CN105938872A - Magnetic tunnel junction structure and tunnel magnetoresistive element - Google Patents
Magnetic tunnel junction structure and tunnel magnetoresistive element Download PDFInfo
- Publication number
- CN105938872A CN105938872A CN201610383994.9A CN201610383994A CN105938872A CN 105938872 A CN105938872 A CN 105938872A CN 201610383994 A CN201610383994 A CN 201610383994A CN 105938872 A CN105938872 A CN 105938872A
- Authority
- CN
- China
- Prior art keywords
- layer
- magnetic
- junction structure
- tunnel
- tunnel junction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 124
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 22
- 230000004888 barrier function Effects 0.000 claims abstract description 21
- 230000005381 magnetic domain Effects 0.000 claims abstract description 14
- 230000000694 effects Effects 0.000 claims abstract description 3
- 239000010410 layer Substances 0.000 claims description 230
- 230000005294 ferromagnetic effect Effects 0.000 claims description 35
- 229910003321 CoFe Inorganic materials 0.000 claims description 31
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 11
- 239000010409 thin film Substances 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 5
- 239000011241 protective layer Substances 0.000 claims description 5
- 238000005036 potential barrier Methods 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 14
- 239000003302 ferromagnetic material Substances 0.000 abstract description 6
- 238000003860 storage Methods 0.000 abstract description 4
- 230000006872 improvement Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000000151 deposition Methods 0.000 description 5
- 230000005415 magnetization Effects 0.000 description 5
- 238000001771 vacuum deposition Methods 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 230000005290 antiferromagnetic effect Effects 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 239000002122 magnetic nanoparticle Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000001803 electron scattering Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000005641 tunneling Effects 0.000 description 3
- 230000005355 Hall effect Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000013399 early diagnosis Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000006249 magnetic particle Substances 0.000 description 2
- 229910002546 FeCo Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005358 geomagnetic field Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
- H10N50/85—Materials of the active region
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Hall/Mr Elements (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
本发明公开了一种磁隧道结结构,属于磁电子学技术领域。本发明磁隧道结结构包括以下几方面改进:导入超薄金属Mg层从而构成Mg/MgO/Mg三明治超晶格结构的绝缘势垒层;利用两种具有相反磁致伸缩特性的铁磁材料层所构成的超晶格结构作为钉扎型TMR结构的自由层;在自由层侧壁引入可对自由层中边缘微小磁畴实现钉扎作用的附加钉扎层。本发明还公开了一种隧道磁阻元件以及应用该隧道磁阻元件的隧道磁阻磁头、隧道磁阻传感器、磁存储单元。相比现有技术,本发明可有效降MTJ元件中的电磁噪声,大幅提高TMR传感器的灵敏度。
The invention discloses a magnetic tunnel junction structure, which belongs to the technical field of magnetoelectronics. The magnetic tunnel junction structure of the present invention includes the following improvements: introducing an ultra-thin metal Mg layer to form an insulating barrier layer of a Mg/MgO/Mg sandwich superlattice structure; utilizing two ferromagnetic material layers with opposite magnetostrictive properties The formed superlattice structure serves as the free layer of the pinned TMR structure; an additional pinning layer that can realize the pinning effect on the edge micro magnetic domains in the free layer is introduced on the side wall of the free layer. The invention also discloses a tunnel magneto-resistance element, a tunnel magneto-resistance head, a tunnel magneto-resistance sensor and a magnetic storage unit using the tunnel magneto-resistance element. Compared with the prior art, the invention can effectively reduce the electromagnetic noise in the MTJ element and greatly improve the sensitivity of the TMR sensor.
Description
技术领域technical field
本发明涉及一种磁隧道结结构,属于磁电子学技术领域。The invention relates to a magnetic tunnel junction structure, belonging to the technical field of magnetoelectronics.
背景技术Background technique
生物分子识别在RNA链识别,基因检测,细菌诊断,新的药物发现,DNA缺陷及生物战中致命毒剂,食品安全和以恶性肿瘤为代表的重大疾病的早期诊断检测等方面有着广泛的应用。磁生物分子识别、检测和监测是近年来发展起来的一种新型生物分子测量技术。磁性纳米粒子分子识别的基本原理,是利用高性能的磁场传感器来测量标记生物分子的磁性纳米粒子在磁化下的边缘场。发自单个磁性纳米粒子的边缘场大约2Oe,数量级上类似于0.5Oe的地磁场。考虑到测量中磁粒子与磁敏感层的距离,对单磁粒子的检测,传感器必须具有测量低于0.05Oe磁场强度的能力,这就需要超高敏感的传感系统。虽然大磁矩的磁性纳米粒子能帮助获得大磁边缘场,但是解决磁分子识别技术瓶颈的关键仍取决于传感器技术的突破。目前用于小磁场测量的传感系统有磁各相异性(AMR)、Hall效应、基于超导量子干涉器件(SQUID)和自旋电子共振(SER)等技术。AMR和Hall效应低的敏感度限制他们在生物分子检测中的应用。SQUID和SER具有高的敏感特性,然而SQUID和SER庞大的体积使他们无法用于便携式经济型疾病的生物分子检测和疾病的早期诊断技术。Biomolecular recognition has a wide range of applications in RNA strand recognition, gene detection, bacterial diagnosis, new drug discovery, DNA defects and lethal agents in biological warfare, food safety, and early diagnosis and detection of major diseases represented by malignant tumors. Magnetic biomolecular recognition, detection and monitoring is a new type of biomolecular measurement technology developed in recent years. The basic principle of magnetic nanoparticle molecular recognition is to use high-performance magnetic field sensors to measure the fringe field of magnetic nanoparticles labeled biomolecules under magnetization. The fringing field emanating from a single magnetic nanoparticle is about 2 Oe, which is on the order of magnitude similar to the geomagnetic field of 0.5 Oe. Considering the distance between the magnetic particle and the magnetically sensitive layer in the measurement, for the detection of a single magnetic particle, the sensor must have the ability to measure the magnetic field strength below 0.05Oe, which requires an ultra-sensitive sensing system. Although magnetic nanoparticles with large magnetic moments can help obtain large magnetic fringe fields, the key to solving the bottleneck of magnetic molecular recognition technology still depends on the breakthrough of sensor technology. Current sensing systems for small magnetic field measurements include magnetic anisotropy (AMR), Hall effect, based on superconducting quantum interference devices (SQUID) and spin electron resonance (SER) and other technologies. The low sensitivity of AMR and Hall effect limit their application in biomolecular detection. SQUID and SER have high sensitivity. However, the large size of SQUID and SER prevents them from being used in portable and economical biomolecular detection of diseases and early diagnosis of diseases.
