CN105945942A - Robot off line programming system and method - Google Patents
Robot off line programming system and method Download PDFInfo
- Publication number
- CN105945942A CN105945942A CN201610211196.8A CN201610211196A CN105945942A CN 105945942 A CN105945942 A CN 105945942A CN 201610211196 A CN201610211196 A CN 201610211196A CN 105945942 A CN105945942 A CN 105945942A
- Authority
- CN
- China
- Prior art keywords
- robot
- motion
- path
- track
- robot motion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
- B25J9/1605—Simulation of manipulator lay-out, design, modelling of manipulator
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Mechanical Engineering (AREA)
- Computer Hardware Design (AREA)
- Robotics (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
- Numerical Control (AREA)
Abstract
Description
技术领域technical field
本发明涉及机器人领域,更具体的涉及一种机器人离线编程系统及方法。The present invention relates to the field of robots, and in particular to a robot off-line programming system and method.
背景技术Background technique
目前,工业机器人的运动输入和控制方式主要有三种:At present, there are mainly three types of motion input and control methods for industrial robots:
一是示教再现,包括“示教”和“再现”两个阶段。在示教阶段,通过某种方式对机器人的期望运动预演一遍,将机器人的一些关键路径点的位置和姿态存储和记忆下来;示教完毕后,在再现阶段,机器人对记忆的路径点进行插补,依次运动到各路径点。而示教又有三种方式:1)最常见的是采用示教盒,即操作员操纵示教盒发送指令,驱动机器人到一系列预期的位置。这种示教方式常用于机器人焊接和搬运等路径较简单的作业。2)第二种示教方式是拖拉式,即操作员直接握持机器人末端或者通过腕部力传感器拖动机器人到期望的位置。喷涂机器人一般可以直接拖拉进行示教,但大多数工业机器人由于只有运动控制而没有力控制,因此不能直接拖拉。但如果在末端安装六维力传感器,基于力传感信息进行运动控制也可能实现间接拖动,进行示教。3)第三种示教方式是间接拖拉式,借助运动映射或其他辅助设备(包括与受控机器人具有相同构型、自由度和尺寸的示教装备),对机器人进行拖拽或引导性示教。操作员操纵该辅助性的示教装备按期望轨迹运动,并记忆其路径点,最后将示教运动映射为机器人的运动。相比于基于示教盒的点动示教,拖拉式示教使用更方便,更容易达到复杂的位姿,适应性更强,可用于喷涂等作业。总之,示教再现的控制方式需要操作员亲临现场,在现场进行,占用资源,效率较低,工作强度大,精度不高,而且有人身危险。借助于外围设备时还增加成本。One is teaching and reproduction, including two stages of "teaching" and "reproduction". In the teaching phase, the expected movement of the robot is previewed in some way, and the positions and attitudes of some key path points of the robot are stored and memorized; Make up, and move to each path point in turn. There are three ways of teaching: 1) The most common is to use the teaching box, that is, the operator manipulates the teaching box to send instructions to drive the robot to a series of expected positions. This teaching method is often used in tasks with relatively simple paths such as robot welding and handling. 2) The second teaching method is dragging, that is, the operator directly holds the end of the robot or drags the robot to the desired position through the wrist force sensor. Spraying robots can generally be dragged directly for teaching, but most industrial robots cannot be dragged directly because they only have motion control but no force control. However, if a six-dimensional force sensor is installed at the end, motion control based on force sensor information may also achieve indirect drag and teaching. 3) The third teaching method is indirect dragging. With the help of motion mapping or other auxiliary equipment (including teaching equipment with the same configuration, degree of freedom and size as the controlled robot), the robot is dragged or guided. teach. The operator manipulates the auxiliary teaching equipment to move according to the desired trajectory, and memorizes its waypoints, and finally maps the teaching movement to the movement of the robot. Compared with the jog teaching based on the teaching box, the drag teaching is more convenient to use, easier to achieve complex poses, more adaptable, and can be used for spraying and other operations. In short, the teaching and reproduction control method requires the operator to visit the site in person, which takes up resources, has low efficiency, high work intensity, low precision, and personal danger. Costs also increase when resorting to peripheral equipment.
第二种运动输入和控制方式是类似于数控编程的机器人编程,即采用机器人的语言,将机器人的作业按照脚本的形式进行编制。这种方式不直观,需要反复修正,因而效率不高。The second motion input and control method is robot programming similar to NC programming, that is, using the language of the robot to compile the robot's operations in the form of scripts. This method is not intuitive and requires repeated corrections, so it is not efficient.
第三种运动输入和控制方式是离线编程,建立机器人仿真系统,对机器人运动路径进行离线规划。这种方式脱机进行,无需到现场,因而效率较高,适应性和灵活性强。The third motion input and control method is offline programming, establishing a robot simulation system, and planning the robot's motion path offline. This method is carried out offline without going to the site, so it has high efficiency, strong adaptability and flexibility.
中国发明专利“机器人离线示教方法”(公开号CN102004485A),公布了一种通过计算机实现机器人离线编程的方法。该方法在计算机中建立三维模型,并由虚拟工具示教点间的插补点生成运动轨迹,该发明的虚拟示教点为设定方式,必须手动设定示教点处的位置和姿态,因此需要花费大量的时间来获取示教点数据,另外示教得到的姿态只是肉眼辨识,一般不是最佳的姿态数据,面对复杂的曲面路径规划,如激光焊接、喷涂、打磨等工业应用,此方法正面临被淘汰。The Chinese invention patent "Robot Offline Teaching Method" (publication number CN102004485A) discloses a method for realizing off-line programming of a robot through a computer. This method establishes a three-dimensional model in the computer, and generates motion trajectories from the interpolation points between virtual tool teaching points. The virtual teaching point of this invention is a setting method, and the position and posture of the teaching point must be manually set. Therefore, it takes a lot of time to obtain the data of the teaching point. In addition, the attitude obtained by the teaching is only recognized by the naked eye, which is generally not the best attitude data. In the face of complex surface path planning, such as laser welding, spraying, grinding and other industrial applications, This method is facing obsolescence.
