[go: up one dir, main page]

CN105954679A - Lithium battery charge state online estimating method - Google Patents

Lithium battery charge state online estimating method Download PDF

Info

Publication number
CN105954679A
CN105954679A CN201610278081.0A CN201610278081A CN105954679A CN 105954679 A CN105954679 A CN 105954679A CN 201610278081 A CN201610278081 A CN 201610278081A CN 105954679 A CN105954679 A CN 105954679A
Authority
CN
China
Prior art keywords
lithium battery
model
fuzzy
beta
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610278081.0A
Other languages
Chinese (zh)
Other versions
CN105954679B (en
Inventor
蒋建华
陈明渊
李曦
洪升平
许元武
李箭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201610278081.0A priority Critical patent/CN105954679B/en
Publication of CN105954679A publication Critical patent/CN105954679A/en
Application granted granted Critical
Publication of CN105954679B publication Critical patent/CN105954679B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种锂电池荷电状态(SOC)的在线估计方法。本发明基于扩展卡尔曼滤波方法,结合了TS模糊原理对锂电池实时参数开路电压UOC进行精确预估,进而实现对锂电池SOC的精确估计。本发明包括:锂电池改进双RC等效电路模型的建立,运用在线TS模糊模型对电池开路电压UOC的精确计算,利用扩展卡尔曼滤波算法实时估计锂电池SOC。基于本发明对锂电池SOC的估计,不仅在锂电池SOC的估计精度上满足预定要求,而且TS模糊模型的应用使得锂电池SOC估计精度提高的同时,也保证了在线估计的快速性和实时性。

The invention discloses an online estimation method of the state of charge (SOC) of a lithium battery. Based on the extended Kalman filtering method, the present invention combines the TS fuzzy principle to accurately predict the real-time parameter open-circuit voltage U OC of the lithium battery, and then realizes the accurate estimation of the SOC of the lithium battery. The invention includes: the establishment of an improved double RC equivalent circuit model of the lithium battery, the accurate calculation of the open circuit voltage UOC of the battery by using the online TS fuzzy model, and the real-time estimation of the SOC of the lithium battery by using an extended Kalman filter algorithm. Based on the estimation of the lithium battery SOC in the present invention, not only the estimation accuracy of the lithium battery SOC meets the predetermined requirements, but also the application of the TS fuzzy model improves the estimation accuracy of the lithium battery SOC, and at the same time ensures the rapidity and real-time performance of online estimation .

Description

一种锂电池荷电状态的在线估计方法An online estimation method of state of charge of lithium battery

技术领域technical field

本发明属于电池储能技术领域,具体而言,涉及一种锂电池荷电状态(SOC)的估计方法。The invention belongs to the technical field of battery energy storage, and in particular relates to a method for estimating the state of charge (SOC) of a lithium battery.

背景技术Background technique

近几十年来,电能存储技术的研究和发展一直受到各国能源、交通、电力、通讯等部门的重视。在新能源技术快速发展的大背景下,如果能在燃料电池发电、风能发电等新能源发电设备中配备有储能装置,一方面可以通过储能元件对机组的出力曲线进行调整,解决新能源发电自身出力随机性、不可控的问题,减小新能源出力变化对电网的冲击;另一方面可以在电力充沛时储存电能,在负荷高峰时释放电能,达到移峰填谷、减少系统备用需求的作用。其中电池储能技术,特别是锂离子电池由于兼具高比能量和高比功率的显著优势,在大规模储能领域有着良好的应用前景。In recent decades, the research and development of electric energy storage technology has been valued by the energy, transportation, electric power, communication and other departments of various countries. Under the background of the rapid development of new energy technology, if energy storage devices can be equipped in new energy power generation equipment such as fuel cell power generation and wind power generation, on the one hand, the output curve of the unit can be adjusted through the energy storage element to solve the problem of new energy. The problem of randomness and uncontrollability of power generation itself can reduce the impact of new energy output changes on the power grid; on the other hand, it can store electric energy when the power is abundant, and release electric energy when the load peaks, so as to shift peaks and fill valleys and reduce system backup requirements role. Among them, battery energy storage technology, especially lithium-ion battery, has a good application prospect in the field of large-scale energy storage due to its significant advantages of high specific energy and high specific power.

电池管理系统(Battery Management System,BMS)通过对电池的全方位信息采集、准确的容量估算、科学的均衡管理以及快速响应的保护策略,实现电池成组后的智能化管理,以确保电池储能系统安全可靠地运行。高精度的电池荷电状态(State of Charge,SOC)估算技术作为BMS的关键技术之一,是通过在线实时监测电池容量,随时给出电池系统的剩余容量,将电池SOC的工作范围控制在合理范围内,防止电池出现过充过放现象,保证其安全使用,同时也有利于延长电池的使用寿命。所以SOC估算是BMS的主要任务和技术难点。影响SOC的因素很多,如环境温度、充放电效率、循环寿命、自放电等,它们彼此耦合,因此根据这些参数来精确估测SOC并不容易。传统的电池SOC估算方法缺点较明显,适用范围也有限。目前在实际应用中,使用较多的是开路电压法与安时积分法相结合的方法。需要注意的是,安时积分法存在较大的累积误差,必须定期进行修正,而开路电压法只有在电池长时间静置稳定后方可获得精确的结果,即离线修正,这在实际应用中较难实现。因此,需要寻求一种具有在线修正能力的SOC实时在线估计方法。The battery management system (Battery Management System, BMS) realizes the intelligent management of batteries after grouping through comprehensive information collection of batteries, accurate capacity estimation, scientific balanced management and quick response protection strategies to ensure battery energy storage The system operates safely and reliably. High-precision battery state of charge (State of Charge, SOC) estimation technology, as one of the key technologies of BMS, is to monitor the battery capacity online in real time, provide the remaining capacity of the battery system at any time, and control the working range of the battery SOC within a reasonable range. Within the range, prevent the battery from overcharging and overdischarging, ensure its safe use, and also help prolong the service life of the battery. So SOC estimation is the main task and technical difficulty of BMS. There are many factors that affect SOC, such as ambient temperature, charge and discharge efficiency, cycle life, self-discharge, etc., and they are coupled with each other, so it is not easy to accurately estimate SOC based on these parameters. The traditional battery SOC estimation method has obvious shortcomings, and its scope of application is also limited. At present, in practical applications, the combination of open circuit voltage method and ampere-hour integration method is widely used. It should be noted that the ampere-hour integration method has a large cumulative error and must be corrected regularly, while the open circuit voltage method can only obtain accurate results after the battery has been left to stand for a long time, that is, offline correction, which is relatively difficult in practical applications. Difficult to achieve. Therefore, it is necessary to seek a real-time SOC online estimation method with online correction capability.

