[go: up one dir, main page]

CN105937911A - Magnetic sensor attitude calculation method - Google Patents

Magnetic sensor attitude calculation method Download PDF

Info

Publication number
CN105937911A
CN105937911A CN201610517475.7A CN201610517475A CN105937911A CN 105937911 A CN105937911 A CN 105937911A CN 201610517475 A CN201610517475 A CN 201610517475A CN 105937911 A CN105937911 A CN 105937911A
Authority
CN
China
Prior art keywords
magnetic sensor
sin
gamma
theta
cos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610517475.7A
Other languages
Chinese (zh)
Inventor
吴盘龙
朱建良
刘佳乐
李星秀
周洋
薄煜明
邹卫军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201610517475.7A priority Critical patent/CN105937911A/en
Publication of CN105937911A publication Critical patent/CN105937911A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

本发明涉及一种磁传感器姿态解算方法,包括:采用最小二乘法对弹体旋转一周的非正交磁传感器测量数据进行滤波处理;将滤波后的磁传感器测量数据输入到积分模型中计算模型函数;根据模型函数求解俯仰角;计算非正交磁传感器测量数据为零时的横滚角;重复上述步骤实时解算磁传感器姿态。本发明利用弹丸旋转一圈范围内磁传感器的所有数据解算俯仰角,解算结果更加精确。

The invention relates to a method for calculating the attitude of a magnetic sensor. function; solve the pitch angle according to the model function; calculate the roll angle when the non-orthogonal magnetic sensor measurement data is zero; repeat the above steps to solve the magnetic sensor attitude in real time. The present invention utilizes all the data of the magnetic sensor within the scope of one rotation of the projectile to calculate the pitch angle, and the calculation result is more accurate.

Description

一种磁传感器姿态解算方法A magnetic sensor attitude calculation method

技术领域technical field

本发明涉及姿态测量领域,具体涉及一种磁传感器姿态解算方法。The invention relates to the field of attitude measurement, in particular to a magnetic sensor attitude calculation method.

背景技术Background technique

高动态环境下捷联惯导系统的姿态解算是提高系统精度的关键技术。姿态解算是指利用载体传感器的输出计算分析得到姿态信息,包括航向角、俯仰角、滚转角。对作高动态运动处在高动态环境的导弹炮弹等载体来说,姿态测量精度是决定其捷联惯导系统能否正常工作的关键性因素。The attitude solution of strapdown inertial navigation system in high dynamic environment is the key technology to improve the system accuracy. Attitude calculation refers to the calculation and analysis of the output of the carrier sensor to obtain attitude information, including heading angle, pitch angle, and roll angle. For carriers such as missiles and shells in high dynamic environments, attitude measurement accuracy is a key factor to determine whether the strapdown inertial navigation system can work normally.

旋转弹体绕自身纵轴高速旋转,高精度陀螺仪的量程有限,难以应用在高速高旋的弹载环境。地磁场探测具有响应速度快、体积小、抗高过载能力强、无积累误差等优点,适合用于高速高旋的常规弹药弹体姿态测量。The rotating projectile rotates around its own longitudinal axis at high speed, and the high-precision gyroscope has a limited range, making it difficult to apply it to the high-speed and high-spinning missile-borne environment. The detection of the geomagnetic field has the advantages of fast response, small size, strong resistance to high overload, and no accumulation of errors. It is suitable for attitude measurement of conventional ammunition with high speed and high rotation.

磁传感器测量弹体姿态的方法有多种方式,其中,两个传感器的非正交磁传感器组合测量法采用两个非正交安装的磁传感器采集弹体旋转一圈的地磁场数据,根据弹体旋转一圈时俯仰角和航向角几乎不变,求解弹体横滚角。非正交磁传感器组合测量法解算载体俯仰角有两种算法,零点交叉法和极值比值法。两种算法都能获得对弹体某一时刻的姿态角估计值,但零点交叉法和极值比值法都是利用了弹体旋转一圈时采样数据中的特殊点进行运算,采样值误差较小时,姿态角估计值的误差也较小,采样值受到随机干扰误差增大时,姿态角误差也随之增加,算法易受到随机干扰的影响。There are many ways for the magnetic sensor to measure the attitude of the projectile. Among them, the non-orthogonal magnetic sensor combination measurement method of two sensors uses two non-orthogonal magnetic sensors to collect the geomagnetic field data of the projectile’s rotation. When the body rotates a circle, the pitch angle and heading angle are almost unchanged, and the roll angle of the projectile is solved. Non-orthogonal magnetic sensor combination measurement method has two algorithms for calculating carrier pitch angle, zero point crossing method and extreme value ratio method. Both algorithms can obtain the estimated value of the attitude angle of the projectile at a certain moment, but both the zero-point crossing method and the extreme value ratio method use special points in the sampling data when the projectile rotates a circle, and the error of the sampling value is relatively small. When the error of the estimated value of the attitude angle is small, the error of the estimated value of the attitude angle is also small. When the error of the sampling value is increased by the random disturbance, the error of the attitude angle also increases, and the algorithm is easily affected by the random disturbance.