中国发明专利申请“基于三维建模软件实现工业机器人离线编程的方法”(公开号CN103085072A),公布了一种基于三维建模软件实现工业机器人离线编程的方法,其方法是在三维建模软件环境下,获取空间线条数据和三维模型的空间矩阵数据,建立机器人运动轨迹和几何数学模型,实现虚拟机器人运动控制系统的离线编程。该方法的实现存在以下不足:1)需要输入空间曲线和机器人控制的数据,缺乏借助三维建模软件本身的功能实现轨迹自主绘制、模型自主建模及虚拟仿真控制系统虚拟搭建的功能,对所规划路径有一定局限性,不能快速验证路径的可行性;2)在曲线路径点离散中,通过指定数量点的方式获取,难以保证曲线离散的精度;3)路径点的姿态缺乏融合周围实体的信息;4)缺少位姿可视化功能和路径点自主修正功能;5)缺乏机器人型号的多样性,没有实时通讯连接功能,实现数据的实时传输。The Chinese invention patent application "Method for Realizing Off-line Programming of Industrial Robots Based on 3D Modeling Software" (publication number CN103085072A) discloses a method for realizing off-line programming of industrial robots based on 3D modeling software. The method is in the 3D modeling software environment Next, the spatial line data and the spatial matrix data of the 3D model are obtained, the robot motion trajectory and the geometric mathematical model are established, and the offline programming of the virtual robot motion control system is realized. The implementation of this method has the following deficiencies: 1) It needs to input the data of space curve and robot control, and it lacks the functions of independent drawing of trajectory, independent modeling of model and virtual construction of virtual simulation control system with the help of the function of 3D modeling software itself. The planning path has certain limitations, and the feasibility of the path cannot be quickly verified; 2) In the discretization of the curve path point, it is difficult to guarantee the accuracy of the curve discretization by specifying the number of points; 3) The attitude of the path point lacks the ability to fuse the surrounding entities Information; 4) lack of pose visualization function and path point self-correction function; 5) lack of diversity of robot models, no real-time communication connection function to realize real-time data transmission.
发明内容Contents of the invention
为了解决上述技术问题,本发明提供了一种能够自动规划生成运动路径并进行验证的机器人离线编程系统及其机器人离线编程方法。In order to solve the above technical problems, the present invention provides a robot offline programming system and a robot offline programming method capable of automatically planning, generating and verifying motion paths.
本发明提供的机器人离线编程系统,包括:The robot off-line programming system provided by the present invention includes:
用于设定机器人运动学约束条件的约束条件设定模块;A constraint setting module for setting robot kinematic constraints;
用于获取机器人工作对象和机器人及其工装三维模型和机器人运动路径图元及其位姿信息的获取模块;An acquisition module for acquiring robot working objects, robots and their tooling 3D models, robot motion path primitives and their pose information;
以及用于构建机器人三维虚拟环境的带有操作系统的终端;并且在机器人三维虚拟环境中导入机器人运动学约束条件、机器人工作对象的三维模型、机器人及其工装的三维模型,对提取到的机器人运动路径图元及其位姿信息进行曲线离散化,提取路径点,生成机器人运动轨迹,之后进行机器人运动仿真和碰撞检测,根据机器人运动仿真和碰撞检测结果,按照已经给出的定义修改路径点形成在新的机器人运动轨迹和姿态并操作系统上显示,得到可行性结果并生成机器人可执行文件,与机器人通讯,将机器人可执行文件导入机器人控制器,实现机器人运动控制。And a terminal with an operating system for building a robot's 3D virtual environment; and importing robot kinematic constraints, the 3D model of the robot's working object, and the 3D model of the robot and its tooling into the robot's 3D virtual environment; Carry out curve discretization of motion path primitives and their pose information, extract path points, and generate robot motion trajectories, then perform robot motion simulation and collision detection, and modify path points according to the given definition according to robot motion simulation and collision detection results Form the new robot motion track and posture and display it on the operating system, obtain the feasible results and generate the robot executable file, communicate with the robot, import the robot executable file into the robot controller, and realize the robot motion control.
优选的,所述获取模块包括三维实体建模软件的API接口,所述机器人三维虚拟环境采用三维实体建模软件的API接口函数,实现机器人作业系统的三维建模。Preferably, the acquisition module includes an API interface of 3D solid modeling software, and the 3D virtual environment of the robot uses the API interface function of the 3D solid modeling software to realize 3D modeling of the robot operating system.
优选的,所述三维实体建模软件中包括基本图元模型,所述基本图元模型包括直线、圆弧、贝塞尔曲线和样条曲线四种基本图元及其关联实体;Preferably, the three-dimensional solid modeling software includes a basic primitive model, and the basic primitive model includes four basic primitives of straight lines, arcs, Bezier curves and splines and their associated entities;
从获取模块中,三维实体建模软件的API接口函数提取机器人运动路径图元及其位姿信息,通过生成基本图元模型和自动选择生成运动轨迹,经过坐标转换,将上述的基本图元模型和运动轨迹转化到机器人三维虚拟环境中再进行后续的曲线离散化,并提取路径点。From the acquisition module, the API interface function of the 3D solid modeling software extracts the robot motion path primitive and its pose information, generates the basic primitive model and automatically selects the motion trajectory, and transforms the above basic primitive model And the trajectory is transformed into the three-dimensional virtual environment of the robot, and then the subsequent curve discretization is performed, and the way points are extracted.
