CN105938862A - GaN-based light-emitting diode chip and preparation method thereof - Google Patents
GaN-based light-emitting diode chip and preparation method thereof Download PDFInfo
- Publication number
- CN105938862A CN105938862A CN201610349392.1A CN201610349392A CN105938862A CN 105938862 A CN105938862 A CN 105938862A CN 201610349392 A CN201610349392 A CN 201610349392A CN 105938862 A CN105938862 A CN 105938862A
- Authority
- CN
- China
- Prior art keywords
- layer
- type gan
- gan
- refractive index
- gan layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- 238000002161 passivation Methods 0.000 claims abstract description 54
- 230000003287 optical effect Effects 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 230000000903 blocking effect Effects 0.000 claims abstract description 18
- 238000000576 coating method Methods 0.000 claims description 34
- 239000011248 coating agent Substances 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 10
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 229910004541 SiN Inorganic materials 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 25
- 238000005516 engineering process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/855—Optical field-shaping means, e.g. lenses
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/852—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/855—Optical field-shaping means, e.g. lenses
- H10H20/856—Reflecting means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/036—Manufacture or treatment of packages
- H10H20/0363—Manufacture or treatment of packages of optical field-shaping means
Landscapes
- Led Devices (AREA)
Abstract
本发明公开了一种GaN基发光二极管芯片及其制备方法,属于半导体技术领域。所述GaN基发光二极管芯片包括衬底、以及依次层叠在衬底上的N型GaN层、发光层、P型GaN层,P型GaN层上设有延伸到N型GaN层的台阶,P型GaN层上依次设有电流阻挡层、透明导电层、P型电极,N型GaN层上设有N型电极,P型GaN层和N型GaN层上设有延伸到衬底的凹槽,凹槽设置在芯片的边缘,凹槽、N型GaN层、透明导电层、以及台阶的侧壁上依次设有光学增透膜和钝化层,GaN、光学增透膜、钝化层、空气的折射率大小依次变化。本发明可以有效缓冲GaN和钝化层之间较大的折射率差距,提高LED芯片的发光效率。
The invention discloses a GaN-based light-emitting diode chip and a preparation method thereof, belonging to the technical field of semiconductors. The GaN-based light-emitting diode chip includes a substrate, and an N-type GaN layer, a light-emitting layer, and a P-type GaN layer stacked on the substrate in sequence. The P-type GaN layer is provided with steps extending to the N-type GaN layer, and the P-type GaN layer is provided with a step extending to the N-type GaN layer. The GaN layer is provided with a current blocking layer, a transparent conductive layer, and a P-type electrode in sequence, an N-type electrode is provided on the N-type GaN layer, and grooves extending to the substrate are provided on the P-type GaN layer and the N-type GaN layer. The groove is set on the edge of the chip, and the groove, the N-type GaN layer, the transparent conductive layer, and the side wall of the step are successively provided with an optical anti-reflection film and a passivation layer, and the GaN, the optical anti-reflection film, the passivation layer, and the air The refractive index changes sequentially. The invention can effectively buffer the large refractive index difference between the GaN and the passivation layer, and improve the luminous efficiency of the LED chip.
Description
技术领域technical field
本发明涉及半导体技术领域,特别涉及一种GaN基发光二极管芯片及其制备方法。The invention relates to the technical field of semiconductors, in particular to a GaN-based light-emitting diode chip and a preparation method thereof.
背景技术Background technique
发光二极管(Light Emitting Diode,简称LED)具有节能、环保、可靠性高、寿命长等优点,作为固态照明光源以其广阔的应用前景成为目前研究的热点。近年来,LED已在日常生活中得到广泛应用,例如照明、信号显示、背光源、车灯和大屏幕显示等领域,同时这些应用也对LED芯片的亮度、发光效率提出了越来越高的要求。Light Emitting Diode (LED for short) has the advantages of energy saving, environmental protection, high reliability, and long life. As a solid-state lighting source, it has become a research hotspot due to its broad application prospects. In recent years, LEDs have been widely used in daily life, such as lighting, signal display, backlight, car lights and large-screen display. Require.
LED芯片是LED的核心组件,GaN基LED芯片一般包括衬底、以及依次层叠在衬底上的N型GaN层、发光层、P型GaN层,P型GaN层上设有从P型GaN层延伸到N型GaN层的台阶,P型GaN层上依次设有电流阻挡层、透明导电层、P型电极,N型GaN层上设有N型电极。LED chips are the core components of LEDs. GaN-based LED chips generally include a substrate, an N-type GaN layer, a light-emitting layer, and a P-type GaN layer stacked on the substrate in sequence. Extending to the steps of the N-type GaN layer, a current blocking layer, a transparent conductive layer, and a P-type electrode are sequentially arranged on the P-type GaN layer, and an N-type electrode is arranged on the N-type GaN layer.
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:In the process of realizing the present invention, the inventor finds that there are at least the following problems in the prior art:
GaN的折射率和空气的折射率相差很大,发光层发出的光只有一部分可以从芯片内部发射出去,大部分都被限制在GaN内,导致LED芯片的发光效率较低。The refractive index of GaN is very different from that of air. Only part of the light emitted by the light-emitting layer can be emitted from the chip, and most of it is confined in GaN, resulting in low luminous efficiency of the LED chip.