基于自旋电子隧穿传输效应发展起来的TMR(Tunneling Magneto Resistance,隧道磁阻)元件,也被称为MTJ(MagneticTunnelJunctions,磁隧道结)元件,其电阻值在室温下的变化率值高达180%(RA~1.00),几乎比传统磁传感器高3个量级。与GMR的原理有所不同,磁性隧道结(TMR)由磁性金属/非磁绝缘体/磁性金属(FM/I/FM)组成,在这种结构中如果两铁磁层的磁化方向平行,一个铁磁层中多数自旋子带的电子将进入另一个电极中的多数自旋电子带的空态,同时少数自旋子带的电子也从一电极进入另一电极的少数自旋子带的空态,磁场克服的铁磁层的矫顽力就可使它们的磁化方向转至磁场方向而趋于一致,这时TMR为极小值;如果两电极的磁化方向反平行,则一个电极中的多数子带的自旋与另一个电极的少数自旋子带电子的自旋平行,这样隧道电导过程中一个电极中多数自旋子带的电子必须在另一个电极中寻找少数自旋子带的空态,TMR为极大值。由于只需反转一个单纯的铁磁层,因而只需一个非常小的外场便可实现TMR极大值,所以其磁场灵敏度极高,同时TMR高的结电阻易于获得较大的电信号输出,使基于TMR的传感器成为极少数具有超高灵敏度的磁场传感器。同时,TMR传感器电信号输出的特点容易与现代半导体电路集成,达到微型化、数字化、网络化、便携式和经济化的目的。The TMR (Tunneling Magneto Resistance, tunneling magnetoresistance) element developed based on the spin electron tunneling transmission effect, also known as the MTJ (Magnetic Tunnel Junctions, magnetic tunnel junction) element, has a resistance value change rate of up to 180% at room temperature (RA~1.00), almost 3 orders of magnitude higher than traditional magnetic sensors. Different from the principle of GMR, the magnetic tunnel junction (TMR) is composed of magnetic metal/non-magnetic insulator/magnetic metal (FM/I/FM). In this structure, if the magnetization directions of the two ferromagnetic layers are parallel, an iron The electrons of the majority-spin subband in the magnetic layer will enter the vacant state of the majority-spin subband in the other electrode, and the electrons of the minority-spin subband will also enter the vacancy of the minority-spin subband of the other electrode from one electrode. State, the coercive force of the ferromagnetic layer overcome by the magnetic field can make their magnetization direction turn to the magnetic field direction and tend to be consistent, at this time TMR is a minimum value; if the magnetization directions of the two electrodes are antiparallel, then the magnetization direction of one electrode The spin of the majority subband is parallel to the spin of the electrons in the minority subband of the other electrode, so that the electrons in the majority subband of one electrode must search for the spin of the minority subband in the other electrode during the tunnel conduction process. Empty state, TMR is the maximum value. Since only a simple ferromagnetic layer needs to be reversed, only a very small external field is needed to achieve the maximum value of TMR, so its magnetic field sensitivity is extremely high, and at the same time, the junction resistance with high TMR is easy to obtain a large electrical signal output. Making TMR-based sensors one of the very few magnetic field sensors with ultra-high sensitivity. At the same time, the characteristics of the electrical signal output of the TMR sensor are easily integrated with modern semiconductor circuits to achieve the goals of miniaturization, digitization, networking, portability and economy.
现有TMR结构又可分为两类:具有钉扎层的钉扎型TMR结构以及不带钉扎层的TMR结构。图1显示了不带钉扎层的TMR结构,在衬底和保护层之间为传统的磁性金属/非磁绝缘体/磁性金属三明治结构,其中的非磁绝缘体又称为绝缘势垒层。钉扎型TMR在传统的磁性金属/非磁绝缘体/磁性金属三明治结构中加入了反铁磁(AF)钉扎层,如图2所示,靠近钉扎层的铁磁层被称之为被钉扎层,另外一层铁磁层则称为自由层。Existing TMR structures can be further divided into two categories: a pinned TMR structure with a pinning layer and a TMR structure without a pinning layer. Figure 1 shows a TMR structure without a pinning layer. Between the substrate and the protective layer is a traditional magnetic metal/nonmagnetic insulator/magnetic metal sandwich structure, where the nonmagnetic insulator is also called an insulating barrier layer. The pinned TMR adds an antiferromagnetic (AF) pinning layer to the traditional magnetic metal/nonmagnetic insulator/magnetic metal sandwich structure. As shown in Figure 2, the ferromagnetic layer close to the pinning layer is called The pinned layer, and another ferromagnetic layer is called the free layer.