发明内容Contents of the invention

本发明的目的在于克服现有零点交叉法和极值比值法的不足,提出一种磁传感器姿态解算方法。The purpose of the present invention is to overcome the deficiencies of the existing zero-point crossing method and extreme value ratio method, and propose a method for calculating the attitude of a magnetic sensor.

实现本发明目的的技术方案为:一种磁传感器姿态解算方法,括如下步骤:The technical solution for realizing the object of the present invention is: a method for calculating the attitude of a magnetic sensor, comprising the following steps:

步骤1、采用最小二乘法对弹体旋转一周的非正交磁传感器测量数据进行滤波处理;Step 1, using the least squares method to filter the non-orthogonal magnetic sensor measurement data of the missile body for one revolution;

步骤2、将滤波后的磁传感器测量数据输入到积分模型中计算模型函数;Step 2, input the filtered magnetic sensor measurement data into the integral model to calculate the model function;

步骤3、根据模型函数求解俯仰角;Step 3, solving the pitch angle according to the model function;

步骤4、计算非正交磁传感器测量数据为零时的横滚角;Step 4, calculating the roll angle when the non-orthogonal magnetic sensor measurement data is zero;

步骤5、重复步骤1至步骤4实时解算磁传感器姿态。Step 5. Repeat steps 1 to 4 to calculate the attitude of the magnetic sensor in real time.

与现有技术相比,本发明的有益效果为:本发明的积分比值法是利用弹丸旋转一圈范围内磁传感器的所有数据进行计算俯仰角;相对于极值比值法在每个旋转周期仅取一个数据,积分模型在每个旋转周期取得多组数据,在噪声方差越大的情况下,本发明俯仰角的解算误差相对于极值比值法越小。Compared with the prior art, the beneficial effects of the present invention are: the integral ratio method of the present invention uses all the data of the magnetic sensor within the range of the projectile to rotate to calculate the pitch angle; Taking one piece of data, the integral model obtains multiple sets of data in each rotation period, and the greater the noise variance is, the smaller the calculation error of the pitch angle of the present invention is compared with the extreme value ratio method.

附图说明Description of drawings

图1是本发明的磁传感器姿态解算方法流程图。Fig. 1 is a flow chart of the magnetic sensor attitude calculation method of the present invention.

图2是本发明实施例中两轴磁传感器安装示意图。Fig. 2 is a schematic diagram of the installation of the two-axis magnetic sensor in the embodiment of the present invention.

具体实施方式detailed description

结合图1,本发明的一种磁传感器姿态解算方法,包括如下步骤:In conjunction with Fig. 1, a kind of magnetic sensor attitude calculation method of the present invention comprises the following steps:

步骤1、采用最小二乘法对弹体旋转一周的非正交磁传感器测量数据进行滤波处理;Step 1, using the least squares method to filter the non-orthogonal magnetic sensor measurement data of the missile body for one revolution;

步骤2、将滤波后的磁传感器测量数据输入到积分模型中计算模型函数;Step 2, input the filtered magnetic sensor measurement data into the integral model to calculate the model function;

步骤3、根据模型函数求解俯仰角;Step 3, solving the pitch angle according to the model function;

步骤4、计算非正交磁传感器测量数据为零时的横滚角;Step 4, calculating the roll angle when the non-orthogonal magnetic sensor measurement data is zero;

步骤5、重复步骤1至步骤4实时解算磁传感器姿态。Step 5. Repeat steps 1 to 4 to calculate the attitude of the magnetic sensor in real time.