发明内容Contents of the invention
为了解决现有技术LED芯片的发光效率较低的问题,本发明实施例提供了一种GaN基发光二极管芯片及其制备方法。所述技术方案如下:In order to solve the problem of low luminous efficiency of LED chips in the prior art, an embodiment of the present invention provides a GaN-based light emitting diode chip and a manufacturing method thereof. Described technical scheme is as follows:
一方面,本发明实施例提供了一种GaN基发光二极管芯片,所述GaN基发光二极管芯片包括衬底、以及依次层叠在所述衬底上的N型GaN层、发光层、P型GaN层,所述P型GaN层上设有从所述P型GaN层延伸到所述N型GaN层的台阶,所述P型GaN层上依次设有电流阻挡层、透明导电层、P型电极,所述N型GaN层上设有N型电极,所述P型GaN层和所述N型GaN层上设有延伸到所述衬底的凹槽,所述凹槽设置在所述芯片的边缘,所述凹槽、所述N型GaN层、所述透明导电层、以及所述台阶的侧壁上依次设有光学增透膜和钝化层,所述钝化层的折射率介于GaN的折射率和空气的折射率之间,所述光学增透膜的折射率介于GaN的折射率和所述钝化层的折射率之间。On the one hand, an embodiment of the present invention provides a GaN-based light-emitting diode chip. The GaN-based light-emitting diode chip includes a substrate, and an N-type GaN layer, a light-emitting layer, and a P-type GaN layer sequentially stacked on the substrate. , the P-type GaN layer is provided with a step extending from the P-type GaN layer to the N-type GaN layer, and the P-type GaN layer is sequentially provided with a current blocking layer, a transparent conductive layer, and a P-type electrode, The N-type GaN layer is provided with an N-type electrode, and the P-type GaN layer and the N-type GaN layer are provided with grooves extending to the substrate, and the grooves are arranged on the edge of the chip , the groove, the N-type GaN layer, the transparent conductive layer, and the sidewall of the step are sequentially provided with an optical anti-reflection film and a passivation layer, and the refractive index of the passivation layer is between GaN The refractive index of the optical anti-reflection coating is between the refractive index of GaN and the refractive index of the passivation layer.
可选地,所述凹槽的宽度为10~30μm。Optionally, the width of the groove is 10-30 μm.
可选地,所述凹槽的深度为6~10μm。Optionally, the depth of the groove is 6-10 μm.
可选地,所述钝化层的折射率为1.5~2.5。Optionally, the passivation layer has a refractive index of 1.5-2.5.
优选地,所述钝化层的材料采用SiN、SiO2、SiON、Al2O3中的一种。Preferably, the material of the passivation layer is one of SiN, SiO 2 , SiON and Al 2 O 3 .
可选地,所述光学增透膜的折射率为1.5~2.5。Optionally, the optical anti-reflection coating has a refractive index of 1.5-2.5.
优选地,所述光学增透膜的材料采用SiN或SiON。Preferably, the material of the optical anti-reflection film is SiN or SiON.
可选地,所述光学增透膜的厚度为所述发光层发出的光在所述光学增透膜中波长的四分之一的奇数倍。Optionally, the thickness of the optical anti-reflection coating is an odd multiple of a quarter of the wavelength of light emitted by the light-emitting layer in the optical anti-reflection coating.
可选地,所述钝化层的厚度为所述发光层发出的光在所述钝化层中波长的四分之一的奇数倍。Optionally, the thickness of the passivation layer is an odd multiple of a quarter of the wavelength of light emitted by the light emitting layer in the passivation layer.
另一方面,本发明实施例提供了一种GaN基发光二极管芯片的制备方法,所述制备方法包括:On the other hand, an embodiment of the present invention provides a method for preparing a GaN-based light-emitting diode chip, the preparation method comprising:
在衬底上依次生长N型GaN层、发光层、P型GaN层,形成外延层;An N-type GaN layer, a light-emitting layer, and a P-type GaN layer are sequentially grown on the substrate to form an epitaxial layer;
在所述P型GaN层上设置从所述P型GaN层延伸到所述N型GaN层的台阶;providing steps extending from the P-type GaN layer to the N-type GaN layer on the P-type GaN layer;
在所述P型GaN层和所述N型GaN层上设置延伸到所述衬底的凹槽,所述凹槽设置在所述外延层的边缘;A groove extending to the substrate is provided on the P-type GaN layer and the N-type GaN layer, and the groove is arranged on the edge of the epitaxial layer;
在所述P型GaN层上形成电流阻挡层和透明导电层;forming a current blocking layer and a transparent conductive layer on the p-type GaN layer;
在所述透明导电层上设置P型电极,在所述N型GaN层上设置N型电极;setting a P-type electrode on the transparent conductive layer, and setting an N-type electrode on the N-type GaN layer;
在所述凹槽、所述N型GaN层、所述透明导电层、以及所述台阶的侧壁上形成光学增透膜和钝化层,所述钝化层的折射率介于GaN的折射率和空气的折射率之间,所述光学增透膜的折射率介于GaN的折射率和所述钝化层的折射率之间。An optical antireflection film and a passivation layer are formed on the groove, the N-type GaN layer, the transparent conductive layer, and the sidewall of the step, and the refractive index of the passivation layer is between that of GaN The refractive index of the optical anti-reflection coating is between the refractive index of GaN and the refractive index of the passivation layer.