发明内容Contents of the invention

本发明针对现有技术的不足,提出一种锂电池SOC的在线估计方法。本发明基于扩展卡尔曼滤波方法,结合TS模糊原理对锂电池参数开路电压UOC进行精确预估,进而实现对锂电池SOC的在线实时估计。其主要包括锂电池改进双RC等效电路模型的建立,运用TS模糊模型对电池开路电压的辨识,利用扩展卡尔曼滤波算法在线实时估计锂电池SOC。基于本发明对锂电池SOC的在线估计,不仅在锂电池SOC的估计精度上满足预定要求,而且TS模糊模型的应用使得锂电池SOC估计精度提高的同时,也保证在线估计的快速性和实时性。Aiming at the deficiencies of the prior art, the present invention proposes an online estimation method for the SOC of a lithium battery. The invention is based on the extended Kalman filter method, combined with the TS fuzzy principle, accurately predicts the open circuit voltage U OC of the lithium battery parameter, and then realizes the online real-time estimation of the lithium battery SOC. It mainly includes the establishment of the improved double RC equivalent circuit model of the lithium battery, the identification of the open circuit voltage of the battery by using the TS fuzzy model, and the online real-time estimation of the SOC of the lithium battery by using the extended Kalman filter algorithm. Based on the online estimation of lithium battery SOC based on the present invention, not only the estimation accuracy of lithium battery SOC meets the predetermined requirements, but also the application of TS fuzzy model improves the estimation accuracy of lithium battery SOC while ensuring the rapidity and real-time performance of online estimation .

为实现上述目的,本发明提出了一种锂电池SOC的在线估计方法,其特征在于,所述方法包括以下步骤:In order to achieve the above object, the present invention proposes an online estimation method of lithium battery SOC, characterized in that the method comprises the following steps:

(1)任意给定锂电池SOC的初始值,利用复合经验公式模型求出电池开路电压的预估值 (1) The initial value of the SOC of the lithium battery is given arbitrarily, and the estimated value of the open circuit voltage of the battery is obtained by using the composite empirical formula model

(2)将锂电池电流Ibat、工作温度T作为TS模糊模型的输入,利用TS模糊模型计算锂电池开路电压输出值UOC,实现对开路电压预估值进行实时优化;(2) Will Lithium battery current I bat and operating temperature T are used as the input of the TS fuzzy model, and the TS fuzzy model is used to calculate the output value U OC of the lithium battery open circuit voltage to realize the estimated value of the open circuit voltage perform real-time optimization;

(3)将UOC代入锂电池改进双RC模型中,并使用HPPC测试法对模型参数进行辨识;(3) Substitute U OC into the improved double RC model of the lithium battery, and use the HPPC test method to identify the model parameters;

(4)利用扩展卡尔曼滤波估计器,在线计算得到锂电池SOC的实时值SOCnew(4) Using the extended Kalman filter estimator, the real-time value SOC new of the lithium battery SOC is calculated online.

作为进一步优选的,所述步骤(1)中所述复合经验公式模型是基于对Shepherd模型、Unnewehr Universal模型以及Nernst模型进行综合改进获得,其形式如下:As further preferably, the composite empirical formula model described in the step (1) is based on comprehensive improvement of the Shepherd model, the Unnewehr Universal model and the Nernst model, and its form is as follows:

Uu ^^ Oo CC == KK 00 ++ KK 11 zz ++ KK 22 // zz ++ KK 33 lnln zz ++ KK 44 lnln (( 11 -- zz ))

其中,为当前电池开路电压预估值,z为上一时刻电池SOC值,K0、K1、K2、K3、K4为没有物理意义的系数。通过带遗忘因子的递推最小二乘法对上述系数K0~K4进行辨识。带遗忘因子的递推最小二乘法的参数辨识公式为:in, is the estimated value of the current battery open circuit voltage, z is the battery SOC value at the previous moment, and K 0 , K 1 , K 2 , K 3 , and K 4 are coefficients that have no physical meaning. The above-mentioned coefficients K 0 -K 4 are identified by the recursive least squares method with forgetting factor. The parameter identification formula of the recursive least squares method with forgetting factor is:

其中,为待估参数向量 为数据向量K(k)为增益矩阵,P(k)为协方差矩阵,λ为遗忘因子,取接近于1的正数,通常不小于0.9。参数辨识步骤如下:in, is the parameter vector to be estimated is the data vector K(k) is the gain matrix, P(k) is the covariance matrix, and λ is the forgetting factor, which is a positive number close to 1, usually not less than 0.9. The parameter identification steps are as follows:

(1.1)初始数据的确定。根据经验模型参数辨识的先验知识给待估向量赋初值;设置辨识的初始值P(0)=106×I5×5(I为单位矩阵),遗忘因子λ=0.998;(1.1) Determination of initial data. According to the prior knowledge of empirical model parameter identification, the vector to be estimated is given Assign initial value; set the initial value of identification P(0)=10 6 ×I 5×5 (I is the unit matrix), forgetting factor λ=0.998;

(1.2)采样当前输入输出数据确定 (1.2) Sampling the current input and output data Sure

(1.3)利用上述的参数辨识公式计算得到K(k)和P(k);(1.3) Calculated by using the above parameter identification formula K(k) and P(k);

(1.4)若k<N(N为采样个数),则k→k+1,返回步骤(1.2),继续循环;否则算法结束,输出 (1.4) If k<N (N is the number of samples), then k→k+1, return to step (1.2), and continue the cycle; otherwise, the algorithm ends and the output

作为进一步优选的,所述步骤(2)中利用TS模糊模型计算锂电池开路电压输出值UOC具体包括下述子步骤:As further preferred, in the step (2), using the TS fuzzy model to calculate the output value U OC of the lithium battery open circuit voltage specifically includes the following sub-steps:

(2.1)对锂电池模型进行充放电仿真实验,记录并保存历史输入输出数据;(2.1) Carry out charging and discharging simulation experiments on the lithium battery model, record and save historical input and output data;

(2.2)对历史输入输出数据进行C聚类处理,计算出隶属度函数ui及后件参数Θ(k);(2.2) Carry out C clustering process to historical input and output data, calculate membership degree function u i and consequent parameter Θ(k);

(2.3)组建TS模糊规则。其中,第i条TS模糊规则表示为:(2.3) Build TS fuzzy rules. Among them, the i-th TS fuzzy rule is expressed as:

RR ii :: II ff xx 11 (( kk )) ii sthe s AA 11 ii aa nno dd xx 22 (( kk )) ii sthe s AA 22 ii aa nno dd ...... aa nno dd xx nno (( kk )) ii sthe s AA nno ii

TT hh ee nno ythe y ii (( kk ++ 11 )) == pp 00 ii ++ pp 11 ii xx 11 (( kk )) ++ ...... ++ pp nno ii xx nno (( kk )) ;; ii == 11 ,, 22 ...... ,, cc

其中,c为模糊规则数目,n为所述TS模糊模型的输入变量数目,x1(k),x2(k),···,xn(k)为第k时刻及以前的输入输出数据的回归变量,为代表各模糊子空间的具有线性隶属度函数的模糊集,可以用来进行第i条规则的模糊推理,为第i条模糊规则的后件参数,yi(k+1)为所述TS模糊模型在第i条规则下(k+1)时刻的输出值。Among them, c is the number of fuzzy rules, n is the number of input variables of the TS fuzzy model, x 1 (k), x 2 (k),..., x n (k) is the input and output at the kth moment and before the regressor of the data, is a fuzzy set with a linear membership function representing each fuzzy subspace, which can be used for fuzzy inference of the i-th rule, is the consequent parameter of the i-th fuzzy rule, and y i (k+1) is the output value of the TS fuzzy model at the moment (k+1) under the i-th rule.

(2.4)定义βi为所述第i条模糊规则的适应度,则有:(2.4) Define β i as the fitness of the i-th fuzzy rule, then:

&beta;&beta; ii == &Sigma;&Sigma; jj == 11 cc (( uu ii uu jj )) ,, ii == 11 ,, 22 ,, ...... ,, cc

于是,所述TS模糊模型在(k+1)时刻的输出y(k+1)的计算公式为:Then, the calculation formula of the output y(k+1) of the TS fuzzy model at the moment (k+1) is:

ythe y (( kk ++ 11 )) == &Sigma;&Sigma; ii == 11 cc &beta;&beta; ii &CenterDot;&CenterDot; ythe y ii (( kk ++ 11 )) == &Sigma;&Sigma; ii == 11 cc &beta;&beta; ii &CenterDot;&Center Dot; (( pp 00 ii ++ pp 11 ii xx 11 (( kk )) ++ ...... ++ pp nno ii xx nno (( kk )) )) == &Sigma;&Sigma; ii == 11 cc (( pp 00 ii pp 11 ii ...... pp nno ii )) (( &beta;&beta; ii &beta;&beta; ii xx 11 (( kk )) ...... &beta;&beta; ii xx nno (( kk )) )) TT

定义后件参数Θ(k)和前件参数Φ(k)为:Define the consequent parameter Θ(k) and the antecedent parameter Φ(k) as:

&Theta;&Theta; (( kk )) == &lsqb;&lsqb; &theta;&theta; 11 ,, &theta;&theta; 22 ,, ...... ,, &theta;&theta; rr &rsqb;&rsqb; TT == &lsqb;&lsqb; pp 1010 ,, pp 2020 ,, ...... ,, pp cc 00 ,, pp 1111 ,, pp 21twenty one ,, ...... ,, pp cc 11 ,, ...... ,, pp cc nno &rsqb;&rsqb; TT ;; &Phi;&Phi; (( kk )) == &lsqb;&lsqb; &beta;&beta; 11 ,, ...... ,, &beta;&beta; cc ,, &beta;&beta; 11 xx 11 (( kk )) ,, ...... ,, &beta;&beta; cc xx 11 (( kk )) ,, ...... ,, &beta;&beta; 11 xx nno (( kk )) ,, ...... ,, &beta;&beta; cc xx nno (( kk )) &rsqb;&rsqb; TT ;;

其中,r=c·(n+1),可以得到:Among them, r=c·(n+1), can get:

y(k+1)=Φ(k)T·Θ(k)y(k+1)=Φ(k) T ·Θ(k)

(2.5)定义输出y(k+1)=UOC(k)。其中,UOC(k)为k时刻电池开路电压。令k=k+1并返回步骤(2.2),直到锂电池SOC在线估计过程结束。(2.5) Define the output y(k+1)=U OC (k). Among them, U OC (k) is the open circuit voltage of the battery at time k. Let k=k+1 and return to step (2.2) until the lithium battery SOC online estimation process ends.

作为进一步优选的,所述步骤(3)中所述的锂电池改进双RC模型,其等效内阻使用热敏电阻表示。结合基尔霍夫电流电压定律,可得锂电池的状态方程和输出方程分别为:As a further preference, the improved double RC model of the lithium battery described in the step (3) has an equivalent internal resistance represented by a thermistor. Combined with Kirchhoff's current-voltage law, the state equation and output equation of the lithium battery can be obtained as follows:

Uu bb Uu pp SS Oo CC kk ++ 11 == 11 -- TT sthe s &tau;&tau; bb 00 00 00 11 -- TT sthe s &tau;&tau; bb 00 00 00 11 Uu bb Uu pp SS Oo CC kk ++ TT sthe s CC bb TT sthe s CC pp -- &eta;T&eta;T sthe s CC nno II batbat kk ++ WW kk

Uu batbat kk == Uu Oo CC -- Uu bb -- Uu pp -- RR TT &CenterDot;&CenterDot; II batbat kk ++ VV kk

其中,Wk为系统过程噪声,Vk为系统测量噪声。Ts为系统采样时间,τb为电容Cb和电阻Rb组成的RC环时间常数,τp为电容Cp和电阻Rp组成的RC环时间常数,Ub、Up分别为两个RC环两端的电压,η为电池库伦效率,SOC表示模型状态量电池SOC,Cn为电池容量。Ubat模型输出端电压,Ibat为系统电流,放电时电流为正值,充电时为负。RT为等效热敏电阻值,其辨识方法如下:Among them, W k is the system process noise, V k is the system measurement noise. T s is the system sampling time, τ b is the time constant of the RC loop composed of capacitor C b and resistor R b , τ p is the time constant of the RC loop composed of capacitor C p and resistor R p , U b and U p are two The voltage at both ends of the RC ring, η is the coulombic efficiency of the battery, SOC is the model state quantity battery SOC, and C n is the battery capacity. U bat model output terminal voltage, I bat is the system current, the current is positive when discharging, and negative when charging. R T is the equivalent thermistor value, and its identification method is as follows:

定义热敏电阻RT=f(T)=a·T2+b·T+c。其中,a、b、c为待拟合系数。将锂电池在不同电流、不同温度下进行充放电试验,并得到一簇关系曲线。用曲线拟合的方法即可求出a、b、c的值。Define thermistor R T =f(T)=a·T 2 +b·T+c. Among them, a, b, c are coefficients to be fitted. The lithium battery is charged and discharged at different currents and temperatures, and a cluster of relationship curves are obtained. The values of a, b, and c can be obtained by curve fitting method.