进一步的,步骤2所述的模型函数f(θm)是将两个非正交磁传感器测量数据HS1和HS2在旋转过程中的所有采样点进行积分计算,然后再做比例运算,具体公式为:Further, the model function f(θ m ) described in step 2 is to integrate and calculate all the sampling points of the two non-orthogonal magnetic sensor measurement data H S1 and H S2 during the rotation process, and then perform a proportional operation, specifically The formula is:

ff (( θθ mm )) == ∫∫ 00 22 ππ Hh SS 22 (( γγ )) 22 dd γγ ∫∫ 00 22 ππ Hh SS 11 (( γγ )) 22 dd γγ == 22 coscos 22 θθ mm coscos 22 ψcosψcos 22 λλ ++ sinsin 22 ψcosψcos 22 θθ mm sinsin 22 λλ ++ sinsin 22 θθ mm sinsin 22 λλ sinsin 22 ψcosψcos 22 θθ mm ++ sinsin 22 θθ mm

其中,ψ表示航向角,θm表示俯仰角,γ表示横滚角,h为地磁场矢量H的标量大小,λ为弹体坐标系Ox1y1z1中磁传感器S2与Ox1轴夹角。Among them, ψ represents the heading angle, θ m represents the pitch angle, γ represents the roll angle, h represents the scalar magnitude of the geomagnetic field vector H, and λ represents the axis between the magnetic sensor S2 and Ox 1 in the projectile coordinate system Ox 1 y 1 z 1 horn.

进一步的,步骤3所述根据模型函数f(θm)求解俯仰角θm的具体过程为:Further, the specific process of solving the pitch angle θ m according to the model function f(θ m ) described in step 3 is:

θθ mm == arctanarctan 22 (( || uu (( uu -- vv )) || ,, ±± || uu vv || )) ,, θθ mm ∈∈ [[ -- ππ // 22 ,, ππ // 22 ]]

式中, In the formula,

两个参数u和v不能同时为零。Both parameters u and v cannot be zero at the same time.

下面结合附图和具体实施例对本发明的方法作进一步说明。The method of the present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.

实施例Example

磁场强度矢量H在弹体坐标系Ox1y1z1中的表达式Hb表示为:The expression H b of the magnetic field intensity vector H in the projectile coordinate system Ox 1 y 1 z 1 is expressed as:

Hh bb == hh cosθcosθ mm cc oo sthe s ψψ hh (( sinγsinψcosθsinγsinψcosθ mm -- cosγsinθcosγsinθ mm )) hh (( cosγsinψcosθcosγsinψcosθ mm ++ sinγsinθsinγsinθ mm ))

其中,ψ表示航向角,θm表示俯仰角,γ表示横滚角,h为地磁场矢量H的标量大小。Among them, ψ represents the heading angle, θ m represents the pitch angle, γ represents the roll angle, and h is the scalar magnitude of the geomagnetic field vector H.

如图2所示,两个非正交的第一单轴磁传感器S1和第二单轴磁传感器S2分别安装在弹体坐标系的Ox1y1z1的原点上,Ox1轴与弹体纵轴重合,两个敏感轴都在Ox1z1平面内,S1沿Oz1轴安装,S2与Ox1轴呈λ角安装。As shown in Figure 2, two non-orthogonal first uniaxial magnetic sensors S1 and second uniaxial magnetic sensors S2 are respectively installed on the origin of Ox 1 y 1 z 1 in the projectile coordinate system, and the Ox 1 axis and the projectile The body longitudinal axis coincides, the two sensitive axes are in the Ox 1 z 1 plane, S1 is installed along the Oz 1 axis, and S2 is installed at a λ angle with the Ox 1 axis.

第一单轴磁传感器S1和第二单轴磁传感器S2的测量值HS1和HS2与弹体姿态角θm、γ、h的表达式为:The expressions of the measurement values H S1 and H S2 of the first uniaxial magnetic sensor S1 and the second uniaxial magnetic sensor S2 and the missile attitude angles θ m , γ, and h are:

HS1=h(cosγsinψcosθm+sinγsinθm)H S1 =h(cosγsinψcosθ m +sinγsinθ m )

HS2=h(cosθmcosψcosλ+cosγsinψcosθmsinλ+sinγsinθmsinλ)H S2 =h(cosθ m cosψcosλ+cosγsinψcosθ m sinλ+sinγsinθ m sinλ)

其中,λ为S2与Ox1轴夹角;Wherein, λ is the angle between S2 and Ox 1 axis;

积分数学模型:Integral mathematical model:

ff (( θθ mm )) == ∫∫ 00 22 ππ Hh SS 22 (( γγ )) 22 dd γγ ∫∫ 00 22 ππ Hh SS 11 (( γγ )) 22 dd γγ == 11 NN ΣΣ kk == 11 NN Hh SS 22 (( kk )) 22 11 NN ΣΣ kk == 11 NN Hh SS 11 (( kk )) 22