本发明实施例提供的技术方案带来的有益效果是:The beneficial effects brought by the technical solution provided by the embodiments of the present invention are:
通过在凹槽、N型GaN层、透明导电层、以及台阶的侧壁上依次设有光学增透膜和钝化层,钝化层的折射率介于GaN的折射率和空气的折射率之间,光学增透膜的折射率介于GaN的折射率和钝化层的折射率之间,可以有效缓冲GaN和空气之间较大的折射率差距,减少发光层产生的光在不同折射率材料界面全反射,提高LED芯片的发光效率。An optical anti-reflection film and a passivation layer are sequentially provided on the groove, the N-type GaN layer, the transparent conductive layer, and the sidewall of the step, and the refractive index of the passivation layer is between the refractive index of GaN and the refractive index of air. Between, the refractive index of the optical anti-reflection coating is between the refractive index of GaN and the refractive index of the passivation layer, which can effectively buffer the large refractive index difference between GaN and air, and reduce the light generated by the light-emitting layer at different refractive indices. The total reflection of the material interface improves the luminous efficiency of the LED chip.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained based on these drawings without creative effort.
图1是本发明实施例一提供的一种GaN基发光二极管芯片的结构示意图;FIG. 1 is a schematic structural view of a GaN-based light-emitting diode chip provided in Embodiment 1 of the present invention;
图2是本发明实施例二提供的一种GaN基发光二极管芯片的制备方法的流程图。FIG. 2 is a flowchart of a method for manufacturing a GaN-based light-emitting diode chip provided by Embodiment 2 of the present invention.
具体实施方式detailed description
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the implementation manner of the present invention will be further described in detail below in conjunction with the accompanying drawings.
实施例一Embodiment one
本发明实施例提供了一种GaN基发光二极管芯片,参见图1,该GaN基发光二极管芯片包括衬底1、依次层叠在衬底1上的N型GaN层2、发光层3、P型GaN层4,P型GaN层4上设有从P型GaN层4延伸到N型GaN层2的台阶100,P型GaN层4和N型GaN层2上设有延伸到衬底1的凹槽200,P型GaN层4上依次设有电流阻挡层5、透明导电层6、P型电极7,N型GaN层2上设有N型电极8,凹槽200、N型GaN层2、透明导电层6、以及台阶100的侧壁上依次设有光学增透膜9和钝化层10。An embodiment of the present invention provides a GaN-based light-emitting diode chip. Referring to FIG. Layer 4, the P-type GaN layer 4 is provided with a step 100 extending from the P-type GaN layer 4 to the N-type GaN layer 2, and the P-type GaN layer 4 and the N-type GaN layer 2 are provided with grooves extending to the substrate 1 200, the P-type GaN layer 4 is sequentially provided with a current blocking layer 5, a transparent conductive layer 6, a P-type electrode 7, an N-type GaN layer 2 is provided with an N-type electrode 8, a groove 200, an N-type GaN layer 2, a transparent An optical anti-reflection film 9 and a passivation layer 10 are sequentially provided on the conductive layer 6 and the sidewall of the step 100 .
在本实施例中,钝化层10的折射率介于GaN的折射率和空气的折射率之间,光学增透膜9的折射率介于GaN的折射率和钝化层10的折射率之间。In this embodiment, the refractive index of the passivation layer 10 is between the refractive index of GaN and the refractive index of air, and the refractive index of the optical anti-reflection coating 9 is between the refractive index of GaN and the refractive index of the passivation layer 10. between.
具体地,衬底1为蓝宝石衬底,发光层3为交替层叠的InGaN层和GaN层,电流阻挡层5为SiO2层,透明导电层6为氧化铟锡(Indium Tin Oxide,简称ITO),P型电极7和N型电极8为金属层。Specifically, the substrate 1 is a sapphire substrate, the light-emitting layer 3 is alternately stacked InGaN layers and GaN layers, the current blocking layer 5 is a SiO2 layer, and the transparent conductive layer 6 is Indium Tin Oxide (ITO for short), The P-type electrode 7 and the N-type electrode 8 are metal layers.
可选地,凹槽200的宽度可以为10~30μm,以有效缓冲GaN和空气之间较大的折射率差距。Optionally, the width of the groove 200 may be 10-30 μm, so as to effectively buffer the large refractive index gap between GaN and air.
可选地,凹槽200的深度可以为6~10μm,以使凹槽延伸到衬底。Optionally, the depth of the groove 200 may be 6˜10 μm, so that the groove extends to the substrate.