其它模型参数的辨识方法如下:在常温下使用HPPC(Hybrid PulsePower Characterization,混合脉冲功率特性)工况对锂电池进行外部激励,得到输入输出关系曲线。同样利用曲线拟合的方法可求出模型参数Rb、Cb、Rp、Cp的值。The identification method of other model parameters is as follows: use HPPC (Hybrid Pulse Power Characterization, Hybrid Pulse Power Characterization) working condition to excite the lithium battery externally at room temperature, and obtain the input-output relationship curve. The values of model parameters R b , C b , R p , and C p can also be obtained by using the method of curve fitting.

作为进一步优选的,所述步骤(4)中将所述改进双RC模型输出端电压Ubat、模型状态量电池SOC、系统电流Ibat、端电压测量值Utm作为所述扩展卡尔曼滤波估计器的输入量,并进行在线计算,得到锂电池SOC的实时值SOCnewAs a further preference, in the step (4), the output terminal voltage U bat of the improved double RC model, the model state quantity battery SOC, the system current I bat , and the measured value of the terminal voltage U tm are used as the extended Kalman filter estimation The input quantity of the device is calculated online, and the real-time value SOC new of the lithium battery SOC is obtained.

总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:Generally speaking, compared with the prior art, the above technical solution conceived by the present invention mainly has the following technical advantages:

1.本发明基于扩展卡尔曼滤波方法,结合TS模糊原理对锂电池参数开路电压UOC进行精确预估,进而实现了对锂电池SOC的在线实时估计;1. The present invention is based on the extended Kalman filter method, combined with the TS fuzzy principle to accurately predict the open circuit voltage UOC of the lithium battery parameter, and then realizes the online real-time estimation of the lithium battery SOC;

2.同时,改进双RC模型中将热敏电阻作为等效内阻,并利用实验数据对其进行精确辨识,有效地模拟了温度因素对锂电池端电压的影响,进而提高了锂电池SOC估计的准确性;2. At the same time, the thermistor is used as the equivalent internal resistance in the improved double RC model, and the experimental data is used to accurately identify it, effectively simulating the influence of temperature factors on the lithium battery terminal voltage, and thus improving the estimation accuracy of the lithium battery SOC accuracy;

3.通过本发明提出的锂电池SOC估计方法,使得锂电池SOC估计具有良好的在线修正能力,不仅提高了锂电池SOC在线估计精度,也保证了其快速性和实时性。3. Through the lithium battery SOC estimation method proposed by the present invention, the lithium battery SOC estimation has a good online correction capability, which not only improves the lithium battery SOC online estimation accuracy, but also ensures its rapidity and real-time performance.

附图说明Description of drawings

图1是锂电池SOC在线估计方法流程图;Figure 1 is a flow chart of the lithium battery SOC online estimation method;

图2是锂电池SOC在线估计方法结构图;Figure 2 is a structural diagram of the lithium battery SOC online estimation method;

图3是锂电池改进双RC模型等效电路图。Figure 3 is an equivalent circuit diagram of an improved double RC model of a lithium battery.

具体实施方式detailed description

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not constitute a conflict with each other.

如图1所示为锂电池SOC在线估计方法流程图,具体包括:Figure 1 shows the flow chart of the lithium battery SOC online estimation method, which specifically includes:

(1)任意给定锂电池SOC的初始值,利用复合经验公式模型求出电池开路电压的预估值 (1) The initial value of the SOC of the lithium battery is given arbitrarily, and the estimated value of the open circuit voltage of the battery is obtained by using the composite empirical formula model

(2)将锂电池电流Ibat、工作温度T作为TS模糊模型的输入,利用TS模糊模型计算锂电池开路电压输出值UOC,实现对开路电压预估值进行实时优化;(2) Will Lithium battery current I bat and operating temperature T are used as the input of the TS fuzzy model, and the TS fuzzy model is used to calculate the output value U OC of the lithium battery open circuit voltage to realize the estimated value of the open circuit voltage perform real-time optimization;

(3)将UOC代入锂电池改进双RC模型中,并使用HPPC测试法对模型参数进行辨识;(3) Substitute U OC into the improved double RC model of the lithium battery, and use the HPPC test method to identify the model parameters;

(4)利用扩展卡尔曼滤波估计器,在线计算得到锂电池SOC的实时值SOCnew(4) Using the extended Kalman filter estimator, the real-time value SOC new of the lithium battery SOC is calculated online.

如图2所示为锂电池SOC在线估计方法结构图。Figure 2 shows the structure diagram of the lithium battery SOC online estimation method.

采集系统电流Ibat、环境温度T以及由所述复合经验公式模型得到的开路电压预估值并作为所述TS模糊模型的输入,运行TS模糊模型得到开路电压优化值UOC。将UOC输入至所述锂电池改进双RC模型中。根据图3所示的锂电池改进双RC模型等效电路图,结合基尔霍夫电流电压定律,即可得到模型的状态方程和输出方程,分别如下:Collect the system current I bat , the ambient temperature T and the estimated value of the open circuit voltage obtained from the composite empirical formula model And as the input of the TS fuzzy model, run the TS fuzzy model to obtain the optimal value U OC of the open circuit voltage. Input U OC into the lithium battery modified dual RC model. According to the equivalent circuit diagram of the improved double RC model of lithium battery shown in Figure 3, combined with Kirchhoff's current-voltage law, the state equation and output equation of the model can be obtained, respectively as follows:

Uu bb Uu pp SS Oo CC kk ++ 11 == 11 -- TT sthe s &tau;&tau; bb 00 00 00 11 -- TT sthe s &tau;&tau; bb 00 00 00 11 Uu bb Uu pp SS Oo CC kk ++ TT sthe s CC bb TT sthe s CC pp -- &eta;T&eta;T sthe s CC nno II batbat kk ++ WW kk

Uu batbat kk == Uu Oo CC -- Uu bb -- Uu pp -- RR TT &CenterDot;&Center Dot; II batbat kk ++ VV kk

其中,Wk为系统过程噪声,Vk为系统测量噪声。Ts为系统采样时间,τb为电容Cb和电阻Rb组成的RC环时间常数,τp为电容Cp和电阻Rp组成的RC环时间常数,Ub、Up分别为两个RC环两端的电压,η为电池库伦效率,SOC表示模型状态量电池SOC,Cn为电池容量。Ubat模型输出端电压,Ibat为系统电流,放电时电流为正值,充电时为负。Among them, W k is the system process noise, V k is the system measurement noise. T s is the system sampling time, τ b is the time constant of the RC loop composed of capacitor C b and resistor R b , τ p is the time constant of the RC loop composed of capacitor C p and resistor R p , U b and U p are two The voltage at both ends of the RC ring, η is the coulombic efficiency of the battery, SOC is the model state quantity battery SOC, and C n is the battery capacity. U bat model output terminal voltage, I bat is the system current, the current is positive when discharging, and negative when charging.