其中,N表示弹丸旋转一圈的总采样次数,k表示采样时刻;表示关于横滚角γ的积分运算;表示弹丸旋转一圈两个传感器采样值HS1和HS2的离散采样点的平方和运算;Among them, N represents the total sampling times of the projectile rotating one circle, and k represents the sampling time; and Indicates the integral operation with respect to the roll angle γ; and Indicates the square sum operation of the discrete sampling points of the two sensor sampling values H S1 and H S2 in one revolution of the projectile;

11 NN ΣΣ kk == 11 NN Hh SS 11 (( kk )) 22 == 11 NN (( Hh SS 11 (( 11 )) 22 ++ Hh SS 11 (( 22 )) 22 ++ ...... ++ Hh SS 11 (( NN )) 22 ))

11 NN ΣΣ kk == 11 NN Hh SS 22 (( kk )) 22 == 11 NN (( Hh SS 22 (( 11 )) 22 ++ Hh SS 22 (( 22 )) 22 ++ ...... ++ Hh SS 22 (( NN )) 22 ))

弹丸旋转一圈时,假设夹角λ和航向角ψ不变,通过两个传感器采样值平方和的积分运算,得到一个f(θm)的值;求出f(θm)的解,即可得到俯仰角θm的值。HS1或HS2为零时,消去未知数磁场强度标量h,可获得横滚角γ的估计值。When the projectile rotates one circle, assuming that the angle λ and the heading angle ψ remain unchanged, a value of f(θ m ) is obtained through the integral operation of the sum of the squares of the sampling values of the two sensors; the solution of f(θ m ) is obtained, namely The value of pitch angle θ m can be obtained. When H S1 or H S2 is zero, the estimated value of roll angle γ can be obtained by eliminating the unknown magnetic field strength scalar h.

如图1所示,本发明采用积分比值法计算弹体姿态角具体包括如下步骤:As shown in Figure 1, the present invention adopts the integral ratio method to calculate the projectile attitude angle and specifically includes the following steps:

步骤1、将采集的一圈磁传感器数据进行最小二乘法滤波Step 1. Perform least squares filtering on the collected data of a circle of magnetic sensors

(1)当滤波次数小于等于指定值p时,本实施例中p取10,采用增长记忆、逐次引入滤波:(1) When the number of times of filtering is less than or equal to the specified value p, p is taken as 10 in this embodiment, and the memory is increased and filtering is introduced successively:

rr ^^ (( kk )) == 22 (( 11 -- kk )) (( kk ++ 11 )) (( kk ++ 22 )) ΣΣ ii == 00 kk rr (( kk -- ii )) ++ 66 (( kk ++ 11 )) (( kk ++ 22 )) ΣΣ ii == 00 kk (( kk -- ii )) rr (( kk -- ii ))

(2)当滤波次数大于p时,采用固定记忆滤波:(2) When the number of filtering is greater than p, use fixed memory filtering:

rr ^^ (( kk )) == 22 (( 11 -- pp )) (( pp ++ 11 )) (( pp ++ 22 )) ΣΣ jj == kk -- pp kk rr (( kk -- jj )) ++ 66 (( pp ++ 11 )) (( pp ++ 22 )) ΣΣ jj == kk -- pp kk (( kk -- jj )) rr (( kk -- jj ))

式中,r(k)表示k时刻采样值,表示k时刻的最小二乘滤波值。In the formula, r(k) represents the sampling value at time k, Indicates the least squares filter value at time k.

磁传感器的采样值先经过滤波器进行滤波,滤除相应的噪声误差后,再输入积分模型中计算模型函数f(θm)的值。The sampling value of the magnetic sensor is first filtered by a filter to filter out the corresponding noise error, and then input into the integral model to calculate the value of the model function f(θ m ).

步骤2、计算模型函数f(θm)Step 2. Calculate the model function f(θ m )

令:HS1=h(d2cosγ+e2sinγ)Order: H S1 =h(d 2 cosγ+e 2 sinγ)

HS2=h(a2+b2cosγ+c2sinγ)H S2 =h(a 2 +b 2 cosγ+c 2 sinγ)

其中, in,

根据滤波器输出计算HS1关于θm的积分表达式Calculate the integral expression of H S1 with respect to θ m from the filter output

∫∫ 00 22 ππ Hh SS 11 (( γγ )) 22 dd γγ == ∫∫ 00 22 ππ (( hh (( dd 22 coscos γγ ++ ee 22 sinsin γγ )) )) 22 dd γγ == hh 22 ∫∫ 00 22 ππ (( dd 22 22 coscos 22 γγ ++ ee 22 22 sinsin 22 γγ ++ 22 dd 22 ee 22 sinsin γγ coscos γγ )) dd γγ == hh 22 22 (( πdπd 22 22 ++ πeπe 22 22 ))