可选地,钝化层10的折射率可以为1.5~2.5。由于GaN的折射率为2.5,空气的折射率为1,选用折射率为1.5~2.5的钝化层,可以满足钝化层的折射率介于GaN的折射率和空气的折射率之间。Optionally, the refractive index of the passivation layer 10 may be 1.5˜2.5. Since the refractive index of GaN is 2.5 and the refractive index of air is 1, a passivation layer with a refractive index of 1.5-2.5 can be selected so that the refractive index of the passivation layer is between the refractive index of GaN and the refractive index of air.
优选地,钝化层10的材料可以采用SiN、SiO2、SiON、Al2O3中的一种。SiN的折射率为1.8~2.2,SiO2的折射率为1.5~1.6,SiON的折射率为1.5~1.9,Al2O3的折射率为1.6~1.7,均可以实现折射率为1.5~2.5的钝化层。Preferably, the material of the passivation layer 10 may be one of SiN, SiO 2 , SiON, and Al 2 O 3 . The refractive index of SiN is 1.8-2.2, the refractive index of SiO 2 is 1.5-1.6, the refractive index of SiON is 1.5-1.9, and the refractive index of Al 2 O 3 is 1.6-1.7, all of which can achieve the refractive index of 1.5-2.5. passivation layer.
可选地,光学增透膜9的折射率可以为1.5~2.5,以满足光学增透膜的折射率介于GaN的折射率和钝化层10的折射率之间。Optionally, the refractive index of the optical anti-reflection coating 9 may be 1.5-2.5, so that the refractive index of the optical anti-reflection coating is between the refractive index of GaN and the refractive index of the passivation layer 10 .
优选地,光学增透膜9的材料可以采用SiN或SiON。SiN的折射率为1.8~2.2,SiON的折射率为1.5~1.9,均可以实现折射率为1.5~2.5的光学增透膜。Preferably, the material of the optical anti-reflection film 9 can be SiN or SiON. The refractive index of SiN is 1.8-2.2, and the refractive index of SiON is 1.5-1.9, both of which can realize optical anti-reflection coatings with a refractive index of 1.5-2.5.
可选地,光学增透膜9的厚度可以为发光层3发出的光在光学增透膜9中波长的四分之一的奇数倍。实验证明,当光学增透膜9的厚度为发光层3发出的光在光学增透膜中波长的四分之一的奇数倍时,发射光相干相消,折射光最强,因此将光学增透膜的厚度设计为发光层发出的光在光学增透膜中波长的四分之一的奇数倍,可以使发光层发出的光最大程度地从增透膜透射出去,将LED芯片的发光效率提升到最高。Optionally, the thickness of the optical antireflection coating 9 may be an odd multiple of a quarter of the wavelength of the light emitted by the light emitting layer 3 in the optical antireflection coating 9 . Experiments have proved that when the thickness of the optical anti-reflection coating 9 is an odd multiple of a quarter of the wavelength of the light emitted by the light-emitting layer 3 in the optical anti-reflection coating, the emitted light is coherent and destructive, and the refracted light is the strongest, so the optical enhancement The thickness of the transparent film is designed to be an odd multiple of a quarter of the wavelength of the light emitted by the light-emitting layer in the optical anti-reflection coating, so that the light emitted by the light-emitting layer can be transmitted from the anti-reflection film to the greatest extent, and the luminous efficiency of the LED chip can be reduced. Raise to the top.
可选地,钝化层10的厚度可以为发光层3发出的光在钝化层10中波长的四分之一的奇数倍,以使发光层发出的光最大程度地从增透膜透射出去,将LED芯片的发光效率提升到最高。Optionally, the thickness of the passivation layer 10 can be an odd multiple of a quarter of the wavelength of the light emitted by the light-emitting layer 3 in the passivation layer 10, so that the light emitted by the light-emitting layer can be transmitted from the anti-reflection coating to the greatest extent. , to increase the luminous efficiency of the LED chip to the highest.
在实际应用中,电流阻挡层5设置在P型电极的下方,电流阻挡层5可以改变电流流向,避免电流集中在P型电极7的下方。In practical applications, the current blocking layer 5 is disposed under the P-type electrode, and the current blocking layer 5 can change the direction of current flow to prevent the current from concentrating under the P-type electrode 7 .
本发明实施例通过在凹槽、N型GaN层、透明导电层、以及台阶的侧壁上依次设有光学增透膜和钝化层,钝化层的折射率介于GaN的折射率和空气的折射率之间,光学增透膜的折射率介于GaN的折射率和钝化层的折射率之间,可以有效缓冲GaN和空气之间较大的折射率差距,减少发光层产生的光在不同折射率材料界面全反射,提高LED芯片的发光效率。In the embodiment of the present invention, an optical antireflection film and a passivation layer are sequentially provided on the groove, the N-type GaN layer, the transparent conductive layer, and the sidewall of the step, and the refractive index of the passivation layer is between the refractive index of GaN and that of air. The refractive index of the optical anti-reflection coating is between the refractive index of GaN and the refractive index of the passivation layer, which can effectively buffer the large refractive index gap between GaN and air and reduce the light generated by the light-emitting layer. Total reflection at the interface of different refractive index materials improves the luminous efficiency of the LED chip.
