.
CN201610316778.2A 2016-05-12 2016-05-12 Tunnel personnel positioning system and method Pending CN105954714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610316778.2A CN105954714A (en) 2016-05-12 2016-05-12 Tunnel personnel positioning system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610316778.2A CN105954714A (en) 2016-05-12 2016-05-12 Tunnel personnel positioning system and method

Publications (1)

Publication Number Publication Date
CN105954714A true CN105954714A (en) 2016-09-21

Family

ID=56912564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610316778.2A Pending CN105954714A (en) 2016-05-12 2016-05-12 Tunnel personnel positioning system and method

Country Status (1)

Country Link
CN (1) CN105954714A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106385458A (en) * 2016-10-12 2017-02-08 徐志勇 Supervision and management center system of construction field
CN108093475A (en) * 2017-12-29 2018-05-29 重庆地质矿产研究院 Mine personnel positioning device and method
CN114151136A (en) * 2021-11-04 2022-03-08 天地(常州)自动化股份有限公司 Personnel protection method of reversed loader
CN114666892A (en) * 2022-03-07 2022-06-24 中国铁道科学研究院集团有限公司铁道建筑研究所 Method, device and system for vehicle positioning in tunnel based on ZigBee
CN115641683A (en) * 2022-12-09 2023-01-24 四川云控交通科技有限责任公司 Intelligent monitoring system for highway construction management

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1545207A (en) * 1997-12-23 2004-11-10 �����ɷ� Non-linear model predictive control method for controlling a gas-phase reactor including a rapid noise filter and method therefor
US20090131004A1 (en) * 2007-11-20 2009-05-21 Samsung Electro-Mechanics Co., Ltd. Receiver with sigma-delta structure
CN205643690U (en) * 2016-05-12 2016-10-12 长安大学 Tunnel location safety control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1545207A (en) * 1997-12-23 2004-11-10 �����ɷ� Non-linear model predictive control method for controlling a gas-phase reactor including a rapid noise filter and method therefor
US20090131004A1 (en) * 2007-11-20 2009-05-21 Samsung Electro-Mechanics Co., Ltd. Receiver with sigma-delta structure
CN205643690U (en) * 2016-05-12 2016-10-12 长安大学 Tunnel location safety control system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUANG C N,CHAN C T: "ZigBee-based indoor location system by k-nearest neighbor algorithm with weighted RSSI", 《PROCEDIA COMPUTER SCIENCE》 *
王海兵: "基于ZigBee的隧道人员定位系统设计", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106385458A (en) * 2016-10-12 2017-02-08 徐志勇 Supervision and management center system of construction field
CN108093475A (en) * 2017-12-29 2018-05-29 重庆地质矿产研究院 Mine personnel positioning device and method
CN114151136A (en) * 2021-11-04 2022-03-08 天地(常州)自动化股份有限公司 Personnel protection method of reversed loader
CN114151136B (en) * 2021-11-04 2024-02-20 天地(常州)自动化股份有限公司 Personnel protection method of reversed loader
CN114666892A (en) * 2022-03-07 2022-06-24 中国铁道科学研究院集团有限公司铁道建筑研究所 Method, device and system for vehicle positioning in tunnel based on ZigBee
CN115641683A (en) * 2022-12-09 2023-01-24 四川云控交通科技有限责任公司 Intelligent monitoring system for highway construction management

Similar Documents

Publication Publication Date Title
CN105954714A (en) Tunnel personnel positioning system and method
CN102523621B (en) A kind of Mine Personnel Positioning System and method
CN103634908B (en) A kind of personnel location system
CN103150914A (en) Visual intelligent transportation meteorological monitoring and forewarning management system based on Web geographic information system (GIS)
CN101221689A (en) Underground wireless safety monitoring system based on hybrid networking of 2.4GHz and 433MHz frequency bands
CN107067690A (en) A kind of Tunnel automation monitoring system and its monitoring method based on ZigBee
CN205643690U (en) Tunnel location safety control system
CN106899665A (en) Remote ancient building fire hazard monitoring early warning system based on wireless sensor network
CN202058295U (en) Wireless network monitoring system based on IOS (Internet of Things)
CN109405758A (en) A kind of tunnel wall rock deformation monitoring method and its monitoring system
CN204518092U (en) Based on the watercraft engine room environmental monitoring system of wireless sensor network
CN101754247A (en) A Mine Positioning System and Its Positioning Method Based on Multiple Linear Regression
CN203053480U (en) Bridge safety monitoring and pre-warning system based on wireless sensor network
CN114961857A (en) Mine neural network perception and intelligent early warning method based on Internet of things
CN202818621U (en) Underground positioning system using TOF technology principle based on Zigbee
CN106254530A (en) A kind of tunnel radio networking and constructing tunnel and operation long distance control system
CN103399133A (en) IOT (internet of things)-based intelligent online multilevel monitoring system of urban sewage discharge points
CN115964757A (en) Drainage basin environment monitoring and disposal method and device based on block chain
CN202014272U (en) Ground surface displacement real-time monitoring system
CN108519577B (en) Distributed positioning method based on compressed sensing TOA characteristic signal fingerprint library
CN202634708U (en) Underground personnel positioning system
CN203954484U (en) A kind of intelligent evacuation indication system with positioning function
CN103543437A (en) Downhole personnel positioning system based on Zigbee technology
CN205506058U (en) Long -range automatic monitoring analysis early warning system of base station antenna gesture
CN202395818U (en) WSN-based employee tracking and monitoring system for petrochemical sulfur-containing plants

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160921