∫∫ 00 22 ππ Hh SS 22 (( γγ )) 22 dd γγ == ∫∫ 00 22 ππ (( hh (( aa 22 ++ bb 22 coscos γγ ++ cc 22 sinsin γγ )) )) 22 dd γγ == hh 22 ∫∫ 00 22 ππ (( aa 22 22 ++ bb 22 22 coscos 22 γγ ++ cc 22 22 sinsin 22 γγ ++ 22 bb 22 cc 22 sinsin γγ coscos γγ ++ 22 aa 22 bb 22 coscos γγ ++ 22 aa 22 cc 22 sinsin γγ )) dd γγ == hh 22 (( 22 πaπa 22 22 ++ πbπb 22 22 ++ πcπc 22 22 ))

得到get

ff (( θθ mm )) == ∫∫ 00 22 ππ Hh SS 22 (( γγ )) 22 dd γγ ∫∫ 00 22 ππ Hh SS 11 (( γγ )) 22 dd γγ == 22 coscos 22 θθ mm coscos 22 ψcosψcos 22 λλ ++ sinsin 22 ψcosψcos 22 θθ mm sinsin 22 λλ ++ sinsin 22 θθ mm sinsin 22 λλ sinsin 22 ψcosψcos 22 θθ mm ++ sinsin 22 θθ mm

步骤3、根据模型函数f(θm)求解俯仰角θmStep 3. Solve the pitch angle θ m according to the model function f(θ m ):

将sin2θm=1-cos2θm将代入f(θm)表达式,得到关于cos2θm的表达式:Substitute sin 2 θ m =1-cos 2 θ m into the expression of f(θ m ), and get the expression about cos 2 θ m :

cos2θm(2cos2ψcos2λ+sin2ψsin2λ-sin2λ-f(θm)sin2ψ+f(θm))=f(θm)-sin2λcos 2 θ m (2cos 2 ψcos 2 λ+sin 2 ψsin 2 λ-sin 2 λ-f(θ m )sin 2 ψ+f(θ m ))=f(θ m )-sin 2 λ

假设分母不等于零,解得cosθm和sinθm,为得到俯仰角θm更通用的表达式,同时避免引入不等于零的假设,做如下变换:Assuming that the denominator is not equal to zero, cosθ m and sinθ m are solved. In order to obtain a more general expression for the pitch angle θ m and avoid introducing the assumption that it is not equal to zero, the following transformation is performed:

uu == 22 coscos 22 ψcosψcos 22 λλ ++ sinsin 22 ψsinψsin 22 λλ -- sinsin 22 λλ -- ff (( θθ mm )) sinsin 22 ψψ ++ ff (( θθ mm )) vv == ff (( θθ mm )) -- sinsin 22 λλ

整理可得:Organized to get:

uvsin2θm=u(u-v)cos2θm uvsin 2 θ m =u(uv)cos 2 θ m

最后,得到俯仰角θm的表达式:Finally, the expression for the pitch angle θ m is obtained:

θθ mm == arctanarctan 22 (( || uu (( uu -- vv )) || ,, ±± || uu vv || )) ,, θθ mm ∈∈ [[ -- ππ // 22 ,, ππ // 22 ]]

式中,两个参数u和v不能同时为零;In the formula, the two parameters u and v cannot be zero at the same time;

俯仰角θm初始值取值与射角象限相同,随后取值与f(θm)的极值点有关,f(θm)每经过其极值点后,当前周期俯仰角θm取值应改变前一周期的俯仰角象限。The initial value of the pitch angle θ m is the same as that of the shooting angle quadrant, and the subsequent value is related to the extreme point of f(θ m ) . The pitch angle quadrant of the previous cycle should be changed.

步骤4、计算非正交磁传感器测量数据为零时的横滚角Step 4. Calculate the roll angle when the non-orthogonal magnetic sensor measurement data is zero

弹体旋转的一周内,可以近似为匀速转动,而且航向角ψ和俯仰角θ几乎不变,可获得弹体某一特定时刻的横滚角γ角度值,即可计算出弹体旋转一周内所有时刻的横滚角γ。假设特定时刻为HS1或HS2的零点,测量值HS1或HS2为零时,可以消去未知数磁场强度标量h,减少周围干扰磁场环境对计算结果的影响。During one round of the projectile’s rotation, it can be approximated as a constant speed rotation, and the heading angle ψ and pitch angle θ are almost constant, and the roll angle γ angle value of the projectile at a specific moment can be obtained, and the calculation of The roll angle γ at all times. Assuming that the specific moment is the zero point of HS1 or HS2, when the measured value HS1 or HS2 is zero , the unknown magnetic field strength scalar h can be eliminated, and the influence of the surrounding interference magnetic field environment on the calculation results can be reduced.