实施例二Embodiment two
本发明实施例提供了一种GaN基发光二极管芯片的制备方法,适用于制备实施例一提供的GaN基发光二极管芯片,参见图2,该制备方法包括:An embodiment of the present invention provides a method for preparing a GaN-based light-emitting diode chip, which is suitable for preparing the GaN-based light-emitting diode chip provided in Example 1. See FIG. 2 . The preparation method includes:
步骤201:在衬底上依次生长N型GaN层、发光层、P型GaN层,形成外延层。Step 201: growing an N-type GaN layer, a light-emitting layer, and a P-type GaN layer sequentially on a substrate to form an epitaxial layer.
具体地,该步骤201可以包括:Specifically, this step 201 may include:
利用金属有机化合物化学气相沉淀(Metal-organic Chemical VaporDeposition,简称MOCVD)设备在衬底上依次生长N型GaN层、发光层、P型GaN层。An N-type GaN layer, a light-emitting layer, and a P-type GaN layer are sequentially grown on the substrate by using Metal-organic Chemical Vapor Deposition (MOCVD) equipment.
可选地,在该步骤201之后,该制备方法还可以包括:Optionally, after step 201, the preparation method may further include:
用王水和511溶液将N型GaN层、发光层、P型GaN层形成的外延片表面清洗干净。The surface of the epitaxial wafer formed by the N-type GaN layer, the light-emitting layer and the P-type GaN layer was cleaned with aqua regia and 511 solution.
其中,511溶液为容量比为5:1:1的H2SO4、H2O2、H2O的混合液。Among them, the 511 solution is a mixture of H 2 SO 4 , H 2 O 2 , and H 2 O with a volume ratio of 5:1:1.
步骤202:在P型GaN层上设置从P型GaN层延伸到N型GaN层的台阶。Step 202: setting steps extending from the P-type GaN layer to the N-type GaN layer on the P-type GaN layer.
具体地,该步骤202可以包括:Specifically, this step 202 may include:
在P型GaN层上涂覆光刻胶;Coating photoresist on the P-type GaN layer;
对光刻胶进行曝光和显影,形成设定图形的光刻胶;Expose and develop the photoresist to form a photoresist with a set pattern;
在光刻胶的保护下,采用感应耦合等离子体刻蚀(Inductive Coupled Plasma,简称ICP)技术刻蚀P型GaN层、发光层、N型GaN层,形成从P型GaN层延伸到N型GaN层的台阶;Under the protection of photoresist, the P-type GaN layer, the light-emitting layer, and the N-type GaN layer are etched using Inductive Coupled Plasma (ICP) technology to form a layer extending from the P-type GaN layer to the N-type GaN layer. the steps of the floor;
去除光刻胶。Remove photoresist.
步骤203:在P型GaN层和N型GaN层上设置延伸到衬底的凹槽。Step 203: setting grooves extending to the substrate on the P-type GaN layer and the N-type GaN layer.
在本实施例中,凹槽设置在外延层的边缘。In this embodiment, the groove is arranged on the edge of the epitaxial layer.
具体地,该步骤203可以包括:Specifically, this step 203 may include:
在P型GaN层和N型GaN层上涂覆光刻胶;Coating photoresist on the P-type GaN layer and the N-type GaN layer;
对光刻胶进行曝光和显影,形成设定图形的光刻胶;Expose and develop the photoresist to form a photoresist with a set pattern;
在光刻胶的保护下,采用ICP技术刻蚀P型GaN层和N型GaN层,形成延伸到衬底的凹槽;Under the protection of photoresist, the P-type GaN layer and N-type GaN layer are etched by ICP technology to form grooves extending to the substrate;
去除光刻胶。Remove photoresist.
步骤204:在P型GaN层上形成电流阻挡层和透明导电层。Step 204: forming a current blocking layer and a transparent conductive layer on the P-type GaN layer.
具体地,在P型GaN层上形成电流阻挡层,可以包括:Specifically, forming a current blocking layer on the P-type GaN layer may include:
采用等离子体增强化学气相沉积(Plasma Enhanced Chemical VaporDeposition,简称PECVD)技术在P型GaN层、N型GaN层、以及台阶的侧壁上沉积电流阻挡层;A current blocking layer is deposited on the P-type GaN layer, the N-type GaN layer, and the side walls of the steps by using plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD for short);
在电流阻挡层上涂覆光刻胶;Coating photoresist on the current blocking layer;
对光刻胶进行曝光和显影,形成设定图形的光刻胶;Expose and develop the photoresist to form a photoresist with a set pattern;
在光刻胶的保护下,刻蚀电流阻挡层,形成设定图形的电流阻挡层;Under the protection of the photoresist, the current blocking layer is etched to form a current blocking layer with a set pattern;
去除光刻胶。Remove photoresist.