优选的,所述位姿信息通过提取的路径点上建立的笛卡尔坐标系,以三维坐标轴的形式直观的在终端上显示为具有位置和姿态的带有路径的离散点。Preferably, the pose information is visually displayed on the terminal in the form of three-dimensional coordinate axes through the Cartesian coordinate system established on the extracted path points as discrete points with a path having positions and postures.
优选的,在进行机器人运动仿真和碰撞检测时,将所述的离散点和机器人运动学约束条件、机器人工作对象的三维模型、机器人及其工装的三维模型在机器人三维虚拟环境中进行碰撞检测得到机器人运动轨迹和姿态,若碰撞,则自动修改路径点形成新的机器人运动轨迹和姿态,若不碰撞,则保留原机器人运动轨迹和姿态作为新的机器人运动轨迹和姿态。Preferably, when performing robot motion simulation and collision detection, the discrete points and robot kinematic constraints, the three-dimensional model of the robot's work object, the three-dimensional model of the robot and its tooling are carried out in the robot's three-dimensional virtual environment for collision detection to obtain If the trajectory and posture of the robot collide, the path point will be automatically modified to form a new trajectory and posture of the robot. If there is no collision, the original trajectory and posture of the robot will be retained as the new trajectory and posture of the robot.
优选的,根据所述新的机器人运动轨迹和姿态求解机器人正逆运动,并转换成机器人的目标控制程序和数据,生成机器人可执行文件。Preferably, the forward and reverse motion of the robot is calculated according to the new robot motion trajectory and posture, and converted into the robot's target control program and data to generate a robot executable file.
另外,本发明还提供相应的一种机器人离线编程方法,步骤如下:In addition, the present invention also provides a corresponding robot off-line programming method, the steps are as follows:
S1、设定机器人运动学约束条件;获取机器人工作对象和机器人及其工装三维模型;获取机器人运动路径图元及其位姿信息;S1. Set robot kinematic constraints; obtain robot working objects and 3D models of robots and their tooling; obtain robot motion path primitives and their pose information;
S2、构建机器人三维虚拟环境;S2. Construct a three-dimensional virtual environment for the robot;
S3、将步骤S1中设定的机器人运动学约束条件、获取的机器人工作对象和机器人及其工装三维模型、获取的机器人运动路径图元及其位姿信息载入机器人三维虚拟环境;S3. Load the kinematic constraint conditions of the robot set in step S1, the obtained robot working object, the robot and its tooling three-dimensional model, the obtained robot motion path primitives and their pose information into the three-dimensional virtual environment of the robot;
S4、将提取到的机器人运动路径图元及其位姿信息进行曲线离散化处理,得到路径点,并在机器人三维虚拟环境中生成机器人运动轨迹;S4. Perform curve discretization processing on the extracted robot motion path primitives and their pose information to obtain path points, and generate robot motion trajectories in the robot's three-dimensional virtual environment;
S5、根据机器人运动轨迹进行机器人运动仿真和碰撞检测,系统自动判断是否产生干涉;S5. Carry out robot motion simulation and collision detection according to the robot motion trajectory, and the system automatically judges whether there is interference;
若是,则进入步骤S6;If so, proceed to step S6;
若否,则进入步骤S7;If not, then enter step S7;
S6、按照事先给出的定义修改路径点重新生成机器人运动轨迹,然后返回步骤S5;S6. Modify the path point according to the definition given in advance to regenerate the trajectory of the robot, and then return to step S5;
S7、显示并判断机器人运动轨迹的可行性,若不可行则进行人工操作修改,若可行则生成可行性结果并生成机器人可执行文件;S7. Displaying and judging the feasibility of the trajectory of the robot. If it is not feasible, perform manual modification. If feasible, generate a feasibility result and generate a robot executable file;
S8、与机器人通讯,将机器人可执行文件导入机器人控制器,实现机器人运动控制。S8. Communicating with the robot, importing the executable file of the robot into the robot controller to realize the motion control of the robot.
本发明提供的机器人离线编程系统及其相应的机器人离线编程方法,通过在终端的操作系统中构建机器人三维虚拟环境并且在机器人三维虚拟环境中导入机器人运动学约束条件、机器人工作对象的三维模型、机器人及其工装的三维模型,对提取到的机器人运动路径图元及其位姿信息进行曲线离散化,提取路径点,生成机器人运动轨迹,按照已经给出的定义修改路径点形成最佳姿态并在操作系统上显示,之后进行机器人运动仿真和碰撞检测,得到可行性结果并生成机器人可执行文件,与机器人通讯,将运动代码导入机器人控制器,实现机器人运动控制。通过本发明的方案能够实现机器人复杂运动曲线路径的自动编程和仿真检测,并导出机器人运动代码实现全程自动化的机器人运动控制,具有操作简单、工作效率高的优点。The robot offline programming system and the corresponding robot offline programming method provided by the present invention construct a three-dimensional virtual environment of the robot in the operating system of the terminal and import robot kinematics constraints, three-dimensional models of robot working objects, The 3D model of the robot and its tooling is used to discretize the extracted motion path primitives and pose information of the robot, extract the path points, generate the robot motion trajectory, modify the path points according to the given definition to form the best posture and Display on the operating system, then perform robot motion simulation and collision detection, obtain feasible results and generate robot executable files, communicate with the robot, import motion codes into the robot controller, and realize robot motion control. The solution of the invention can realize the automatic programming and simulation detection of the complex motion curve path of the robot, and derive the robot motion code to realize the whole automatic robot motion control, which has the advantages of simple operation and high work efficiency.
附图说明Description of drawings
图1为本发明系统的工作流程示意图;Fig. 1 is the workflow schematic diagram of the system of the present invention;
图2为本发明系统的结构组成框图;Fig. 2 is the structural composition block diagram of system of the present invention;
图3为本发明系统的机器人三维虚拟环境示意图。Fig. 3 is a schematic diagram of the three-dimensional virtual environment of the robot of the system of the present invention.