(1)第一磁传感器S1的测量值HS1=0时:(1) When the measured value H S1 of the first magnetic sensor S1 =0:

cosγsinψcosθm+sinγsinθm=0cosγsinψcosθ m +sinγsinθ m =0

整理得γ∈[-π,π]Tidy up γ∈[-π,π]

式中,函数的两个参数ψ和θm不同时为零;In the formula, the two parameters of the function ψ and θ m are not zero at the same time;

求得当前第K周期的横滚角γK应当有正负两个取值,分别对应1,3象限或者2,4象限,此时应根据前一周期横滚角γK-1和弹体的转速ω估算当前周期的横滚角正负情况,来选取横滚角γK的值。The roll angle γ K of the current K-th cycle should have two values, positive and negative, corresponding to quadrants 1 and 3 or quadrants 2 and 4 respectively. At this time, the roll angle γ K-1 and projectile body of the previous cycle should be used Estimate the positive and negative status of the roll angle in the current cycle with the rotation speed ω, and select the value of the roll angle γ K.

弹丸每旋转一圈,得到磁传感器输出值HS1的最大值HS1max和最小值HS1min,利用取得HS1max和HS1min的时刻点t(HS1max)和t(HS1min),计算出ω=2(t(HS1max)-t(HS1min))。For each revolution of the projectile, the maximum value H S1max and the minimum value H S1min of the output value H S1 of the magnetic sensor are obtained , and ω= 2(t( HS1max )-t( HS1min )).

其中T为采样周期时间;γK正负情况与正负相同。make Where T is the sampling cycle time; the positive and negative conditions of γ K are the same as Positive and negative are the same.

(2)第二磁传感器S2的测量值HS2=0时:(2) When the measured value H S2 of the second magnetic sensor S2 =0:

cosθmcosψcosλ+cosγsinψcosθmsinλ+sinγsinθmsinλ=0cosθ m cosψcosλ+cosγsinψcosθm sinλ + sinγsinθm sinλ=0

cc oo sthe s γγ == -- aa 11 bb 11 ±± cc 11 22 (( bb 11 22 ++ cc 11 22 -- aa 11 22 )) bb 11 22 ++ cc 11 22

式中, In the formula,

当|sinλ|>|cosθm cosψ|时,第二磁传感器S2的测量值HS2有两个零点,当前第K周期横滚角γK有两个解γ1,K和γ2,K,此时应计算由第K-1周期的横滚角γK-1加上弹体转速ω得到的当前周期的滚转角近似值横滚角取较小者对应的γ;When |sinλ|>|cosθ m cosψ|, the measured value H S2 of the second magnetic sensor S2 has two zero points, and the roll angle γ K of the current Kth period has two solutions γ 1,K and γ 2,K , At this time, the approximate value of the roll angle of the current cycle obtained by adding the roll angle γ K-1 of the K-1 cycle to the rotational speed ω of the projectile should be calculated roll angle and γ corresponding to the smaller one;

当|sinλ|=|cosθm cosψ|时,第二磁传感器S2的测量值HS2有一个零点;When |sinλ|=|cosθ m cosψ|, the measured value H S2 of the second magnetic sensor S2 has a zero point;

当|sinλ|<|cosθm cosψ|时,第二磁传感器S2的测量值HS2不一定有零点,此时求得横滚角γ不准确。When |sinλ|<|cosθ m cosψ|, the measured value H S2 of the second magnetic sensor S2 does not necessarily have a zero point, and the calculation of the roll angle γ at this time is inaccurate.

至此,完成一次更新;At this point, an update is completed;

步骤5、重复步骤1至步骤4即实现传感器姿态更新。Step 5. Repeat steps 1 to 4 to update the sensor attitude.

Claims (3)