可选地,在P型GaN层上形成透明导电层,可以包括:Optionally, forming a transparent conductive layer on the P-type GaN layer may include:
采用电子束蒸镀或磁控溅射技术在电流阻挡层、P型GaN层、N型GaN层、以及台阶的侧壁上沉积透明导电层;Depositing a transparent conductive layer on the current blocking layer, the P-type GaN layer, the N-type GaN layer, and the side walls of the steps by electron beam evaporation or magnetron sputtering technology;
在透明导电层上涂覆光刻胶;Coating photoresist on the transparent conductive layer;
对光刻胶进行曝光和显影,形成设定图形的光刻胶;Expose and develop the photoresist to form a photoresist with a set pattern;
在光刻胶的保护下,刻蚀透明导电层,形成设定图形的透明导电层;Under the protection of the photoresist, the transparent conductive layer is etched to form a transparent conductive layer with a set pattern;
去除光刻胶。Remove photoresist.
步骤205:在透明导电层上设置P型电极,在N型GaN层上设置N型电极。Step 205: disposing a P-type electrode on the transparent conductive layer, and disposing an N-type electrode on the N-type GaN layer.
具体地,该步骤205可以包括:Specifically, this step 205 may include:
采用电子束蒸镀或磁控溅射技术在透明导电层和N型GaN层上形成金属层;Form a metal layer on the transparent conductive layer and the N-type GaN layer by electron beam evaporation or magnetron sputtering technology;
采用剥离技术形成P型电极和N型电极。P-type electrodes and N-type electrodes are formed by lift-off technology.
步骤206:在凹槽、N型GaN层、透明导电层、以及台阶的侧壁上形成光学增透膜和钝化层。Step 206: forming an optical anti-reflection film and a passivation layer on the groove, the N-type GaN layer, the transparent conductive layer, and the sidewall of the step.
在本实施例中,钝化层的折射率介于GaN的折射率和空气的折射率之间,光学增透膜的折射率介于GaN的折射率和钝化层的折射率之间。In this embodiment, the refractive index of the passivation layer is between that of GaN and that of air, and the refractive index of the optical anti-reflection coating is between that of GaN and that of the passivation layer.
具体地,该步骤206可以包括:Specifically, this step 206 may include:
采用PECVD、常压化学气相淀积(Atmospheric Pressure Chemical VaporDeposition,简称APCVD)、或者原子层沉积(Atomic Layer Deposition,简称ALD)技术在凹槽、N型GaN层、透明导电层、以及台阶的侧壁上沉积光学增透膜和钝化层;Using PECVD, Atmospheric Pressure Chemical Vapor Deposition (APCVD for short), or Atomic Layer Deposition (ALD for short) technology on the groove, N-type GaN layer, transparent conductive layer, and the sidewall of the step Deposit optical anti-reflection coating and passivation layer on it;
在钝化层上涂覆光刻胶;Coating photoresist on the passivation layer;
对光刻胶进行曝光和显影,形成设定图形的光刻胶;Expose and develop the photoresist to form a photoresist with a set pattern;
在光刻胶的保护下,刻蚀钝化层和光学增透膜,形成设定图形的光学增透膜和钝化层;Under the protection of the photoresist, the passivation layer and the optical anti-reflection film are etched to form the optical anti-reflection film and the passivation layer of the set pattern;
去除光刻胶。Remove photoresist.
具体地,衬底为蓝宝石衬底,发光层为交替层叠的InGaN层和GaN层,电流阻挡层为SiO2层,透明导电层为ITO,P型电极和N型电极为金属层。Specifically, the substrate is a sapphire substrate, the light-emitting layer is an alternately stacked InGaN layer and GaN layer, the current blocking layer is a SiO2 layer, the transparent conductive layer is ITO, and the P-type electrode and N-type electrode are metal layers.
可选地,凹槽的宽度可以为10~30μm。Optionally, the width of the groove may be 10-30 μm.
可选地,凹槽的深度可以为6~10μm。Optionally, the depth of the groove may be 6-10 μm.
可选地,钝化层的折射率可以为1.5~2.5。Optionally, the refractive index of the passivation layer may be 1.5˜2.5.
优选地,钝化层的材料可以采用SiN、SiO2、SiON、Al2O3中的一种。Preferably, the material of the passivation layer can be one of SiN, SiO 2 , SiON, and Al 2 O 3 .
可选地,光学增透膜的折射率可以为1.5~2.5。Optionally, the refractive index of the optical anti-reflection coating may be 1.5-2.5.
优选地,光学增透膜的材料可以采用SiN或SiON。Preferably, the material of the optical anti-reflection coating can be SiN or SiON.
可选地,光学增透膜的厚度可以为发光层发出的光在光学增透膜中波长的四分之一的奇数倍。Optionally, the thickness of the optical anti-reflection coating may be an odd multiple of a quarter of the wavelength of light emitted by the light-emitting layer in the optical anti-reflection coating.
可选地,钝化层的厚度可以为发光层发出的光在钝化层中波长的四分之一的奇数倍。Optionally, the thickness of the passivation layer may be an odd multiple of a quarter of the wavelength of light emitted by the light emitting layer in the passivation layer.
本发明实施例通过在凹槽、N型GaN层、透明导电层、以及台阶的侧壁上依次设有光学增透膜和钝化层,钝化层的折射率介于GaN的折射率和空气的折射率之间,光学增透膜的折射率介于GaN的折射率和钝化层的折射率之间,可以有效缓冲GaN和空气之间较大的折射率差距,减少发光层产生的光在不同折射率材料界面全反射,提高LED芯片的发光效率。In the embodiment of the present invention, an optical antireflection film and a passivation layer are sequentially provided on the groove, the N-type GaN layer, the transparent conductive layer, and the sidewall of the step, and the refractive index of the passivation layer is between the refractive index of GaN and that of air. The refractive index of the optical anti-reflection coating is between the refractive index of GaN and the refractive index of the passivation layer, which can effectively buffer the large refractive index gap between GaN and air and reduce the light generated by the light-emitting layer. Total reflection at the interface of different refractive index materials improves the luminous efficiency of the LED chip.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610349392.1A CN105938862A (en) | 2016-05-24 | 2016-05-24 | GaN-based light-emitting diode chip and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610349392.1A CN105938862A (en) | 2016-05-24 | 2016-05-24 | GaN-based light-emitting diode chip and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105938862A true CN105938862A (en) | 2016-09-14 |
Family
ID=57152105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610349392.1A Pending CN105938862A (en) | 2016-05-24 | 2016-05-24 | GaN-based light-emitting diode chip and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105938862A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106784176A (en) * | 2016-11-30 | 2017-05-31 | 东莞市佳乾新材料科技有限公司 | A kind of luminous efficiency LED chip high and preparation method thereof |
CN106784174A (en) * | 2016-11-28 | 2017-05-31 | 华灿光电(浙江)有限公司 | LED chip and manufacturing method thereof |
CN108682727A (en) * | 2018-04-28 | 2018-10-19 | 华灿光电(浙江)有限公司 | A kind of light-emitting diode chip for backlight unit and preparation method thereof |
CN109935674A (en) * | 2019-03-29 | 2019-06-25 | 佛山市国星半导体技术有限公司 | A flip-chip LED chip and method of making the same |
CN112272871A (en) * | 2020-03-06 | 2021-01-26 | 天津三安光电有限公司 | A flip-chip light-emitting diode |
CN112968100A (en) * | 2020-08-14 | 2021-06-15 | 重庆康佳光电技术研究院有限公司 | Light-emitting device, preparation method and electronic equipment |
CN112968099A (en) * | 2020-08-06 | 2021-06-15 | 重庆康佳光电技术研究院有限公司 | Aluminum oxide patterning method and LED chip |
CN113540311A (en) * | 2021-07-15 | 2021-10-22 | 厦门三安光电有限公司 | Flip-chip light emitting diode and light emitting device |
WO2022033510A1 (en) * | 2020-08-14 | 2022-02-17 | 华为技术有限公司 | Display panel, enhanced polarizer module and display device |
CN114188457A (en) * | 2020-09-14 | 2022-03-15 | 厦门乾照光电股份有限公司 | LED chip with modified layer and manufacturing method thereof |
WO2022052085A1 (en) * | 2020-09-14 | 2022-03-17 | 厦门乾照光电股份有限公司 | Led chip having modified layer and production method therefor |
CN118352444A (en) * | 2024-06-17 | 2024-07-16 | 山东中清智能科技股份有限公司 | Preparation method of LED chip and LED chip |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101971374A (en) * | 2008-06-18 | 2011-02-09 | 欧司朗光电半导体有限公司 | Radiation-emitting component and method for producing a radiation-emitting component |
KR20120017695A (en) * | 2010-08-19 | 2012-02-29 | 삼성엘이디 주식회사 | Light emitting device with improved light extraction efficiency |
CN102856462A (en) * | 2011-06-30 | 2013-01-02 | Lg伊诺特有限公司 | Light emitting device and lighting system with the same |
CN102986043A (en) * | 2010-07-08 | 2013-03-20 | 欧司朗光电半导体有限公司 | Light-emitting diode chip and method for producing a light-emitting diode chip |
CN204118111U (en) * | 2014-10-31 | 2015-01-21 | 广东德力光电有限公司 | A kind of Al2O3/SiON passivation layer structure of LED chip |
-
2016
- 2016-05-24 CN CN201610349392.1A patent/CN105938862A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101971374A (en) * | 2008-06-18 | 2011-02-09 | 欧司朗光电半导体有限公司 | Radiation-emitting component and method for producing a radiation-emitting component |
CN102986043A (en) * | 2010-07-08 | 2013-03-20 | 欧司朗光电半导体有限公司 | Light-emitting diode chip and method for producing a light-emitting diode chip |
KR20120017695A (en) * | 2010-08-19 | 2012-02-29 | 삼성엘이디 주식회사 | Light emitting device with improved light extraction efficiency |
CN102856462A (en) * | 2011-06-30 | 2013-01-02 | Lg伊诺特有限公司 | Light emitting device and lighting system with the same |
CN204118111U (en) * | 2014-10-31 | 2015-01-21 | 广东德力光电有限公司 | A kind of Al2O3/SiON passivation layer structure of LED chip |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106784174A (en) * | 2016-11-28 | 2017-05-31 | 华灿光电(浙江)有限公司 | LED chip and manufacturing method thereof |
CN106784174B (en) * | 2016-11-28 | 2019-03-08 | 华灿光电(浙江)有限公司 | LED chip and manufacturing method thereof |
CN106784176B (en) * | 2016-11-30 | 2019-01-29 | 广州市奥彩光电科技有限公司 | A kind of LED chip and preparation method thereof that luminous efficiency is high |
CN106784176A (en) * | 2016-11-30 | 2017-05-31 | 东莞市佳乾新材料科技有限公司 | A kind of luminous efficiency LED chip high and preparation method thereof |
CN108682727A (en) * | 2018-04-28 | 2018-10-19 | 华灿光电(浙江)有限公司 | A kind of light-emitting diode chip for backlight unit and preparation method thereof |
CN109935674A (en) * | 2019-03-29 | 2019-06-25 | 佛山市国星半导体技术有限公司 | A flip-chip LED chip and method of making the same |
CN112272871B (en) * | 2020-03-06 | 2023-03-31 | 天津三安光电有限公司 | Flip-chip light emitting diode |
CN112272871A (en) * | 2020-03-06 | 2021-01-26 | 天津三安光电有限公司 | A flip-chip light-emitting diode |
US12211957B2 (en) | 2020-03-06 | 2025-01-28 | Tianjin Sanan Optoelectronics Co., Ltd. | Flip-chip light-emitting diode comprising multiple transparent dielectric layers and distributed Bragg reflector (DBR) structure |
KR20210125580A (en) * | 2020-03-06 | 2021-10-18 | 티엔진 산안 옵토일렉트로닉스 컴퍼니 리미티드 | flip chip light emitting diode |
KR102612253B1 (en) | 2020-03-06 | 2023-12-08 | 티엔진 산안 옵토일렉트로닉스 컴퍼니 리미티드 | flip chip light emitting diode |
CN112968099A (en) * | 2020-08-06 | 2021-06-15 | 重庆康佳光电技术研究院有限公司 | Aluminum oxide patterning method and LED chip |
WO2022033510A1 (en) * | 2020-08-14 | 2022-02-17 | 华为技术有限公司 | Display panel, enhanced polarizer module and display device |
CN112968100A (en) * | 2020-08-14 | 2021-06-15 | 重庆康佳光电技术研究院有限公司 | Light-emitting device, preparation method and electronic equipment |
CN114188457A (en) * | 2020-09-14 | 2022-03-15 | 厦门乾照光电股份有限公司 | LED chip with modified layer and manufacturing method thereof |
WO2022052085A1 (en) * | 2020-09-14 | 2022-03-17 | 厦门乾照光电股份有限公司 | Led chip having modified layer and production method therefor |
CN113540311B (en) * | 2021-07-15 | 2022-11-22 | 厦门三安光电有限公司 | A flip-chip light-emitting diode and light-emitting device |
CN113540311A (en) * | 2021-07-15 | 2021-10-22 | 厦门三安光电有限公司 | Flip-chip light emitting diode and light emitting device |
CN118352444A (en) * | 2024-06-17 | 2024-07-16 | 山东中清智能科技股份有限公司 | Preparation method of LED chip and LED chip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105938862A (en) | GaN-based light-emitting diode chip and preparation method thereof | |
CN102130285B (en) | Light emitting diode and manufacturing method thereof | |
CN103904174B (en) | The manufacture method of light-emitting diode chip for backlight unit | |
CN102709422A (en) | Semiconductor light-emitting device and preparation method thereof | |
CN102024898B (en) | LED (light-emitting diode) and manufacturing method thereof | |
CN108682727B (en) | A light-emitting diode chip and its manufacturing method | |
CN107910405A (en) | Manufacturing method of light emitting diode chip | |
CN105789404A (en) | GaN-based light-emitting diode chip and preparation method thereof | |
CN108172673A (en) | Fabrication method and structure of distributed Bragg reflector pattern for LED flip chip | |
CN102064245A (en) | Method for manufacturing light-emitting diode | |
KR101101858B1 (en) | Semiconductor light emitting device and manufacturing method thereof | |
CN106449920B (en) | Light emitting diode chip and manufacturing method thereof | |
CN108198923A (en) | Light emitting diode chip and manufacturing method thereof | |
CN103390711B (en) | A kind of LED chip with electrode reflecting layer and preparation method thereof | |
CN108400215A (en) | A kind of light-emitting diode chip for backlight unit and preparation method thereof | |
CN110071200A (en) | Resonator light emitting diode and its manufacturing method | |
CN107919424B (en) | Light emitting diode chip and manufacturing method thereof | |
CN105762250A (en) | Light emitting diode and manufacturing method thereof | |
CN102130252B (en) | Light-emitting diode and its manufacturing method | |
CN102122686A (en) | Method for manufacturing light-emitting diode | |
KR102402480B1 (en) | Transparent conductive layer and manufacturing method thereof, light emitting diode | |
CN118610336A (en) | Light-emitting diode chip with improved light extraction efficiency and preparation method thereof | |
CN110246934B (en) | Manufacturing method of light emitting diode chip and light emitting diode chip | |
CN118367077A (en) | Light-emitting diode chip and preparation method thereof | |
CN106098888A (en) | Light emitting diode chip and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160914 |
|
RJ01 | Rejection of invention patent application after publication |