在现有TMR传感器结构中,通常选择MgO作为绝缘势垒层,因为它与铁磁层中的磁性金属合金有极小的晶体位错,从而减少了自旋依赖的电子在绝缘层和磁性层界面电子散射,提高了信号输出。然而,单MgO层具有高的绝缘性能从而导致高的结电阻、功耗和电噪声,对TMR传感器的灵敏度提高产生了不利影响。In the existing TMR sensor structure, MgO is usually chosen as the insulating barrier layer because it has extremely small crystal dislocations with the magnetic metal alloy in the ferromagnetic layer, thereby reducing the spin-dependent electron transfer between the insulating layer and the magnetic layer. Interfacial electron scattering improves signal output. However, the high insulating properties of a single MgO layer lead to high junction resistance, power consumption, and electrical noise, which adversely affect the sensitivity enhancement of TMR sensors.
此外,由于CoFe材料具有高的自旋极化率,因此现有TMR传感器经常选用单CoFe磁性层作为自由层,从而能增强传感器的dR/R指标。但是CoFe磁性层具有正的磁致伸缩,会带来磁噪声,这也不利于TMR传感器的灵敏度进一步提高。In addition, due to the high spin polarizability of CoFe materials, existing TMR sensors often use a single CoFe magnetic layer as the free layer, which can enhance the dR/R index of the sensor. However, the CoFe magnetic layer has positive magnetostriction, which will bring magnetic noise, which is not conducive to the further improvement of the sensitivity of the TMR sensor.
发明内容Contents of the invention
本发明所要解决的技术问题在于克服现有技术不足,提供一种磁隧道结结构,可有效降MTJ元件中的电磁噪声,大幅提高TMR传感器的灵敏度。The technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a magnetic tunnel junction structure, which can effectively reduce the electromagnetic noise in the MTJ element and greatly improve the sensitivity of the TMR sensor.
本发明具体采用以下技术方案解决上述技术问题:The present invention specifically adopts the following technical solutions to solve the above technical problems:
一种磁隧道结结构,包括第一铁磁层、第二铁磁层以及夹在第一铁磁层与第二铁磁层之间的绝缘势垒层;所述绝缘势垒层包括MgO层,在所述MgO层与第一铁磁层之间以及MgO层与第二铁磁层之间分别设置有一层厚度小于MgO层厚度的金属Mg薄膜。A magnetic tunnel junction structure comprising a first ferromagnetic layer, a second ferromagnetic layer, and an insulating barrier layer sandwiched between the first ferromagnetic layer and the second ferromagnetic layer; the insulating barrier layer includes an MgO layer , between the MgO layer and the first ferromagnetic layer and between the MgO layer and the second ferromagnetic layer, a metal Mg thin film with a thickness smaller than that of the MgO layer is arranged respectively.
优选地,所述磁隧道结结构还包括设置于第二铁磁层外侧的钉扎层,用于对第二铁磁层进行磁钉扎。Preferably, the magnetic tunnel junction structure further includes a pinning layer disposed outside the second ferromagnetic layer for magnetically pinning the second ferromagnetic layer.
进一步地,所述第一铁磁层为包括第一磁性层与第二磁性层的复合层,第一磁性层与第二磁性层的磁致伸缩特性相反。Further, the first ferromagnetic layer is a composite layer including a first magnetic layer and a second magnetic layer, and the first magnetic layer and the second magnetic layer have opposite magnetostrictive properties.
更进一步地,在第一磁性层与第二磁性层之间设置有非连续的Ta金属层。Furthermore, a discontinuous Ta metal layer is disposed between the first magnetic layer and the second magnetic layer.
为了抑制钉扎型TMR结构的自由层的边缘微小磁畴旋转所产生的磁噪声,本发明进一步地在第一铁磁层的侧壁周围设置有附加钉扎层,所述附加钉扎层可产生对所述第一铁磁层中边缘微小磁畴实现钉扎作用的磁偶极场。In order to suppress the magnetic noise generated by the rotation of tiny magnetic domains at the edge of the free layer of the pinned TMR structure, the present invention further provides an additional pinning layer around the sidewall of the first ferromagnetic layer, and the additional pinning layer can A magnetic dipole field for pinning the marginal magnetic domains in the first ferromagnetic layer is generated.
优选地,所述第二铁磁层为CoFe/Ru/CoFe结构的超晶格反铁磁层。Preferably, the second ferromagnetic layer is a superlattice antiferromagnetic layer of CoFe/Ru/CoFe structure.
根据相同的发明思路可以得到以下技术方案:According to the same inventive idea, the following technical solutions can be obtained:
一种隧道磁阻元件,包括衬底以及设置于所述衬底之上的如上任一技术方案所述磁隧道结结构。A tunnel magnetoresistive element, comprising a substrate and the magnetic tunnel junction structure as described in any one of the above technical solutions arranged on the substrate.