1.一种磁传感器姿态解算方法,其特征在于,包括如下步骤:1. A magnetic sensor attitude solution method, is characterized in that, comprises the steps: 步骤1、采用最小二乘法对弹体旋转一周的非正交磁传感器测量数据进行滤波处理;Step 1, using the least squares method to filter the non-orthogonal magnetic sensor measurement data of the missile body for one revolution; 步骤2、将滤波后的磁传感器测量数据输入到积分模型中计算模型函数;Step 2, input the filtered magnetic sensor measurement data into the integral model to calculate the model function; 步骤3、根据模型函数求解俯仰角;Step 3, solving the pitch angle according to the model function; 步骤4、计算非正交磁传感器测量数据为零时的横滚角;Step 4, calculating the roll angle when the non-orthogonal magnetic sensor measurement data is zero; 步骤5、重复步骤1至步骤4实时解算磁传感器姿态。Step 5. Repeat steps 1 to 4 to calculate the attitude of the magnetic sensor in real time. 2.根据权利要求1所述的磁传感器姿态解算方法,其特征在于,步骤2所述的模型函数f(θm)是将两个非正交磁传感器测量数据HS1和HS2在旋转过程中的所有采样点进行积分计算,然后再做比例运算,具体公式为:2. The magnetic sensor attitude solution method according to claim 1, characterized in that, the model function f (θ m ) described in step 2 is to rotate two non-orthogonal magnetic sensor measurement data H S1 and H S2 All sampling points in the process are integrally calculated and then proportionally calculated. The specific formula is: ff (( &theta;&theta; mm )) == &Integral;&Integral; 00 22 &pi;&pi; Hh SS 22 (( &gamma;&gamma; )) 22 dd &gamma;&gamma; &Integral;&Integral; 00 22 &pi;&pi; Hh SS 11 (( &gamma;&gamma; )) 22 dd &gamma;&gamma; == 22 coscos 22 &theta;&theta; mm coscos 22 &psi;cos&psi;cos 22 &lambda;&lambda; ++ sinsin 22 &psi;cos&psi;cos 22 &theta;&theta; mm sinsin 22 &lambda;&lambda; ++ sinsin 22 &theta;&theta; mm sinsin 22 &lambda;&lambda; sinsin 22 &psi;cos&psi;cos 22 &theta;&theta; mm ++ sinsin 22 &theta;&theta; mm 其中,ψ表示航向角,θm表示俯仰角,γ表示横滚角,h为地磁场矢量H的标量大小,λ为弹体坐标系Ox1y1z1中磁传感器S2与Ox1轴夹角。Among them, ψ represents the heading angle, θ m represents the pitch angle, γ represents the roll angle, h represents the scalar magnitude of the geomagnetic field vector H, and λ represents the axis between the magnetic sensor S2 and Ox 1 in the projectile coordinate system Ox 1 y 1 z 1 horn. 3.根据权利要求1所述的磁传感器姿态解算方法,其特征在于,步骤3所述根据模型函数f(θm)求解俯仰角θm的具体过程为:3. magnetic sensor attitude solution method according to claim 1, is characterized in that, the concrete process of solving pitch angle θ m described in step 3 according to model function f (θ m ) is: θm∈[-π/2,π/2] θ m ∈ [-π/2,π/2] 式中, In the formula, 参数u和v不能同时为零。The parameters u and v cannot be zero at the same time.
CN201610517475.7A 2016-07-01 2016-07-01 Magnetic sensor attitude calculation method Pending CN105937911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610517475.7A CN105937911A (en) 2016-07-01 2016-07-01 Magnetic sensor attitude calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610517475.7A CN105937911A (en) 2016-07-01 2016-07-01 Magnetic sensor attitude calculation method

Publications (1)

Publication Number Publication Date
CN105937911A true CN105937911A (en) 2016-09-14

Family

ID=56873203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610517475.7A Pending CN105937911A (en) 2016-07-01 2016-07-01 Magnetic sensor attitude calculation method

Country Status (1)