将所述改进双RC模型输出端电压Ubat、模型状态量电池SOC、系统电流Ibat、端电压测量值Utm作为所述扩展卡尔曼滤波估计器的输入量,并进行在线计算,得到锂电池SOC的实时值SOCnewThe improved double RC model output terminal voltage U bat , the model state quantity battery SOC, the system current I bat , and the terminal voltage measurement value U tm are used as the input quantities of the extended Kalman filter estimator, and online calculation is performed to obtain lithium The real-time value SOC new of the battery SOC.

本发明提供的锂电池SOC在线估计方法具有较高的估计精度,同时又保证了较快的估计速度。并且由于TS模糊模型的使用,能够根据系统电流以及环境温度的变化调节模型参数,使模型的计算输出与实际锂电池系统的输出保持了良好的一致性。The lithium battery SOC online estimation method provided by the present invention has higher estimation precision and ensures faster estimation speed at the same time. And due to the use of the TS fuzzy model, the model parameters can be adjusted according to the changes of the system current and the ambient temperature, so that the calculation output of the model maintains a good consistency with the output of the actual lithium battery system.

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.

Claims (7)

1.一种锂电池荷电状态的在线估计方法,其特征在于,所述方法包括以下步骤:1. an online estimation method of lithium battery state of charge, is characterized in that, described method comprises the following steps: (1)任意给定锂电池荷电状态的初始值,利用复合经验公式模型求出电池开路电压的预估值 (1) The initial value of the state of charge of the lithium battery is given arbitrarily, and the estimated value of the open circuit voltage of the battery is obtained by using the composite empirical formula model (2)将锂电池电流Ibat、工作温度T作为TS模糊模型的输入,利用TS模糊模型计算锂电池开路电压输出值UOC,实现对开路电压预估值进行实时优化;(2) Will Lithium battery current I bat and operating temperature T are used as the input of the TS fuzzy model, and the TS fuzzy model is used to calculate the output value U OC of the lithium battery open circuit voltage to realize the estimated value of the open circuit voltage perform real-time optimization; (3)将UOC代入锂电池改进双RC模型中,并使用HPPC测试法对模型参数进行辨识;(3) Substitute U OC into the improved double RC model of the lithium battery, and use the HPPC test method to identify the model parameters; (4)利用扩展卡尔曼滤波估计器,在线计算得到锂电池荷电状态的实时值SOCnew(4) Using the extended Kalman filter estimator to calculate online the real-time value SOC new of the state of charge of the lithium battery. 2.根据权利要求1所述的锂电池荷电状态的在线估计方法,其特征在于,所述复合经验公式模型是基于对Shepherd模型、Unnewehr Universal模型以及Nernst模型进行综合改进获得,其形式如下:2. the online estimation method of lithium battery state of charge according to claim 1, it is characterized in that, described composite empirical formula model is based on carrying out comprehensive improvement to Shepherd model, Unnewehr Universal model and Nernst model, and its form is as follows: Uu ^^ Oo CC == KK 00 ++ KK 11 zz ++ KK 22 // zz ++ KK 33 lnln zz ++ KK 44 ll nno (( 11 -- zz )) 其中,为当前电池开路电压预估值,z为上一时刻电池荷电状态值,K0、K1、K2、K3、K4为没有物理意义的系数;通过带遗忘因子的递推最小二乘法对上述系数K0~K4进行辨识。in, is the estimated value of the current open circuit voltage of the battery, z is the state of charge value of the battery at the previous moment, K 0 , K 1 , K 2 , K 3 , and K 4 are coefficients that have no physical meaning; Multiplication identifies the above-mentioned coefficients K 0 to K 4 . 3.根据权利要求2所述的锂电池荷电状态的在线估计方法,其特征在于,所述带遗忘因子的递推最小二乘法的参数辨识公式为:3. The online estimation method of lithium battery state of charge according to claim 2, characterized in that, the parameter identification formula of the recursive least squares method with forgetting factor is: 其中,为待估参数向量 为数据向量K(k)为增益矩阵,P(k)为协方差矩阵,λ为遗忘因子,取接近于1的正数。in, is the parameter vector to be estimated is the data vector K(k) is the gain matrix, P(k) is the covariance matrix, and λ is the forgetting factor, which is a positive number close to 1. 4.根据权利要求3所述的锂电池荷电状态的在线估计方法,其特征在于,参数辨识步骤如下:4. The online estimation method of the lithium battery state of charge according to claim 3, wherein the parameter identification step is as follows: (1.1)初始数据的确定;根据经验模型参数辨识的先验知识给待估向量赋初值;设置辨识的初始值P(0)=106×I5×5,其中I为单位矩阵,遗忘因子λ=0.998;(1.1) Determination of initial data; according to the prior knowledge of empirical model parameter identification, the vector to be estimated is given Assign the initial value; set the initial value of identification P(0)=10 6 ×I 5×5 , where I is the identity matrix, and the forgetting factor λ=0.998; (1.2)采样当前输入输出数据z(k),确定 (1.2) Sampling the current input and output data z(k), determine (1.3)利用上述的参数辨识公式计算得到K(k)和P(k);(1.3) Calculated by using the above parameter identification formula K(k) and P(k); (1.4)若k<N(N为采样个数),则k→k+1,返回步骤(1.2),继续循环;否则算法结束,输出 (1.4) If k<N (N is the number of samples), then k→k+1, return to step (1.2), and continue the cycle; otherwise, the algorithm ends and the output 5.根据权利要求1或2所述的方法,其特征在于,所述步骤(2)中利用TS模糊模型计算锂电池开路电压输出值UOC具体包括下述子步骤:5. the method according to claim 1 or 2, is characterized in that, utilizes TS fuzzy model to calculate lithium battery open circuit voltage output value U OC in the described step (2) specifically comprises the following sub-steps: (2.1)对锂电池模型进行充放电仿真实验,记录并保存历史输入输出数据;(2.1) Carry out charging and discharging simulation experiments on the lithium battery model, record and save historical input and output data; (2.2)对历史输入输出数据进行C聚类处理,计算出隶属度函数ui及后件参数Θ(k);(2.2) Carry out C clustering process to historical input and output data, calculate membership degree function u i and consequent parameter Θ(k); (2.3)组建TS模糊规则;其中,第i条TS模糊规则表示为:(2.3) Set up TS fuzzy rules; wherein, the i-th TS fuzzy rule is expressed as: RR ii :: II ff xx 11 (( kk )) ii sthe s AA 11 ii aa nno dd xx 22 (( kk )) ii sthe s AA 22 ii aa nno dd ...... aa nno dd xx nno (( kk )) ii sthe s AA nno ii TT hh ee nno ythe y ii (( kk ++ 