进一步地,所述隧道磁阻元件还包括设置于衬底与磁隧道结结构之间的缓冲层,以及设置于磁隧道结结构之上的保护层。Further, the tunnel magnetoresistive element further includes a buffer layer disposed between the substrate and the magnetic tunnel junction structure, and a protective layer disposed on the magnetic tunnel junction structure.
本发明隧道磁阻元件可广泛应用于磁存储、磁阻传感器、读出磁头,磁生物分子检测等方面,以下为几种具体应用:The tunnel magnetoresistive element of the present invention can be widely used in magnetic storage, magnetoresistive sensors, magnetic readout heads, magnetic biomolecular detection, etc. The following are several specific applications:
一种隧道磁阻磁头,包括如上任一技术方案所述隧道磁阻元件。A tunnel magneto-resistive magnetic head, comprising the tunnel magneto-resistive element described in any one of the above technical solutions.
一种隧道磁阻传感器,包括如上任一技术方案所述隧道磁阻元件。A tunnel magneto-resistive sensor, comprising the tunnel magneto-resistive element described in any one of the above technical solutions.
一种磁存储单元,包括如上任一技术方案所述隧道磁阻元件。A magnetic storage unit, comprising a tunnel magnetoresistive element as described in any one of the above technical solutions.
一种磁生物分子检测单元,包括如上任一技术方案所述隧道磁阻元件。A magnetic biomolecule detection unit, comprising a tunnel magneto-resistance element as described in any one of the above technical solutions.
相比现有技术,本发明技术方案具有以下有益效果:Compared with the prior art, the technical solution of the present invention has the following beneficial effects:
本发明对现有以单MgO层作为绝缘势垒层的TMR结构进行改进,在MgO层两侧导入超薄金属Mg层,从而构成Mg/MgO/Mg三明治超晶格结构的绝缘势垒层,可有效地降低TMR结构的结电阻(RA值),形成突变的界面MgO,同时阻止MgO在沉积和退火时在铁磁层的扩散,从而有效地抑制磁噪声,提高TMR元件的信噪比和灵敏度。The present invention improves the existing TMR structure using a single MgO layer as an insulating barrier layer, introduces ultra-thin metal Mg layers on both sides of the MgO layer, thereby forming an insulating barrier layer of a Mg/MgO/Mg sandwich superlattice structure, It can effectively reduce the junction resistance (RA value) of the TMR structure, form a sudden interface MgO, and prevent the diffusion of MgO in the ferromagnetic layer during deposition and annealing, thereby effectively suppressing magnetic noise and improving the signal-to-noise ratio and sensitivity.
本发明进一步利用两种具有相反磁致伸缩特性的铁磁材料层所构成的复合层作为钉扎型TMR结构的自由层,从而综合调整TMR结构的磁致伸缩和dR/R,并进一步通过在两种铁磁材料层界面层插入非连续Ta金属层维持两个铁磁材料层的磁耦合,能获得软性的磁致伸缩以及大的dR/R。The present invention further utilizes a composite layer composed of two ferromagnetic material layers with opposite magnetostrictive properties as the free layer of the pinned TMR structure, thereby comprehensively adjusting the magnetostriction and dR/R of the TMR structure, and further through The interface layer of the two ferromagnetic material layers is inserted into a discontinuous Ta metal layer to maintain the magnetic coupling of the two ferromagnetic material layers, and can obtain soft magnetostriction and large dR/R.
本发明更进一步在自由层侧壁周围设置附加钉扎层,附加钉扎层可产生对自由层中边缘微小磁畴实现钉扎作用的磁偶极场,可抑制钉扎型TMR结构自由层的边缘微小磁畴旋转所产生的磁噪声,从而进一步提高TMR元件的信噪比和灵敏度。本发明TMR传感器在室温下可获得dR/R ~80%, RA~0.45和代表信噪比的Q因子~80,从而使得测量单生物分子成为可能。The present invention further arranges an additional pinning layer around the sidewall of the free layer, and the additional pinning layer can generate a magnetic dipole field that pins the tiny magnetic domains at the edge of the free layer, and can suppress the pinning type TMR structure free layer. The magnetic noise generated by the rotation of tiny magnetic domains at the edge further improves the signal-to-noise ratio and sensitivity of the TMR element. The TMR sensor of the present invention can obtain dR/R ~ 80%, RA ~ 0.45 and Q factor ~ 80 representing the signal-to-noise ratio at room temperature, thus making it possible to measure single biomolecules.
本发明在大幅提高TMR元件的信噪比和灵敏度的同时,并不需要引入昂贵复杂的制备工艺,利用现有TMR元件的制备工艺技术即可实现,有利于规模化生产。While greatly improving the signal-to-noise ratio and sensitivity of the TMR element, the invention does not need to introduce an expensive and complicated preparation process, and can be realized by using the existing preparation process technology of the TMR element, which is beneficial to large-scale production.
附图说明Description of drawings
图1为一种现有不带钉扎层的TMR结构示意图;FIG. 1 is a schematic diagram of an existing TMR structure without a pinning layer;
图2为一种现有钉扎型TMR结构示意图;FIG. 2 is a schematic structural diagram of an existing pinned TMR;
图3为本发明TMR元件的第一个实施例;Fig. 3 is the first embodiment of the TMR element of the present invention;
图4为本发明TMR元件的第二个实施例;Fig. 4 is the second embodiment of the TMR element of the present invention;
图5为本发明TMR元件的第三个实施例。Fig. 5 is a third embodiment of the TMR element of the present invention.