Country Link
CN (1) CN105937911A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106595669A (en) * 2016-12-27 2017-04-26 南京理工大学 Attitude calculation method of rotating body
CN107036576A (en) * 2016-11-28 2017-08-11 南京理工大学 Real-time resolving method based on difference coefficient method magnetic survey Rotary aircraft roll angle
CN107063254A (en) * 2016-12-27 2017-08-18 南京理工大学 A kind of attitude algorithm method of gyro earth magnetism combination
WO2018192004A1 (en) * 2017-04-21 2018-10-25 上海交通大学 Rigid body attitude calculation method based on function iteration integral
CN109387205A (en) * 2018-11-30 2019-02-26 歌尔科技有限公司 Obtain attitude angle amplitude of variation method, equipment and storage medium
CN110017809A (en) * 2019-04-03 2019-07-16 北京理工大学 The method for resolving attitude of flight vehicle using Geomagnetism Information and light stream sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954286A (en) * 2014-04-24 2014-07-30 南京航空航天大学 On-orbit iterative calibration method for multi-error model of microsatellite magnetic sensor
CN104913777A (en) * 2015-05-15 2015-09-16 上海集成电路研发中心有限公司 Error compensation algorithm of geomagnetic sensor application system
CN105136149A (en) * 2015-09-11 2015-12-09 北京航空航天大学 Positioning device and positioning method for magnetic field of circular coils
CN105716610A (en) * 2016-01-28 2016-06-29 北京航空航天大学 Carrier attitude and heading calculation method assisted by geomagnetic field model and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954286A (en) * 2014-04-24 2014-07-30 南京航空航天大学 On-orbit iterative calibration method for multi-error model of microsatellite magnetic sensor
CN104913777A (en) * 2015-05-15 2015-09-16 上海集成电路研发中心有限公司 Error compensation algorithm of geomagnetic sensor application system
CN105136149A (en) * 2015-09-11 2015-12-09 北京航空航天大学 Positioning device and positioning method for magnetic field of circular coils
CN105716610A (en) * 2016-01-28 2016-06-29 北京航空航天大学 Carrier attitude and heading calculation method assisted by geomagnetic field model and system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANLIANG ZHU,ETC,: "A Novel Attitude Estimation Algorithm Based on the Non-Orthogonal Magnetic Sensors", 《SENSORS》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107036576A (en) * 2016-11-28 2017-08-11 南京理工大学 Real-time resolving method based on difference coefficient method magnetic survey Rotary aircraft roll angle
CN106595669A (en) * 2016-12-27 2017-04-26 南京理工大学 Attitude calculation method of rotating body
CN107063254A (en) * 2016-12-27 2017-08-18 南京理工大学 A kind of attitude algorithm method of gyro earth magnetism combination
CN106595669B (en) * 2016-12-27 2023-04-11 南京理工大学 Method for resolving attitude of rotating body
CN107063254B (en) * 2016-12-27 2023-08-25 南京理工大学 Gesture resolving method for gyros and geomagnetic combination
WO2018192004A1 (en) * 2017-04-21 2018-10-25 上海交通大学 Rigid body attitude calculation method based on function iteration integral
CN109387205A (en) * 2018-11-30 2019-02-26 歌尔科技有限公司 Obtain attitude angle amplitude of variation method, equipment and storage medium
CN110017809A (en) * 2019-04-03 2019-07-16 北京理工大学 The method for resolving attitude of flight vehicle using Geomagnetism Information and light stream sensor
CN110017809B (en) * 2019-04-03 2021-08-27 北京理工大学 Method for resolving aircraft attitude by using geomagnetic information and optical flow sensor

Similar Documents

Publication Publication Date Title
CN105937911A (en) Magnetic sensor attitude calculation method
CN104359492B (en) Inertial navigation and the reckoning Positioning System Error estimating algorithm of wheel speed meter composition
CN103630139B (en) A kind of full attitude determination method of underwater carrier measured based on earth magnetism gradient tensor
WO2018214227A1 (en) Unmanned vehicle real-time posture measurement method
CN103900571B (en) A kind of carrier posture measuring method based on the rotary-type SINS of inertial coodinate system
CN103954286B (en) Microsatellite Magnetic Sensor multiple error model iteration scaling method in-orbit
CN107063254B (en) Gesture resolving method for gyros and geomagnetic combination
CN103712598B (en) A method for determining the attitude of a small unmanned aerial vehicle
CN103175502A (en) Attitude angle detecting method based on low-speed movement of data glove
CN103940425A (en) Magnetic-inertial combination strapdown measuring method
CN103398713A (en) Method for synchronizing measured data of star sensor/optical fiber inertial equipment
CN107909614A (en) Crusing robot localization method under a kind of GPS failures environment
CN105021189A (en) Method for calibrating postures of mobile equipment by comprehensively utilizing accelerometer and gyroscope
CN103196445A (en) Geomagnetism-assisted inertial carrier attitude measurement method based on matching technology
CN108458714A (en) The Eulerian angles method for solving of acceleration of gravity is free of in a kind of attitude detection system
CN107917707A (en) The definite method, apparatus and electronic equipment in pedestrian direction under a kind of any attitude
CN110293563A (en) Estimate method, equipment and the storage medium of robot pose
CN107024206A (en) A kind of integrated navigation system based on GGI/GPS/INS
CN103487011A (en) An Attitude Angle Detection Method for Data Gloves
CN103543289A (en) Method and device for acquiring terminal movement direction
CN106595669B (en) Method for resolving attitude of rotating body
CN111189474A (en) Autonomous calibration method of MARG sensor based on MEMS
US7341221B1 (en) Attitude determination with magnetometers for gun-launched munitions
US10371528B2 (en) Pedestrian navigation devices and methods
WO2018214226A1 (en) Unmanned vehicle real-time posture measurement method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160914