11 )) == pp 00 ii ++ pp 11 ii xx 11 (( kk )) ++ ...... ++ pp nno ii xx nno (( kk )) ;; ii == 11 ,, 22 ...... ,, cc 其中,c为模糊规则数目,n为所述TS模糊模型的输入变量数目,x1(k),x2(k),…,xn(k)为第k时刻及以前的输入输出数据的回归变量,为代表各模糊子空间的具有线性隶属度函数的模糊集,可以用来进行第i条规则的模糊推理,为第i条模糊规则的后件参数,yi(k+1)为所述TS模糊模型在第i条规则下(k+1)时刻的输出值;Among them, c is the number of fuzzy rules, n is the number of input variables of the TS fuzzy model, x 1 (k), x 2 (k), ..., x n (k) is the number of input and output data at the kth moment and before regressor, is a fuzzy set with a linear membership function representing each fuzzy subspace, which can be used for fuzzy inference of the i-th rule, For the consequent parameter of the i fuzzy rule, y i (k+1) is the output value of the TS fuzzy model at (k+1) moment under the i rule; (2.4)定义βi为所述第i条模糊规则的适应度,则有:(2.4) Define β i as the fitness of the i-th fuzzy rule, then: &beta;&beta; ii == &Sigma;&Sigma; jj == 11 cc (( uu ii uu jj )) ,, ii == 11 ,, 22 ,, ...... ,, cc 所述TS模糊模型在(k+1)时刻的输出y(k+1)的计算公式为:The calculation formula of the output y(k+1) of the TS fuzzy model at (k+1) moment is: ythe y (( kk ++ 11 )) == &Sigma;&Sigma; ii == 11 cc &beta;&beta; ii &CenterDot;&Center Dot; ythe y ii (( kk ++ 11 )) == &Sigma;&Sigma; ii == 11 cc &beta;&beta; ii &CenterDot;&Center Dot; (( pp 00 ii ++ pp 11 ii xx 11 (( kk )) ++ ...... ++ pp nno ii xx nno (( kk )) )) == &Sigma;&Sigma; ii == 11 cc (( pp 00 ii pp 11 ii ...... pp nno ii )) (( &beta;&beta; ii &beta;&beta; ii xx 11 (( kk )) ...... &beta;&beta; ii xx nno (( kk )) )) TT 定义后件参数Θ(k)和前件参数Φ(k)为:Define the consequent parameter Θ(k) and the antecedent parameter Φ(k) as: &Theta;&Theta; (( kk )) == &lsqb;&lsqb; &theta;&theta; 11 ,, &theta;&theta; 22 ,, ...... ,, &theta;&theta; rr &rsqb;&rsqb; TT == &lsqb;&lsqb; pp 1010 ,, pp 2020 ,, ...... ,, pp cc 00 ,, pp 1111 ,, pp 21twenty one ,, ...... ,, pp cc 11 ,, ...... ,, pp cc nno &rsqb;&rsqb; TT ;; &Phi;&Phi; (( kk )) == &lsqb;&lsqb; &beta;&beta; 11 ,, ...... ,, &beta;&beta; cc ,, &beta;&beta; 11 xx 11 (( kk )) ,, ...... ,, &beta;&beta; cc xx 11 (( kk )) ,, ...... ,, &beta;&beta; 11 xx nno (( kk )) ,, ...... ,, &beta;&beta; cc xx nno (( kk )) &rsqb;&rsqb; TT ;; 其中,r=c·(n+1),可以得到:Among them, r=c·(n+1), can get: y(k+1)=Φ(k)T·Θ(k)y(k+1)=Φ(k) T ·Θ(k) (2.5)定义输出y(k+1)=UOC(k);其中,UOC(k)为k时刻电池开路电压;令k=k+1并返回步骤(2.2),直到锂电池荷电状态在线估计过程结束。(2.5) Define the output y(k+1)=U OC (k); among them, U OC (k) is the open circuit voltage of the battery at k time; let k=k+1 and return to step (2.2) until the lithium battery is charged The state online estimation process ends. 6.根据权利要求1或2所述的方法,其特征在于,所述锂电池改进双RC模型其等效内阻使用热敏电阻表示;结合基尔霍夫电流电压定律,可得锂电池的状态方程和输出方程分别为:6. The method according to claim 1 or 2, characterized in that, the equivalent internal resistance of the improved double RC model of the lithium battery is represented by a thermistor; combined with Kirchhoff's current-voltage law, the lithium battery's The state equation and output equation are respectively: Uu bb Uu pp SS Oo CC kk ++ 11 == 11 -- TT sthe s &tau;&tau; bb 00 00 00 11 -- TT sthe s &tau;&tau; pp 00 00 00 11 Uu bb Uu pp SS Oo CC kk ++ TT sthe s CC bb TT sthe s CC pp -- &eta;T&eta;T sthe s CC nno II batbat kk ++ WW kk Uu batbat kk == Uu Oo CC -- Uu bb -- Uu pp -- RR TT &CenterDot;&Center Dot; II batbat kk ++ VV kk 其中,Wk为系统过程噪声,Vk为系统测量噪声;Ts为系统采样时间,τb为电容Cb和电阻Rb组成的RC环时间常数,τp为电容Cp和电阻Rp组成的RC环时间常数,Ub、Up分别为两个RC环两端的电压,η为电池库伦效率,荷电状态为模型状态量电池荷电状态,Cn为电池容量;Ubat为模型输出端电压,Ibat为系统电流,放电时电流为正值,充电时为负;RT为等效热敏电阻值,其辨识方法如下:Among them, W k is the system process noise, V k is the system measurement noise; T s is the system sampling time, τ b is the time constant of the RC loop composed of capacitor C b and resistor R b , τ p is the capacitor C p and resistor R p The time constant of the RC loop formed, U b and U p are the voltages at both ends of the two RC loops, η is the battery Coulomb efficiency, the state of charge is the model state quantity battery state of charge, C n is the battery capacity; U bat is the model Output terminal voltage, I bat is the system current, the current is positive when discharging, and negative when charging; R T is the equivalent thermistor value, and its identification method is as follows: 定义RT=f(T)=a·T2+b·T+c;其中,a、b、c为待拟合系数;将锂电池在不同电流、不同温度下进行充放电试验,并得到一簇关系曲线;用Matlab曲线拟合函数polyfit求出a、b、c的值。Define R T =f(T)=a·T 2 +b·T+c; among them, a, b, c are the coefficients to be fitted; conduct charge and discharge tests on lithium batteries at different currents and temperatures, and obtain A cluster of relationship curves; use the Matlab curve fitting function polyfit to find the values of a, b, and c. 7.根据权利要求1或2所述的方法,其特征在于,所述步骤(4)中将所述改进双RC模型输出端电压Ubat、模型状态量电池荷电状态、系统电流Ibat、端电压测量值Utm作为所述扩展卡尔曼滤波估计器的输入量,并进行在线计算得到锂电池荷电状态的实时值SOCnew7. The method according to claim 1 or 2, wherein, in the step (4), the improved double RC model output terminal voltage U bat , the model state quantity battery state of charge, the system current I bat , The terminal voltage measurement value U tm is used as the input quantity of the extended Kalman filter estimator, and is calculated online to obtain the real-time value SOC new of the state of charge of the lithium battery.
CN201610278081.0A 2016-04-29 2016-04-29 A kind of On-line Estimation method of lithium battery charge state Active CN105954679B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610278081.0A CN105954679B (en) 2016-04-29 2016-04-29 A kind of On-line Estimation method of lithium battery charge state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610278081.0A CN105954679B (en) 2016-04-29 2016-04-29 A kind of On-line Estimation method of lithium battery charge state