具体实施方式detailed description
下面结合附图对本发明的技术方案进行详细说明:The technical scheme of the present invention is described in detail below in conjunction with accompanying drawing:
为了提高现有TMR器件的灵敏度,本发明的思路是通过有效抑制TMR结构中所存在的磁噪声来实现。本发明具体通过以下几方面进行改进:In order to improve the sensitivity of the existing TMR device, the idea of the present invention is realized by effectively suppressing the magnetic noise existing in the TMR structure. The present invention improves specifically through the following aspects:
一、导入超薄金属Mg层从而构成Mg/MgO/Mg三明治超晶格结构的绝缘势垒层:1. Introduce an ultra-thin metal Mg layer to form an insulating barrier layer of the Mg/MgO/Mg sandwich superlattice structure:
现有TMR结构选择MgO作为绝缘势垒层,是因为它与磁性过渡金属合金(例如FeCo)有极小的晶体位错,从而减少了自旋依赖的电子在绝缘层和磁性层界面电子散射和延长自旋依赖电子的平均自由层。另一个原因是因为MgO的特殊的电子能带结构,电子只能从自旋向上的能带∆1上隧道通过。这样MgO像是一个自旋过滤层,可提高电子的自旋极化率和dR/R。在MTJ传感器电噪声,特别是在高频下,主要起源于传感器中的绝缘势垒层。降低MTJ 的RA值可以有效地降低电噪声,本发明在两个铁磁层与MgO层之间分别插入一层超薄的Mg层(厚度小于MgO层厚度)。这种方法能有效地降低TMR结构的结电阻(RA值),同时形成突变的界面MgO,阻止MgO在沉积和退火时在铁磁层的扩散。The existing TMR structure chooses MgO as the insulating barrier layer because it has extremely small crystal dislocations with magnetic transition metal alloys (such as FeCo), thereby reducing spin-dependent electron scattering and electron scattering at the interface between the insulating layer and the magnetic layer. Extend the mean free shell of spin-dependent electrons. Another reason is that electrons can only tunnel through the spin-up energy band ∆1 because of the special electronic band structure of MgO. In this way, MgO acts as a spin filter layer, which can improve the spin polarizability and dR/R of electrons. Electrical noise in MTJ sensors, especially at high frequencies, mainly originates from the insulating barrier layer in the sensor. Reducing the RA value of the MTJ can effectively reduce electrical noise. In the present invention, an ultra-thin Mg layer (thickness smaller than that of the MgO layer) is respectively inserted between the two ferromagnetic layers and the MgO layer. This method can effectively reduce the junction resistance (RA value) of the TMR structure, and at the same time form an abrupt interfacial MgO, which prevents the diffusion of MgO in the ferromagnetic layer during deposition and annealing.
图3显示了本发明TMR元件的第一个实施例,如图所示,在衬底之上依次形成有:缓冲层、钉扎层、被钉扎层、绝缘势垒层、自由层、保护层,其中绝缘势垒层包括MgO层,在MgO层与自由层层之间以及MgO层与被钉扎层之间分别设置有一层厚度小于MgO层厚度的金属Mg薄膜。图3采用了钉扎型TMR结构为例,实际上,对于非钉扎型TMR结构,同样可以采用这种Mg/MgO/Mg三明治超晶格结构的绝缘势垒层。除了上述绝缘势垒层以外,TMR元件的其它部分可采用现有或将有的各种材料、结构,例如,自由层可使用CoFe或者NiFe,被钉扎层可使用CoFe,反铁磁钉扎层可使用IrMn或Pt/Mn。这种新的TMR结构可以可有效地抑制噪声,提高信噪比和灵敏度。Fig. 3 has shown the first embodiment of TMR element of the present invention, as shown in the figure, on substrate, be formed with: buffer layer, pinning layer, pinned layer, insulation barrier layer, free layer, protection layer, wherein the insulating barrier layer includes a MgO layer, and a metal Mg thin film with a thickness smaller than that of the MgO layer is respectively arranged between the MgO layer and the free layer and between the MgO layer and the pinned layer. Figure 3 uses a pinned TMR structure as an example. In fact, for a non-pinned TMR structure, the insulating barrier layer of this Mg/MgO/Mg sandwich superlattice structure can also be used. In addition to the above insulating barrier layer, other parts of the TMR element can use various existing or future materials and structures, for example, the free layer can use CoFe or NiFe, the pinned layer can use CoFe, antiferromagnetic pinning Layer can use IrMn or Pt/Mn. This new TMR structure can effectively suppress noise and improve signal-to-noise ratio and sensitivity.
二、利用两种具有相反磁致伸缩特性的铁磁材料层所构成的超晶格结构作为钉扎型TMR结构的自由层:2. Using a superlattice structure composed of two ferromagnetic material layers with opposite magnetostrictive properties as the free layer of the pinned TMR structure:
由于CoFe材料具有高的自旋极化率,因此现有TMR传感器经常选用单CoFe磁性层作为自由层,从而能增强传感器的dR/R指标,但是CoFe磁性层具有正的磁致伸缩,会带来磁噪声。为此可以引入具有相反磁致伸缩特性的铁磁材料层与CoFe构成超晶格结构替代现有单CoFe自由层。例如,NiFe磁性层具有良好的磁致伸缩,但具有低的自旋极化率和dR/R;因此结合CoFe和NiFe的自由层可以综合调节磁致伸缩和dR/R。特别是可通过进一步在CoFe/NiFe界面层插入非连续Ta金属层,可维持CoFe/NiFe磁耦合,能获得软性的磁致伸缩和大的dR/R。Due to the high spin polarizability of CoFe materials, the existing TMR sensors often use a single CoFe magnetic layer as the free layer, which can enhance the dR/R index of the sensor, but the CoFe magnetic layer has positive magnetostriction, which will bring to magnetic noise. To this end, a ferromagnetic material layer with opposite magnetostrictive properties can be introduced to form a superlattice structure with CoFe to replace the existing single CoFe free layer. For example, the NiFe magnetic layer has good magnetostriction but low spin polarizability and dR/R; thus a free layer combining CoFe and NiFe can comprehensively tune the magnetostriction and dR/R. In particular, by further inserting a discontinuous Ta metal layer in the CoFe/NiFe interface layer, the CoFe/NiFe magnetic coupling can be maintained, and soft magnetostriction and large dR/R can be obtained.
图4显示了本发明TMR元件的第二个实施例,如图所示,在衬底之上依次形成有:缓冲层、钉扎层、被钉扎层、绝缘势垒层、自由层、保护层;其中绝缘势垒层包括MgO层,在MgO层与自由层层之间以及MgO层与被钉扎层之间分别设置有一层厚度小于MgO层厚度的金属Mg薄膜;自由层为包括CoFe磁性层和NiFe磁性层的复合层,在CoFe磁性层和NiFe磁性层之间插入有非连续的Ta金属层,使得CoFe磁性层与NiFe磁性层之间部分接触,而另一部分被Ta金属层隔开。Fig. 4 shows the second embodiment of the TMR element of the present invention, as shown in the figure, on the substrate, be formed with: buffer layer, pinning layer, pinned layer, insulation barrier layer, free layer, protection layer; wherein the insulating barrier layer includes a MgO layer, and a metal Mg film with a thickness smaller than the thickness of the MgO layer is respectively arranged between the MgO layer and the free layer and between the MgO layer and the pinned layer; the free layer is composed of CoFe magnetic A composite layer of a NiFe magnetic layer and a CoFe magnetic layer, a discontinuous Ta metal layer is inserted between the CoFe magnetic layer and the NiFe magnetic layer, so that part of the CoFe magnetic layer is in contact with the NiFe magnetic layer, while the other part is separated by the Ta metal layer .
三、在自由层侧壁引入可对自由层中边缘微小磁畴实现钉扎作用的附加钉扎层:3. Introduce an additional pinning layer on the side wall of the free layer that can pin the tiny magnetic domains at the edge of the free layer:
磁噪声主要起源于TMR结构中的磁性层在外场下的开关动作。因此抑制磁性层的磁畴在外场下的旋转和跳跃成为抑制噪声的关键。TMR传感器有两个主要的磁性层: 一是磁性自由层, 另一个是被钉扎层。对磁性自由层,由于器件的尺寸的缩小,磁矫顽力变大,在磁性自由层的边缘存在多个微小的磁畴。这些微小的磁畴在外场下的旋转是磁性自由层磁噪声的主要起源,因此可在自由层的边缘引入硬磁材料构成的附加钉扎层。在磁场退火处理后,硬磁材料的磁偶极沿磁场方向排列,形成一个大的静态磁偶极场,这个磁偶极场可以有效地钉扎微小的磁畴使之成为磁死层,不再随着外加磁场而跳跃,从而抑制磁噪声。The magnetic noise mainly originates from the switching action of the magnetic layer in the TMR structure under the external field. Therefore, suppressing the rotation and jumping of the magnetic domains of the magnetic layer under the external field becomes the key to suppressing the noise. TMR sensors have two main magnetic layers: one is a magnetically free layer and the other is a pinned layer. For the magnetic free layer, due to the shrinkage of the device size, the magnetic coercive force becomes larger, and there are many tiny magnetic domains at the edge of the magnetic free layer. The rotation of these tiny magnetic domains under the external field is the main source of magnetic noise in the magnetic free layer, so an additional pinning layer composed of hard magnetic materials can be introduced at the edge of the free layer. After the magnetic field annealing treatment, the magnetic dipoles of the hard magnetic material are arranged along the magnetic field direction to form a large static magnetic dipole field, which can effectively pin the tiny magnetic domains to become magneto-dead layers, without Then jump with the external magnetic field, thereby suppressing the magnetic noise.
图5显示了本发明TMR元件的第三个实施例,如图所示,在衬底之上依次形成有:缓冲层、钉扎层、被钉扎层、绝缘势垒层、自由层、保护层;其中绝缘势垒层包括MgO层,在MgO层与自由层层之间以及MgO层与被钉扎层之间分别设置有一层厚度小于MgO层厚度的金属Mg薄膜;自由层为包括CoFe磁性层和NiFe磁性层的复合层,在CoFe磁性层和NiFe磁性层之间插入有非连续的Ta金属层,使得CoFe磁性层与NiFe磁性层之间部分接触,而另一部分被Ta金属层隔开;在自由层与绝缘势垒层的两侧设置有附加钉扎层,该附加钉扎层可产生对自由层中边缘微小磁畴实现钉扎作用的磁偶极场。附加钉扎层的材料可采用钉扎层所使用的材料,例如IrMn或Pt/Mn。Fig. 5 has shown the 3rd embodiment of TMR element of the present invention, as shown in the figure, be formed with in sequence on substrate: buffer layer, pinning layer, pinned layer, insulation barrier layer, free layer, protection layer; wherein the insulating barrier layer includes a MgO layer, and a metal Mg film with a thickness smaller than the thickness of the MgO layer is respectively arranged between the MgO layer and the free layer and between the MgO layer and the pinned layer; the free layer is composed of CoFe magnetic A composite layer of a NiFe magnetic layer and a CoFe magnetic layer, a discontinuous Ta metal layer is inserted between the CoFe magnetic layer and the NiFe magnetic layer, so that part of the CoFe magnetic layer is in contact with the NiFe magnetic layer, while the other part is separated by the Ta metal layer ; An additional pinning layer is arranged on both sides of the free layer and the insulating barrier layer, and the additional pinning layer can generate a magnetic dipole field for pinning the edge micro magnetic domains in the free layer. The material of the additional pinning layer can be the material used for the pinning layer, such as IrMn or Pt/Mn.
此外,为抑制被钉扎层的磁畴在外场下的旋转,可考虑使用人工合成的超晶格被钉扎层。这种超晶格被钉扎层是由CoFe/Ru/CoFe 构成。CoFe上下层通过Ru层建立极强铁磁耦合,这样被钉扎层的磁畴在外场下很难旋转从而抑制了磁噪声。In addition, in order to suppress the rotation of the magnetic domains of the pinned layer under the external field, the artificially synthesized superlattice pinned layer can be considered. This superlattice pinned layer is composed of CoFe/Ru/CoFe. The upper and lower layers of CoFe establish extremely strong ferromagnetic coupling through the Ru layer, so that the magnetic domains of the pinned layer are difficult to rotate under the external field, thereby suppressing the magnetic noise.
本发明的TMR结构可采用现有工艺技术进行制备,并不会增加生产难度便于规模化量产。以图5所示的TMR元件为例,可采用以下的工艺进行制备:The TMR structure of the present invention can be prepared by using the existing process technology, which does not increase the difficulty of production and facilitates large-scale mass production. Taking the TMR element shown in Figure 5 as an example, the following process can be used for preparation:
第1步、利用薄膜真空沉积方法在衬底上依次沉积钉扎层、CoFe/Ru/CoF被钉扎层;Step 1, depositing a pinning layer and a CoFe/Ru/CoF pinning layer sequentially on the substrate by using a thin film vacuum deposition method;
第2步、利用薄膜真空沉积方法沉积Mg/MgO/Mg绝缘势垒层薄膜结构;Step 2, depositing a Mg/MgO/Mg insulating barrier layer thin film structure by a thin film vacuum deposition method;
第3步、利用薄膜真空沉积方法制作CoFe/NiFe自由层薄膜;The 3rd step, utilize thin film vacuum deposition method to make CoFe/NiFe free layer thin film;
第4步、利用薄膜真空沉积方法沉积保护层;Step 4, depositing a protective layer using a thin film vacuum deposition method;
第5步、光刻保护层薄膜;Step 5, photolithographic protective layer film;
第6步、离子束刻蚀制造附加钉扎层结构;Step 6, manufacturing additional pinning layer structure by ion beam etching;
第7步、利用薄膜真空沉积方法沉积附加钉扎层材料;Step 7, using thin film vacuum deposition method to deposit additional pinning layer material;
第8步、在210℃和370℃温度下退火。Step 8, annealing at 210°C and 370°C.
利用上述方法制得的TMR传感器在室温下可获得高达120%的dR/R的灵敏度,使测量单生物分子成为可能。本发明TMR元件可广泛应用于磁存储、磁阻传感器、读出磁头等方面,具有良好的应用前景。The TMR sensor prepared by the above method can obtain a sensitivity of up to 120% dR/R at room temperature, making it possible to measure single biomolecules. The TMR element of the invention can be widely used in magnetic storage, magnetoresistive sensors, magnetic readout heads, etc., and has good application prospects.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610383994.9A CN105938872A (en) | 2016-06-02 | 2016-06-02 | Magnetic tunnel junction structure and tunnel magnetoresistive element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610383994.9A CN105938872A (en) | 2016-06-02 | 2016-06-02 | Magnetic tunnel junction structure and tunnel magnetoresistive element |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105938872A true CN105938872A (en) | 2016-09-14 |
Family
ID=57151724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610383994.9A Pending CN105938872A (en) | 2016-06-02 | 2016-06-02 | Magnetic tunnel junction structure and tunnel magnetoresistive element |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105938872A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112268035A (en) * | 2020-10-22 | 2021-01-26 | 江苏徐工工程机械研究院有限公司 | Hydraulic cylinder elongation detection device |
CN112736193A (en) * | 2019-10-14 | 2021-04-30 | 上海磁宇信息科技有限公司 | Magnetic tunnel junction structure and magnetic random access memory thereof |
CN112951985A (en) * | 2019-12-11 | 2021-06-11 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN113227814A (en) * | 2019-08-27 | 2021-08-06 | 西部数据技术公司 | TMR sensor with magnetic tunnel junction including free layer having intrinsic anisotropy |
CN113227815A (en) * | 2019-08-23 | 2021-08-06 | 西部数据技术公司 | TMR sensor with shape anisotropy magnetic tunnel junction |
CN113532257A (en) * | 2020-04-16 | 2021-10-22 | 中国科学院苏州纳米技术与纳米仿生研究所 | Strain sensor and manufacturing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1822219A (en) * | 2005-02-16 | 2006-08-23 | 日本电气株式会社 | Magnetoresistive device including layered ferromagnetic structure and method of manufacturing same |
CN101523503A (en) * | 2005-09-20 | 2009-09-02 | 格兰迪斯股份有限公司 | Magnetic devices having stabilized free ferromagnetic layer or multilayered free ferromagnetic layer |
CN103310804A (en) * | 2012-03-14 | 2013-09-18 | 希捷科技有限公司 | Magntic sensor manufacturing |
CN105280806A (en) * | 2015-09-14 | 2016-01-27 | 华中科技大学 | Storage device and storage method thereof |
-
2016
- 2016-06-02 CN CN201610383994.9A patent/CN105938872A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1822219A (en) * | 2005-02-16 | 2006-08-23 | 日本电气株式会社 | Magnetoresistive device including layered ferromagnetic structure and method of manufacturing same |
CN101523503A (en) * | 2005-09-20 | 2009-09-02 | 格兰迪斯股份有限公司 | Magnetic devices having stabilized free ferromagnetic layer or multilayered free ferromagnetic layer |
CN103310804A (en) * | 2012-03-14 | 2013-09-18 | 希捷科技有限公司 | Magntic sensor manufacturing |
CN105280806A (en) * | 2015-09-14 | 2016-01-27 | 华中科技大学 | Storage device and storage method thereof |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113227815A (en) * | 2019-08-23 | 2021-08-06 | 西部数据技术公司 | TMR sensor with shape anisotropy magnetic tunnel junction |
CN113227814A (en) * | 2019-08-27 | 2021-08-06 | 西部数据技术公司 | TMR sensor with magnetic tunnel junction including free layer having intrinsic anisotropy |
CN113227814B (en) * | 2019-08-27 | 2024-05-24 | 西部数据技术公司 | Magnetic tunnel junction comprising TMR sensor with inherently anisotropic free layer |
CN112736193A (en) * | 2019-10-14 | 2021-04-30 | 上海磁宇信息科技有限公司 | Magnetic tunnel junction structure and magnetic random access memory thereof |
CN112951985A (en) * | 2019-12-11 | 2021-06-11 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN113532257A (en) * | 2020-04-16 | 2021-10-22 | 中国科学院苏州纳米技术与纳米仿生研究所 | Strain sensor and manufacturing method thereof |
CN112268035A (en) * | 2020-10-22 | 2021-01-26 | 江苏徐工工程机械研究院有限公司 | Hydraulic cylinder elongation detection device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE50331E1 (en) | Magnetoresistive stack and method of fabricating same | |
CN105938872A (en) | Magnetic tunnel junction structure and tunnel magnetoresistive element | |
US20200185602A1 (en) | Magnetoresistive structure having two dielectric layers, and method of manufacturing same | |
Park et al. | Tunneling anisotropic magnetoresistance in multilayer-(Co/Pt)/AlO x/Pt structures | |
TWI468715B (en) | Magnetic sensor for sensing an external magnetic field | |
CN102637939B (en) | Spinning microwave oscillator based on vertical magnetizing free layer and manufacturing method thereof | |
WO2011150665A1 (en) | Magnetic multilayer nano film for magnetic sensor and manufacturing method thereof | |
US11937513B2 (en) | Magnon spin valve, magnon sensor, magnon field effect transistor, magnon tunnel junction and magnon memory | |
US8525602B2 (en) | Magnetic device with weakly exchange coupled antiferromagnetic layer | |
CN105449097B (en) | Double magnetism potential barrier tunnel knots and the spintronics devices including it | |
US8105703B2 (en) | Process for composite free layer in CPP GMR or TMR device | |
Streubel et al. | Rolled-up permalloy nanomembranes with multiple windings | |
Ueda et al. | Stacking-Order Effect on Spin-Orbit Torque, Spin Hall Magnetoresistance, and Magnetic Anisotropy in Ni 81 Fe 19–Ir O 2 Bilayers | |
Zhao et al. | L10-MnGa based magnetic tunnel junction for high magnetic field sensor | |
Zhou et al. | Tunneling magnetoresistance (TMR) materials and devices for magnetic sensors | |
KR20130010611A (en) | Flexible magnetoresistance sensor and manufacturing method thereof | |
CN111983530A (en) | A planar spin-valve magnetoresistive sensor based on magnetic insulator and its preparation method | |
CN103792501B (en) | The graphene-based Magnetic Sensor of a kind of bridge connected | |
JP4766835B2 (en) | Magnetic random access memory cell using magnetostatic coupling | |
JP2005174969A5 (en) | ||
Surampalli et al. | Voltage Controlled Interlayer Exchange Coupling and Magnetic Anisotropy Effects in Perpendicular Magnetic Heterostructures | |
CN103424131B (en) | A kind of preparation method of vertical off setting magnetic sensing unit | |
Chen et al. | Manipulation of Magnetic Properties and Magnetoresistance in Co/Cu/γ′-Fe4N/Mica Flexible Spin Valves via External Mechanical Strains | |
US20240420878A1 (en) | Magnetoresistance element including a skyrmion layer and a vortex layer that are magnetically coupled to each other | |
CN110416405A (en) | A spin-valve film with a synthetic antiferromagnetic structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160914 |