具体实施方式detailed description
下面结合实施例及附图对本发明方案作进一步详细的描述,但本发明的实施方式不限于此。The solution of the present invention will be further described in detail below in conjunction with the embodiments and drawings, but the implementation of the present invention is not limited thereto.
本发明提供了一种机器人离线编程系统,包括:The invention provides a robot off-line programming system, comprising:
用于设定机器人运动学约束条件的约束条件设定模块;A constraint setting module for setting robot kinematic constraints;
用于获取机器人工作对象和机器人及其工装三维模型和机器人运动路径图元及其位姿信息的获取模块;An acquisition module for acquiring robot working objects, robots and their tooling 3D models, robot motion path primitives and their pose information;
以及用于构建机器人三维虚拟环境的带有操作系统的终端;And a terminal with an operating system for building a three-dimensional virtual environment for robots;
系统的具体工作流程是在机器人三维虚拟环境中导入机器人运动学约束条件、机器人工作对象的三维模型、机器人及其工装的三维模型,对提取到的机器人运动路径图元及其位姿信息进行曲线离散化,提取路径点,生成机器人运动轨迹,之后进行机器人运动仿真和碰撞检测,根据机器人运动仿真和碰撞检测结果,按照已经给出的定义修改路径点形成在新的机器人运动轨迹和姿态并操作系统上显示,得到可行性结果并生成机器人可执行文件,与机器人通讯,将机器人可执行文件导入机器人控制器,实现机器人运动控制。The specific workflow of the system is to import the robot kinematics constraints, the 3D model of the robot's work object, the 3D model of the robot and its tooling into the robot's 3D virtual environment, and curve the extracted robot motion path primitives and their pose information. Discretization, extracting path points, generating robot motion trajectory, and then performing robot motion simulation and collision detection. According to the robot motion simulation and collision detection results, modify the path points according to the given definition to form a new robot motion trajectory and posture and operate The system shows that the feasibility results are obtained and the executable file of the robot is generated, communicated with the robot, and the executable file of the robot is imported into the robot controller to realize the motion control of the robot.
较优的,所述获取模块包括三维实体建模软件的API接口,所述机器人三维虚拟环境采用三维实体建模软件的API接口函数,实现机器人作业系统的三维建模。具体来说,就是利用三维实体建模软件的API接口函数,实现机器人作业系统的三维建模,包括机器人本体、作业对象、周边环境的设计与布置及其几何模型图形处理,作业路径的定义和修改,物体轮廓提取,实现虚拟仿真环境与实际工作环境的匹配。这样可以直接使用现有的成熟软件直接套用在系统中,大大提高了系统的兼容性和稳定性,便于用户维护和替换。Preferably, the acquisition module includes an API interface of 3D solid modeling software, and the robot 3D virtual environment adopts the API interface function of 3D solid modeling software to realize 3D modeling of the robot operation system. Specifically, it is to use the API interface function of the 3D solid modeling software to realize the 3D modeling of the robot operation system, including the design and layout of the robot body, the work object, the surrounding environment and its geometric model graphics processing, the definition of the work path and Modification, object outline extraction, to achieve the matching of the virtual simulation environment and the actual working environment. In this way, the existing mature software can be directly applied to the system, which greatly improves the compatibility and stability of the system, and is convenient for users to maintain and replace.
其中,较优的,所述三维实体建模软件中包括基本图元模型,所述基本图元模型包括直线、圆弧、贝塞尔曲线和样条曲线四种基本图元及其关联实体;从获取模块中,三维实体建模软件的API接口函数提取机器人运动路径图元及其位姿信息,通过生成基本图元模型和自动选择生成运动轨迹,经过坐标转换,将上述的基本图元模型和运动轨迹转化到机器人三维虚拟环境中再进行后续的曲线离散化,并提取路径点。该具体实施例中,使用相关图元建模,基本上能够满足绝大多数复杂轨迹的生成要求,另外,由于后续是采用离散化曲线的方式进行模拟仿真和碰撞测试,所以对整个系统的配置要求大大降低,同时,由于运算的简化,系统的处理效率大大提高,并且可以根据系统配置的高低选取离散点的选取密度,使其可以适应各种模拟环境。Wherein, preferably, the 3D solid modeling software includes a basic primitive model, and the basic primitive model includes four basic primitives of straight lines, arcs, Bezier curves and splines and their associated entities; From the acquisition module, the API interface function of the 3D solid modeling software extracts the robot motion path primitive and its pose information, generates the basic primitive model and automatically selects the motion trajectory, and transforms the above basic primitive model And the trajectory is transformed into the three-dimensional virtual environment of the robot, and then the subsequent curve discretization is performed, and the way points are extracted. In this specific embodiment, the use of related primitives for modeling can basically meet the generation requirements of most complex trajectories. In addition, since the follow-up is to use discretized curves for simulation and collision testing, the configuration of the entire system The requirements are greatly reduced, and at the same time, due to the simplification of the calculation, the processing efficiency of the system is greatly improved, and the selection density of discrete points can be selected according to the level of the system configuration, so that it can adapt to various simulation environments.
较优的,所述位姿信息通过提取的路径点上建立的笛卡尔坐标系,以三维坐标轴的形式直观的在终端上显示为具有位置和姿态的带有路径的离散点。这样就实现了运动路径的可视化,并便于后续操作。Preferably, the pose information is intuitively displayed on the terminal in the form of three-dimensional coordinate axes through the Cartesian coordinate system established on the extracted path points as discrete points with a path and position and posture. This enables visualization of the motion path and facilitates subsequent operations.
其中,较优的,在进行机器人运动仿真和碰撞检测时,将所述的离散点和机器人运动学约束条件、机器人工作对象的三维模型、机器人及其工装的三维模型在机器人三维虚拟环境中进行碰撞检测得到机器人运动轨迹和姿态,若碰撞,则自动修改路径点形成新的机器人运动轨迹和姿态,若不碰撞,则保留原机器人运动轨迹和姿态作为新的机器人运动轨迹和姿态。Among them, preferably, when performing robot motion simulation and collision detection, the discrete points and robot kinematic constraints, the three-dimensional model of the robot's work object, the three-dimensional model of the robot and its tooling are carried out in the three-dimensional virtual environment of the robot The trajectory and posture of the robot are obtained through collision detection. If there is a collision, the path point will be automatically modified to form a new trajectory and posture of the robot. If there is no collision, the original trajectory and posture of the robot will be retained as the new trajectory and posture of the robot.
其中,较优的,根据所述新的机器人运动轨迹和姿态求解机器人正逆运动,并转换成机器人的目标控制程序和数据,生成机器人可执行文件。Wherein, preferably, the forward and reverse motion of the robot is calculated according to the new robot motion trajectory and posture, and converted into the target control program and data of the robot to generate the executable file of the robot.
本发明还提供对应的一种机器人离线编程方法,步骤如下:The present invention also provides a corresponding robot off-line programming method, the steps are as follows:
S1、设定机器人运动学约束条件;获取机器人工作对象和机器人及其工装三维模型;获取机器人运动路径图元及其位姿信息;S1. Set robot kinematic constraints; obtain robot working objects and 3D models of robots and their tooling; obtain robot motion path primitives and their pose information;
S2、构建机器人三维虚拟环境;S2. Construct a three-dimensional virtual environment for the robot;
S3、将步骤S1中设定的机器人运动学约束条件、获取的机器人工作对象和机器人及其工装三维模型、获取的机器人运动路径图元及其位姿信息载入机器人三维虚拟环境;S3. Load the kinematic constraint conditions of the robot set in step S1, the obtained robot working object, the robot and its tooling three-dimensional model, the obtained robot motion path primitives and their pose information into the three-dimensional virtual environment of the robot;
S4、将提取到的机器人运动路径图元及其位姿信息进行曲线离散化处理,得到路径点,并在机器人三维虚拟环境中生成机器人运动轨迹;S4. Perform curve discretization processing on the extracted robot motion path primitives and their pose information to obtain path points, and generate robot motion trajectories in the robot's three-dimensional virtual environment;
S5、根据机器人运动轨迹进行机器人运动仿真和碰撞检测,系统自动判断是否产生干涉;S5. Carry out robot motion simulation and collision detection according to the robot motion trajectory, and the system automatically judges whether there is interference;
若是,则进入步骤S6;If so, proceed to step S6;
若否,则进入步骤S7;If not, then enter step S7;
S6、按照事先给出的定义修改路径点重新生成机器人运动轨迹,然后返回步骤S5;S6. Modify the path point according to the definition given in advance to regenerate the trajectory of the robot, and then return to step S5;
S7、显示并判断机器人运动轨迹的可行性,若不可行则进行人工操作修改,若可行则生成可行性结果并生成机器人可执行文件;S7. Displaying and judging the feasibility of the trajectory of the robot. If it is not feasible, perform manual modification. If feasible, generate a feasibility result and generate a robot executable file;
S8、与机器人通讯,将机器人可执行文件导入机器人控制器,实现机器人运动控制。S8. Communicating with the robot, importing the executable file of the robot into the robot controller to realize the motion control of the robot.
另外,该方法的具体实施方式可以基于三维实体造型软件SolidWorks实现,即三维实体建模软件可以采用SolidWorks,具体运行流程如下:In addition, the specific implementation of the method can be realized based on the 3D solid modeling software SolidWorks, that is, the 3D solid modeling software can use SolidWorks, and the specific operation process is as follows:
1.在三维建模软件SolidWorks中建立完整的机器人和工件模型(可从外部导入),定义机器人与工件的相对位置关系及机器人工作空间约束;1. Establish a complete robot and workpiece model (which can be imported from outside) in the 3D modeling software SolidWorks, define the relative positional relationship between the robot and the workpiece and the constraints of the robot's workspace;
2.利用图元提取功能在工件模型上选择焊缝轨迹,完成作业路径的定义;2. Use the primitive extraction function to select the weld trajectory on the workpiece model to complete the definition of the operation path;
3.提取运动路径图元和关联实体的信息,显示在显示区中;3. Extract the information of motion path primitives and associated entities, and display them in the display area;
4.利用SolidWorks的API函数获取路径点的位姿信息,借助数据转换模块,将路径点的位姿信息转化到机器人工作空间中;4. Use the SolidWorks API function to obtain the pose information of the path point, and use the data conversion module to convert the pose information of the path point into the robot workspace;
5.使用机器人仿真模块,将离散的路径点信息导入仿真控制系统中,对任务规划和路径规划的结果进行三维图形运动仿真,模拟整个作业的完成情况;5. Use the robot simulation module to import discrete path point information into the simulation control system, and perform three-dimensional graphics motion simulation on the results of task planning and path planning to simulate the completion of the entire operation;
6.使用位姿调整模块修改所需的各个路径点的位置和姿态,以符合机器人作业姿态要求,使机器人运动性能最优化及能耗最少;6. Use the posture adjustment module to modify the position and posture of each path point required to meet the requirements of the robot's working posture, so as to optimize the robot's motion performance and minimize energy consumption;
7.利用显示功能将各路径点的位姿信息表达出来,显示直观,易于修改;7. Use the display function to express the pose information of each path point, which is intuitive and easy to modify;
8.利用后置处理模块,将正确的作业程序转换成目标机器人的控制程序和数据,生成特定机器人可执行文件,输入机器人控制器,实现对机器人的精确控制。8. Use the post-processing module to convert the correct operation program into the control program and data of the target robot, generate a specific robot executable file, and input it into the robot controller to achieve precise control of the robot.
以上对本发明所提供的一种机器人离线编程系统及方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。A kind of robot off-line programming system and method provided by the present invention has been introduced in detail above. In this paper, specific examples are used to illustrate the principle and implementation of the present invention. The description of the above embodiments is only used to help understand the present invention. method and its core idea. It should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can be made to the present invention, and these improvements and modifications also fall within the protection scope of the claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610211196.8A CN105945942A (en) | 2016-04-05 | 2016-04-05 | Robot off line programming system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610211196.8A CN105945942A (en) | 2016-04-05 | 2016-04-05 | Robot off line programming system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105945942A true CN105945942A (en) | 2016-09-21 |
Family
ID=56917441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610211196.8A Pending CN105945942A (en) | 2016-04-05 | 2016-04-05 | Robot off line programming system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105945942A (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106583974A (en) * | 2016-12-16 | 2017-04-26 | 南京合信智能装备有限公司 | Laser quick locating welding system and laser quick locating welding method without programming structural part |
CN106914896A (en) * | 2017-03-27 | 2017-07-04 | 刘程秀 | A kind of construction method of robot off-line programming |
CN107336235A (en) * | 2017-06-20 | 2017-11-10 | 天津市青创空间科技企业孵化器有限公司 | A kind of robot Off-line Programming System |
CN107486858A (en) * | 2017-08-08 | 2017-12-19 | 浙江工业大学 | Multi-mechanical-arm collaborative offline programming method based on RoboDK |
CN107610579A (en) * | 2017-09-05 | 2018-01-19 | 芜湖瑞思机器人有限公司 | Industrial robot teaching system and its teaching method based on the control of VR systems |
CN107980109A (en) * | 2017-01-04 | 2018-05-01 | 深圳配天智能技术研究院有限公司 | Robot motion's method for planning track and relevant apparatus |
CN108010130A (en) * | 2017-12-13 | 2018-05-08 | 合肥工业大学 | A kind of robot manipulation method of Graphics-oriented |
CN108656106A (en) * | 2017-03-31 | 2018-10-16 | 宁波Gqy视讯股份有限公司 | The design method of robot limb action |
CN108762209A (en) * | 2018-05-25 | 2018-11-06 | 西安电子科技大学 | Production Line Configured's analogue system based on mixed reality and method |
CN109015654A (en) * | 2018-09-04 | 2018-12-18 | 沈阳飞机工业(集团)有限公司 | A kind of robot hole emulation and off-line programing method comprising automatic carriage |
CN109333521A (en) * | 2018-11-26 | 2019-02-15 | 江苏科技大学 | An intelligent generation method of bending teaching point coordinates for sheet metal bending robot |
CN110000793A (en) * | 2019-04-29 | 2019-07-12 | 武汉库柏特科技有限公司 | A kind of motion planning and robot control method, apparatus, storage medium and robot |
CN110058875A (en) * | 2019-03-12 | 2019-07-26 | 广州明珞汽车装备有限公司 | It is a kind of for the deriving method of robot off-line program, system and storage medium |
CN110597594A (en) * | 2019-09-29 | 2019-12-20 | 联想(北京)有限公司 | Processing method and device of virtual teaching aid, electronic equipment and teaching aid system |
CN110675724A (en) * | 2019-11-05 | 2020-01-10 | 天津百利机械装备集团有限公司中央研究院 | Design method of robot gluing teaching system |
CN110929422A (en) * | 2019-12-09 | 2020-03-27 | 中国人民解放军军事科学院国防科技创新研究院 | Robot cluster simulation method and device |
CN110919499A (en) * | 2019-12-18 | 2020-03-27 | 东莞市照亮智能装备科技有限公司 | Off-line programming-based golf head manufacturing process |
CN111247080A (en) * | 2017-10-04 | 2020-06-05 | 蒂森克虏伯座椅电梯有限公司 | Method for planning a platform lift |
CN111381815A (en) * | 2020-02-14 | 2020-07-07 | 西安交通大学 | Off-line programming post-code conversion method and dual-robot collaborative intelligent manufacturing system and method based on the method |
CN111504328A (en) * | 2020-05-22 | 2020-08-07 | 梅卡曼德(北京)机器人科技有限公司 | Robot motion planning method, path planning method, grabbing method and device |
CN112372631A (en) * | 2020-10-05 | 2021-02-19 | 华中科技大学 | Rapid collision detection method and device for robot machining of large complex component |
CN112698823A (en) * | 2020-12-31 | 2021-04-23 | 佛山冠湾智能科技有限公司 | Graphical robot programming interaction system and method |
CN112828886A (en) * | 2020-12-31 | 2021-05-25 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | A control method for industrial robot collision prediction based on digital twin |
CN113211430A (en) * | 2021-04-12 | 2021-08-06 | 北京航天飞行控制中心 | Man-machine cooperative mechanical arm planning method and system |
CN113246139A (en) * | 2021-06-15 | 2021-08-13 | 电子科技大学中山学院 | Mechanical arm motion planning method and device and mechanical arm |
CN113722219A (en) * | 2021-08-26 | 2021-11-30 | 库卡机器人制造(上海)有限公司 | Report generation method, report generation device, robot and readable storage medium |
CN113836745A (en) * | 2021-10-13 | 2021-12-24 | 国网山西省电力公司输电检修分公司 | A simulation system and method for intelligent inspection device |
CN114603552A (en) * | 2020-12-08 | 2022-06-10 | 北京配天技术有限公司 | Robot simulation method, electronic device and storage medium |
CN117444989A (en) * | 2023-12-25 | 2024-01-26 | 常州微亿智造科技有限公司 | Collision detection method and device for path planning |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101152717A (en) * | 2006-09-28 | 2008-04-02 | 首钢莫托曼机器人有限公司 | Method for generating robot cutting operation program off-line |
US20120127165A1 (en) * | 2010-11-19 | 2012-05-24 | Evans Judy A | System, method, and apparatus to display three-dimensional robotic workcell data |
CN103085072A (en) * | 2013-03-11 | 2013-05-08 | 南京埃斯顿机器人工程有限公司 | Method for achieving industrial robot off-line programming based on three-dimensional modeling software |
CN104057448A (en) * | 2013-03-19 | 2014-09-24 | 株式会社安川电机 | Robot system and method for producing to-be-processed material |
CN104552298A (en) * | 2013-10-17 | 2015-04-29 | 株式会社安川电机 | Teaching system and teaching method |
CN104942808A (en) * | 2015-06-29 | 2015-09-30 | 广州数控设备有限公司 | Robot motion path off-line programming method and system |
CN105171745A (en) * | 2015-08-31 | 2015-12-23 | 上海发那科机器人有限公司 | Robot off-line programming system |
CN105302959A (en) * | 2015-10-30 | 2016-02-03 | 福建长江工业有限公司 | Offline programming method for six-axis grinding and polishing industrial robot |
-
2016
- 2016-04-05 CN CN201610211196.8A patent/CN105945942A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101152717A (en) * | 2006-09-28 | 2008-04-02 | 首钢莫托曼机器人有限公司 | Method for generating robot cutting operation program off-line |
US20120127165A1 (en) * | 2010-11-19 | 2012-05-24 | Evans Judy A | System, method, and apparatus to display three-dimensional robotic workcell data |
CN103085072A (en) * | 2013-03-11 | 2013-05-08 | 南京埃斯顿机器人工程有限公司 | Method for achieving industrial robot off-line programming based on three-dimensional modeling software |
CN104057448A (en) * | 2013-03-19 | 2014-09-24 | 株式会社安川电机 | Robot system and method for producing to-be-processed material |
CN104552298A (en) * | 2013-10-17 | 2015-04-29 | 株式会社安川电机 | Teaching system and teaching method |
CN104942808A (en) * | 2015-06-29 | 2015-09-30 | 广州数控设备有限公司 | Robot motion path off-line programming method and system |
CN105171745A (en) * | 2015-08-31 | 2015-12-23 | 上海发那科机器人有限公司 | Robot off-line programming system |
CN105302959A (en) * | 2015-10-30 | 2016-02-03 | 福建长江工业有限公司 | Offline programming method for six-axis grinding and polishing industrial robot |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106583974A (en) * | 2016-12-16 | 2017-04-26 | 南京合信智能装备有限公司 | Laser quick locating welding system and laser quick locating welding method without programming structural part |
CN106583974B (en) * | 2016-12-16 | 2018-04-13 | 南京合信智能装备有限公司 | One kind quickly seeks a welding system and welding method without programming structure part laser |
CN107980109A (en) * | 2017-01-04 | 2018-05-01 | 深圳配天智能技术研究院有限公司 | Robot motion's method for planning track and relevant apparatus |
CN106914896A (en) * | 2017-03-27 | 2017-07-04 | 刘程秀 | A kind of construction method of robot off-line programming |
CN108656106A (en) * | 2017-03-31 | 2018-10-16 | 宁波Gqy视讯股份有限公司 | The design method of robot limb action |
CN107336235A (en) * | 2017-06-20 | 2017-11-10 | 天津市青创空间科技企业孵化器有限公司 | A kind of robot Off-line Programming System |
CN107486858A (en) * | 2017-08-08 | 2017-12-19 | 浙江工业大学 | Multi-mechanical-arm collaborative offline programming method based on RoboDK |
CN107610579A (en) * | 2017-09-05 | 2018-01-19 | 芜湖瑞思机器人有限公司 | Industrial robot teaching system and its teaching method based on the control of VR systems |
CN111247080A (en) * | 2017-10-04 | 2020-06-05 | 蒂森克虏伯座椅电梯有限公司 | Method for planning a platform lift |
US11597634B2 (en) | 2017-10-04 | 2023-03-07 | T.K. Home Solutions B.V. | Method of planning platform lift |
CN108010130A (en) * | 2017-12-13 | 2018-05-08 | 合肥工业大学 | A kind of robot manipulation method of Graphics-oriented |
CN108010130B (en) * | 2017-12-13 | 2021-03-09 | 合肥工业大学 | Robot operation method facing to graphs |
CN108762209A (en) * | 2018-05-25 | 2018-11-06 | 西安电子科技大学 | Production Line Configured's analogue system based on mixed reality and method |
CN109015654A (en) * | 2018-09-04 | 2018-12-18 | 沈阳飞机工业(集团)有限公司 | A kind of robot hole emulation and off-line programing method comprising automatic carriage |
CN109333521A (en) * | 2018-11-26 | 2019-02-15 | 江苏科技大学 | An intelligent generation method of bending teaching point coordinates for sheet metal bending robot |
CN110058875A (en) * | 2019-03-12 | 2019-07-26 | 广州明珞汽车装备有限公司 | It is a kind of for the deriving method of robot off-line program, system and storage medium |
CN110058875B (en) * | 2019-03-12 | 2023-12-12 | 广州明珞汽车装备有限公司 | Export method, system and storage medium for robot offline program |
CN110000793B (en) * | 2019-04-29 | 2024-07-16 | 武汉库柏特科技有限公司 | Robot motion control method and device, storage medium and robot |
CN110000793A (en) * | 2019-04-29 | 2019-07-12 | 武汉库柏特科技有限公司 | A kind of motion planning and robot control method, apparatus, storage medium and robot |
CN110597594A (en) * | 2019-09-29 | 2019-12-20 | 联想(北京)有限公司 | Processing method and device of virtual teaching aid, electronic equipment and teaching aid system |
CN110675724A (en) * | 2019-11-05 | 2020-01-10 | 天津百利机械装备集团有限公司中央研究院 | Design method of robot gluing teaching system |
CN110929422A (en) * | 2019-12-09 | 2020-03-27 | 中国人民解放军军事科学院国防科技创新研究院 | Robot cluster simulation method and device |
CN110919499B (en) * | 2019-12-18 | 2022-06-03 | 东莞市照亮智能装备科技有限公司 | Off-line programming-based golf head manufacturing process |
CN110919499A (en) * | 2019-12-18 | 2020-03-27 | 东莞市照亮智能装备科技有限公司 | Off-line programming-based golf head manufacturing process |
CN111381815A (en) * | 2020-02-14 | 2020-07-07 | 西安交通大学 | Off-line programming post-code conversion method and dual-robot collaborative intelligent manufacturing system and method based on the method |
US12109710B2 (en) | 2020-05-22 | 2024-10-08 | Mech-Mind Robotics Technologies Ltd. | Method and apparatus for motion planning of robot, method and apparatus for path planning of robot, and method and apparatus for grasping of robot |
CN111504328A (en) * | 2020-05-22 | 2020-08-07 | 梅卡曼德(北京)机器人科技有限公司 | Robot motion planning method, path planning method, grabbing method and device |
CN112372631B (en) * | 2020-10-05 | 2022-03-15 | 华中科技大学 | Rapid collision detection method and device for robot machining of large complex component |
CN112372631A (en) * | 2020-10-05 | 2021-02-19 | 华中科技大学 | Rapid collision detection method and device for robot machining of large complex component |
CN114603552B (en) * | 2020-12-08 | 2024-05-10 | 北京配天技术有限公司 | Robot simulation method, electronic equipment and storage medium |
CN114603552A (en) * | 2020-12-08 | 2022-06-10 | 北京配天技术有限公司 | Robot simulation method, electronic device and storage medium |
CN112698823A (en) * | 2020-12-31 | 2021-04-23 | 佛山冠湾智能科技有限公司 | Graphical robot programming interaction system and method |
CN112828886A (en) * | 2020-12-31 | 2021-05-25 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | A control method for industrial robot collision prediction based on digital twin |
CN113211430B (en) * | 2021-04-12 | 2024-08-09 | 北京航天飞行控制中心 | Man-machine collaborative mechanical arm planning method and system |
CN113211430A (en) * | 2021-04-12 | 2021-08-06 | 北京航天飞行控制中心 | Man-machine cooperative mechanical arm planning method and system |
CN113246139A (en) * | 2021-06-15 | 2021-08-13 | 电子科技大学中山学院 | Mechanical arm motion planning method and device and mechanical arm |
CN113722219A (en) * | 2021-08-26 | 2021-11-30 | 库卡机器人制造(上海)有限公司 | Report generation method, report generation device, robot and readable storage medium |
CN113722219B (en) * | 2021-08-26 | 2025-02-07 | 库卡机器人制造(上海)有限公司 | Report generation method, device, robot and readable storage medium |
CN113836745B (en) * | 2021-10-13 | 2023-08-22 | 国网山西省电力公司超高压变电分公司 | Simulation system and method for intelligent inspection device |
CN113836745A (en) * | 2021-10-13 | 2021-12-24 | 国网山西省电力公司输电检修分公司 | A simulation system and method for intelligent inspection device |
CN117444989B (en) * | 2023-12-25 | 2024-03-22 | 常州微亿智造科技有限公司 | Collision detection method and device for path planning |
CN117444989A (en) * | 2023-12-25 | 2024-01-26 | 常州微亿智造科技有限公司 | Collision detection method and device for path planning |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105945942A (en) | Robot off line programming system and method | |
Ostanin et al. | Interactive robot programing using mixed reality | |
Fang et al. | Interactive robot trajectory planning and simulation using augmented reality | |
CN104858537B (en) | Control the method and device of robotic cutting workpiece grooves | |
EP1842631B1 (en) | Apparatus and method for automatic path generation for an industrial robot | |
Kohrt et al. | An online robot trajectory planning and programming support system for industrial use | |
CN110434856B (en) | Welding control method and device, storage medium and welding robot | |
US20150190926A1 (en) | Method and system for off-line programming of multiple interacting robots | |
CN103778301A (en) | Mechanical arm simulation method based on virtual prototype technology | |
CN107220099A (en) | A kind of robot visualization virtual teaching system and method based on threedimensional model | |
Fang et al. | Orientation planning of robot end-effector using augmented reality | |
Fang et al. | Robot path and end-effector orientation planning using augmented reality | |
CN108748152A (en) | A kind of robot teaching method and system | |
CN103809463A (en) | Teaching point program selection method for robot simulator | |
Valenzuela-Urrutia et al. | Virtual reality-based time-delayed haptic teleoperation using point cloud data | |
CN113211447A (en) | Mechanical arm real-time perception planning method and system based on bidirectional RRT algorithm | |
Zhang et al. | Augmented reality in robot programming | |
Gogouvitis et al. | Construction of a virtual reality environment for robotic manufacturing cells | |
Chryssolouris et al. | A novel virtual experimentation approach to planning and training for manufacturing processes--the virtual machine shop | |
JP7475841B2 (en) | Information processing method, robot system, article manufacturing method, and information processing device | |
CN111113426A (en) | A Robot Offline Programming System Based on CAD Platform | |
Vosniakos et al. | Structured design of flexibly automated manufacturing cells through semantic models and petri nets in a virtual reality environment | |
Zeng et al. | Robotic trajectory planning based on CL data | |
Johari et al. | Robotic modeling and simulation of palletizer robot using Workspace5 | |
Zagirov et al. | A new virtual human model based on AR-601M humanoid robot for a collaborative HRI simulation in the Gazebo environment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160921 |
|
RJ01 | Rejection of invention patent application after publication |