Publications (2)

Publication Number Publication Date
CN105954679A true CN105954679A (en) 2016-09-21
CN105954679B CN105954679B (en) 2019-04-12

Family

ID=56916596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610278081.0A Active CN105954679B (en) 2016-04-29 2016-04-29 A kind of On-line Estimation method of lithium battery charge state

Country Status (1)

Country Link
CN (1) CN105954679B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443478A (en) * 2016-10-26 2017-02-22 河南师范大学 Lithium iron phosphate battery rest electric quantity estimation method based on closed-loop hybrid algorithm
CN106707181A (en) * 2016-12-05 2017-05-24 澳特卡新能源科技(上海)有限公司 Cell parameter and charged state estimation method of lithium ion
CN106772108A (en) * 2017-03-08 2017-05-31 天津大学 A kind of lithium battery SOC Forecasting Methodologies
CN106918787A (en) * 2017-03-20 2017-07-04 国网重庆市电力公司电力科学研究院 A kind of electric automobile lithium battery residual charge evaluation method and device
CN107064808A (en) * 2017-02-09 2017-08-18 山东谦恒电子科技有限公司 The SOC methods of estimation and device of battery
CN107192959A (en) * 2017-06-16 2017-09-22 浙江大学 A kind of lithium battery charge state method of estimation based on Takagi Sugeno fuzzy models
CN107290688A (en) * 2017-08-24 2017-10-24 合肥工业大学 A kind of lithium battery SOC methods of estimation based on adaptive fuzzy Kalman filtering
CN107870305A (en) * 2017-12-04 2018-04-03 浙江大学城市学院 On-line parameter identification and SOH estimation method of lithium-ion battery based on temperature parameters
CN108490361A (en) * 2018-03-22 2018-09-04 深圳库博能源科技有限公司 A kind of state-of-charge SoC computational methods based on high in the clouds feedback
CN110109019A (en) * 2019-06-04 2019-08-09 河北工业大学 A kind of SOC estimation method of the hybrid power lithium battery based on EKF algorithm
CN110488203A (en) * 2019-07-12 2019-11-22 武汉大学 A kind of aging lithium battery group SOC On-line Estimation method
CN111929585A (en) * 2019-05-13 2020-11-13 顺丰科技有限公司 Battery state of charge calculation apparatus, battery state of charge calculation method, battery state of charge calculation server, and battery state of charge calculation medium
CN112039171A (en) * 2020-09-29 2020-12-04 珠海格力电器股份有限公司 Battery pack balancing method, device, equipment and storage medium
CN112595979A (en) * 2020-12-02 2021-04-02 华中科技大学 Lithium battery parameter online identification method and system considering insufficient excitation
CN112858929A (en) * 2021-03-16 2021-05-28 上海理工大学 Battery SOC estimation method based on fuzzy logic and extended Kalman filtering
CN114609526A (en) * 2022-05-11 2022-06-10 长城汽车股份有限公司 Battery SOC estimation method, device, electronic device and vehicle
CN114881316A (en) * 2022-04-24 2022-08-09 上海玫克生储能科技有限公司 Method, system, terminal device and storage medium for predicting remaining life of lithium battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102930173A (en) * 2012-11-16 2013-02-13 重庆长安汽车股份有限公司 SOC(state of charge) online estimation method for lithium ion battery
CN103439668A (en) * 2013-09-05 2013-12-11 桂林电子科技大学 Charge state evaluation method and system of power lithium ion battery
CN103558556A (en) * 2013-10-31 2014-02-05 重庆长安汽车股份有限公司 Power battery SOH estimation method
CN103744026A (en) * 2013-12-19 2014-04-23 广西科技大学 Storage battery state of charge estimation method based on self-adaptive unscented Kalman filtering
US20140333317A1 (en) * 2013-05-08 2014-11-13 GM Global Technology Operations LLC Battery state estimator combining electrochemical solid-state concentration model with empirical equivalent-circuit model

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102930173A (en) * 2012-11-16 2013-02-13 重庆长安汽车股份有限公司 SOC(state of charge) online estimation method for lithium ion battery
US20140333317A1 (en) * 2013-05-08 2014-11-13 GM Global Technology Operations LLC Battery state estimator combining electrochemical solid-state concentration model with empirical equivalent-circuit model
CN103439668A (en) * 2013-09-05 2013-12-11 桂林电子科技大学 Charge state evaluation method and system of power lithium ion battery
CN103558556A (en) * 2013-10-31 2014-02-05 重庆长安汽车股份有限公司 Power battery SOH estimation method
CN103744026A (en) * 2013-12-19 2014-04-23 广西科技大学 Storage battery state of charge estimation method based on self-adaptive unscented Kalman filtering

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443478B (en) * 2016-10-26 2019-03-01 河南师范大学 The evaluation method of ferric phosphate lithium cell remaining capacity based on closed loop hybrid algorithm
CN106443478A (en) * 2016-10-26 2017-02-22 河南师范大学 Lithium iron phosphate battery rest electric quantity estimation method based on closed-loop hybrid algorithm
CN106707181A (en) * 2016-12-05 2017-05-24 澳特卡新能源科技(上海)有限公司 Cell parameter and charged state estimation method of lithium ion
CN107064808A (en) * 2017-02-09 2017-08-18 山东谦恒电子科技有限公司 The SOC methods of estimation and device of battery
CN106772108A (en) * 2017-03-08 2017-05-31 天津大学 A kind of lithium battery SOC Forecasting Methodologies
CN106918787A (en) * 2017-03-20 2017-07-04 国网重庆市电力公司电力科学研究院 A kind of electric automobile lithium battery residual charge evaluation method and device
CN107192959A (en) * 2017-06-16 2017-09-22 浙江大学 A kind of lithium battery charge state method of estimation based on Takagi Sugeno fuzzy models
CN107192959B (en) * 2017-06-16 2019-05-31 浙江大学 A kind of lithium battery charge state estimation method based on Takagi-Sugeno fuzzy model
CN107290688A (en) * 2017-08-24 2017-10-24 合肥工业大学 A kind of lithium battery SOC methods of estimation based on adaptive fuzzy Kalman filtering
CN107290688B (en) * 2017-08-24 2019-08-09 合肥工业大学 A lithium battery SOC estimation method based on adaptive fuzzy Kalman filter
CN107870305A (en) * 2017-12-04 2018-04-03 浙江大学城市学院 On-line parameter identification and SOH estimation method of lithium-ion battery based on temperature parameters
CN107870305B (en) * 2017-12-04 2019-10-18 浙江大学城市学院 On-line parameter identification and SOH estimation method of lithium-ion battery based on temperature parameters
CN108490361A (en) * 2018-03-22 2018-09-04 深圳库博能源科技有限公司 A kind of state-of-charge SoC computational methods based on high in the clouds feedback
CN108490361B (en) * 2018-03-22 2020-07-24 深圳库博能源科技有限公司 Cloud feedback-based SOC (state of charge) calculation method
CN111929585A (en) * 2019-05-13 2020-11-13 顺丰科技有限公司 Battery state of charge calculation apparatus, battery state of charge calculation method, battery state of charge calculation server, and battery state of charge calculation medium
CN111929585B (en) * 2019-05-13 2023-08-04 丰翼科技(深圳)有限公司 Battery charge state calculating device, method, server and medium
CN110109019A (en) * 2019-06-04 2019-08-09 河北工业大学 A kind of SOC estimation method of the hybrid power lithium battery based on EKF algorithm
CN110488203A (en) * 2019-07-12 2019-11-22 武汉大学 A kind of aging lithium battery group SOC On-line Estimation method
CN112039171A (en) * 2020-09-29 2020-12-04 珠海格力电器股份有限公司 Battery pack balancing method, device, equipment and storage medium
CN112595979A (en) * 2020-12-02 2021-04-02 华中科技大学 Lithium battery parameter online identification method and system considering insufficient excitation
CN112595979B (en) * 2020-12-02 2021-10-08 华中科技大学 A method and system for on-line identification of lithium battery parameters considering insufficient excitation
CN112858929A (en) * 2021-03-16 2021-05-28 上海理工大学 Battery SOC estimation method based on fuzzy logic and extended Kalman filtering
CN114881316A (en) * 2022-04-24 2022-08-09 上海玫克生储能科技有限公司 Method, system, terminal device and storage medium for predicting remaining life of lithium battery
CN114881316B (en) * 2022-04-24 2023-06-16 上海玫克生储能科技有限公司 Lithium battery remaining life prediction method, system, terminal equipment and storage medium
CN114609526A (en) * 2022-05-11 2022-06-10 长城汽车股份有限公司 Battery SOC estimation method, device, electronic device and vehicle

Also Published As

Publication number Publication date
CN105954679B (en) 2019-04-12

Similar Documents

Publication Publication Date Title
CN105954679B (en) A kind of On-line Estimation method of lithium battery charge state
Jiaqiang et al. Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge
CN109031145B (en) A series-parallel battery pack model and realization method considering inconsistency
CN112434463B (en) Energy management system for vehicle hybrid power supply
Zhang et al. Fractional calculus based modeling of open circuit voltage of lithium-ion batteries for electric vehicles
CN107576919A (en) Power battery charged state estimating system and method based on ARMAX models
CN105319515B (en) Charge states of lithium ion battery and health status joint estimate method
CN103744030B (en) Battery state-of-health and state-of-charge estimation on line device and evaluation method
CN103091642B (en) Lithium battery capacity rapid estimation method
CN110703121A (en) A method for predicting the state of health of lithium-ion batteries
CN109557477A (en) A kind of battery system health status evaluation method
CN102831100A (en) Method and device for estimating state of charge of battery
CN110632528A (en) A lithium battery SOH estimation method based on internal resistance detection
CN110525269A (en) The battery pack balancing control method of SOC
CN107169170B (en) A method for predicting the remaining capacity of a battery
CN109459699A (en) A real-time monitoring method for SOC of lithium-ion power battery
CN110221221A (en) Charge states of lithium ion battery and health status combined estimation method
CN104297578B (en) Ultracapacitor group state-of-charge method of estimation based on sliding mode observer
CN106777786A (en) A kind of lithium ion battery SOC estimation method
CN111366864B (en) An online estimation method of battery SOH based on fixed voltage rise interval
Yao et al. Modeling of Lithium Ion battery with nonlinear transfer resistance
CN114839536B (en) Lithium ion battery health state estimation method based on multiple health factors
CN103424712A (en) Method for measuring residual capacity of battery in online manner on basis of particle swarm optimization
Geng et al. State of charge estimation method for lithium-ion batteries in all-electric ships based on LSTM neural network
Geng et al. SOC Prediction of power lithium battery using BP neural network theory based on keras

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant