CN105929461A - Dynamic and static rock mechanical parameter correction system - Google Patents
Dynamic and static rock mechanical parameter correction system Download PDFInfo
- Publication number
- CN105929461A CN105929461A CN201610231902.5A CN201610231902A CN105929461A CN 105929461 A CN105929461 A CN 105929461A CN 201610231902 A CN201610231902 A CN 201610231902A CN 105929461 A CN105929461 A CN 105929461A
- Authority
- CN
- China
- Prior art keywords
- module
- rock
- parameters
- hard spot
- virtual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011435 rock Substances 0.000 title claims abstract description 97
- 238000012937 correction Methods 0.000 title claims abstract description 14
- 230000003068 static effect Effects 0.000 title abstract description 10
- 238000004088 simulation Methods 0.000 claims abstract description 40
- 238000004458 analytical method Methods 0.000 claims abstract description 39
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 13
- 238000011065 in-situ storage Methods 0.000 claims abstract description 10
- 239000000284 extract Substances 0.000 claims abstract description 5
- 239000011148 porous material Substances 0.000 claims description 20
- 239000012530 fluid Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 8
- 230000008676 import Effects 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 2
- 241000167854 Bourreria succulenta Species 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 6
- 238000010276 construction Methods 0.000 abstract description 4
- 238000012546 transfer Methods 0.000 abstract description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V9/00—Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种动静态岩石力学参数校正系统,包括人机操作模块、岩石力学参数测量采集模块,影响参数统计模块,物理模型建立模块,硬点表构建模块,虚拟作动器,虚拟传感器,仿真分析模块,转移节点模块,关联关系获取模块,原位模型复原模块,所述虚拟作动器通过循环执行仿真分析方法或算法,将结果反馈给仿真分析模块,所述仿真分析模块自动提取数据给虚拟传感器,所述虚拟传感器自动显示结果。本发明可提高油气藏岩体力学地下原位模型恢复的有效性和准确性,且可以根据需要对所建立的物理模型进行各种仿真分析模拟。
The invention discloses a dynamic and static rock mechanics parameter correction system, comprising a man-machine operation module, a rock mechanics parameter measurement and acquisition module, an impact parameter statistics module, a physical model establishment module, a hard point table construction module, a virtual actuator, and a virtual sensor , a simulation analysis module, a transfer node module, an association relationship acquisition module, and an in-situ model restoration module, the virtual actuator performs a simulation analysis method or algorithm in a loop, and feeds back the result to the simulation analysis module, and the simulation analysis module automatically extracts The data is given to a virtual sensor which automatically displays the results. The invention can improve the effectiveness and accuracy of restoring the underground in-situ model of rock mass mechanics in oil and gas reservoirs, and can carry out various simulation analysis and simulations on the established physical models as required.
Description
技术领域technical field
本发明涉及油气藏开发技术领域,具体涉及一种动静态岩石力学参数校正系统。The invention relates to the technical field of oil and gas reservoir development, in particular to a dynamic and static rock mechanics parameter correction system.
背景技术Background technique
油气藏岩体是储集岩体多孔介质材料及其上下围岩在一定深度下,处在一定温度、压力下、饱和了一定数量流体,由一系列结构面与结构体组成的地质实体。与近地表工程地质相比,一般埋藏较深(所在地层深度一般为数千米),处于较高的三轴复杂围压(可达200MPa)、较高的温度(可达200℃)和较高的孔隙压力(可达200Mpa)及多相流体饱和(油、气、水)条件下。这与地表浅层以及下地壳上地幔处的岩体所处的环境有很大不同,岩体也具有独特的力学特性。Oil and gas reservoir rock mass is a geological entity composed of a series of structural planes and structural bodies at a certain depth, at a certain temperature and pressure, and saturated with a certain amount of fluid by the porous medium material of the reservoir rock mass and its upper and lower surrounding rocks. Compared with near-surface engineering geology, it is generally buried deeper (the depth of the formation is generally several thousand meters), and it is under higher triaxial complex confining pressure (up to 200MPa), higher temperature (up to 200°C) and higher Under the conditions of high pore pressure (up to 200Mpa) and multiphase fluid saturation (oil, gas, water). This is very different from the environment of the rock mass in the shallow layer of the surface and the lower crust and upper mantle, and the rock mass also has unique mechanical properties.
对于这种地下数千米深处复杂围压、高温、高孔隙压力和多相流体的油气藏岩体而言,传统的静态力学性质研究是将钻井取心在地面条件下,利用三轴应力测试仪或者声波测试仪对取出的岩心进行力学实验,如将钻井取心拿到地面实验室中常温、常压、干样,或考虑施加不同的围压,或考虑充注不同的饱和流体进行岩石力学实验,显然,采用这种现有技术获得的岩石力学参数不能完全代表处于地下高温、高压、高孔隙压力、多相饱和流体条件下的油气藏岩体力学性质,即无法保证地下数千米深处复杂围压、高温、高孔隙压力和多相流体的油气藏岩体力学参数的有效性和准确性。For oil and gas reservoir rock mass with complex confining pressure, high temperature, high pore pressure, and multiphase fluids at depths of thousands of meters underground, the traditional static mechanical properties research is to drill cores under surface conditions and use triaxial stress A tester or an acoustic wave tester is used to conduct mechanical experiments on the cores taken out, such as taking the drilled cores to the ground laboratory at room temperature, normal pressure, and dry samples, or considering applying different confining pressures, or considering filling different saturated fluids for testing. Rock mechanics experiments, obviously, the rock mechanics parameters obtained by this prior art cannot fully represent the mechanical properties of oil and gas reservoirs under the conditions of underground high temperature, high pressure, high pore pressure, and multiphase saturated fluid, that is, it cannot guarantee Validity and accuracy of mechanical parameters of oil and gas reservoirs with complex confining pressure, high temperature, high pore pressure and multiphase fluid at depths of 1 m.
发明内容Contents of the invention
为解决上述问题,本发明提供了一种动静态岩石力学参数校正系统,可提高油气藏岩体力学地下原位模型恢复的有效性和准确性,且可以根据需要对所建立的物理模型进行各种仿真分析模拟。In order to solve the above problems, the present invention provides a dynamic and static rock mechanics parameter correction system, which can improve the effectiveness and accuracy of the recovery of the underground in-situ model of rock mass mechanics in oil and gas reservoirs, and can perform various adjustments on the established physical model as required. A simulation analysis simulation.
为实现上述目的,本发明采取的技术方案为:In order to achieve the above object, the technical scheme that the present invention takes is:
一种动静态岩石力学参数校正系统,包括A dynamic and static rock mechanics parameter correction system, comprising
岩石力学参数测量采集模块,用于测量并采集油气藏的岩石力学参数;The rock mechanics parameter measurement and collection module is used to measure and collect rock mechanics parameters of oil and gas reservoirs;
影响参数统计模块,用于统计所述油气藏的岩体力学性质影响参数;Influencing parameter statistical module, used to count the influencing parameters of rock mass mechanical properties of the oil and gas reservoir;
物理模型建立模块,用于根据岩石力学参数测量采集模块所采集到的数据以及影响参数统计模块所统计的岩体力学性质影响参数建立所述油气藏的物理模型;The physical model building module is used to establish the physical model of the oil and gas reservoir according to the data collected by the rock mechanical parameter measurement and acquisition module and the rock mass mechanical property impact parameters counted by the impact parameter statistics module;
硬点表构建模块,用于获得所建立的物理模型的硬点文件,并采用Matlab读取硬点文件中各硬点的坐标数值,从而形成一个可修改的硬点表,所述硬点表中包括各硬点坐标名称,以及每一硬点对应的坐标数值、以及相邻两个坐标之间在距离值;The hard point table construction module is used to obtain the hard point file of the established physical model, and adopts Matlab to read the coordinate values of each hard point in the hard point file, thereby forming a modifiable hard point table, the hard point table Include the coordinate name of each hard point, the coordinate value corresponding to each hard point, and the distance value between two adjacent coordinates;
虚拟作动器,用于驱动参数变化,与物理模型建立模块中的各元素建立关系后,可以在指定的范围内对参数进行变动,从而可以驱动仿真分析模块针对不同的参数进行计算求解;The virtual actuator is used to drive parameter changes. After establishing a relationship with each element in the physical model building module, the parameters can be changed within a specified range, so that the simulation analysis module can be driven to calculate and solve different parameters;
虚拟传感器,为在物理模型中插入的可直接获取相应的结果或信息的目标的逻辑单元;A virtual sensor is a logical unit inserted into a physical model that can directly obtain corresponding results or information;
仿真分析模块,用于将输入参数划分为单元、特性和载荷,再通过各种仿真分析方法和仿真分析算法对所述物理模型进行仿真分析;The simulation analysis module is used to divide the input parameters into units, characteristics and loads, and then perform simulation analysis on the physical model through various simulation analysis methods and simulation analysis algorithms;
所述虚拟作动器通过循环执行仿真分析方法或算法,将结果反馈给仿真分析模块,所述仿真分析模块自动提取数据给虚拟传感器,所述虚拟传感器自动显示结果;The virtual actuator feeds back the result to the simulation analysis module by cyclically executing the simulation analysis method or algorithm, and the simulation analysis module automatically extracts data to the virtual sensor, and the virtual sensor automatically displays the result;
转移节点模块,与硬点表中的各元素相连,通过改变硬点表中硬点的坐标、硬点之间的距离,使物理模型产生相应的变化;The transfer node module is connected with each element in the hard point table, and changes the physical model accordingly by changing the coordinates of the hard points in the hard point table and the distance between the hard points;
关联关系获取模块,用于获取所述油气藏的岩石力学参数及岩体力学性质影响参数的关联关系;A relationship acquisition module, used to acquire the relationship between the rock mechanical parameters of the oil and gas reservoir and the parameters affecting the mechanical properties of the rock mass;
原位模型复原模块,用于依据所述岩石力学参数,以及油气藏的岩石力学参数及岩体力学性质影响参数的关联关系,进行油气藏岩体力学地下原位模型的复原;The in-situ model restoration module is used to restore the underground in-situ model of rock mass mechanics of the oil and gas reservoir according to the rock mechanics parameters, and the relationship between the rock mechanics parameters of the oil and gas reservoir and the parameters affecting the rock mass mechanical properties;
中央处理器,用于协调上述模块进行工作。The central processing unit is used to coordinate the above modules to work.
其中,所述油气藏的岩体力学性质影响参数包括岩石成分特征参数、岩石结构特征参数、岩石构造特征参数、岩石孔隙裂缝特征参数、温度特征参数、围压特征参数、孔隙流体特征参数和孔隙压力特征参数Wherein, the rock mass mechanical properties influencing parameters of the oil and gas reservoir include rock composition characteristic parameters, rock structure characteristic parameters, rock structure characteristic parameters, rock pore fracture characteristic parameters, temperature characteristic parameters, confining pressure characteristic parameters, pore fluid characteristic parameters and pore Pressure characteristic parameters
其中,所述岩石力学参数包括岩石弹性参数和岩石强度参数,所述岩石弹性参数包括泊松比,杨氏模量和孔隙弹性系数。Wherein, the rock mechanical parameters include rock elastic parameters and rock strength parameters, and the rock elastic parameters include Poisson's ratio, Young's modulus and poroelastic coefficient.
其中,所述岩石成分特征参数包括岩石颗粒特征参数和填隙物特征参数。Wherein, the rock composition characteristic parameters include rock particle characteristic parameters and interstitial matter characteristic parameters.
其中,所述虚拟传感器包括通用虚拟传感器和专用虚拟传感器。Wherein, the virtual sensors include general virtual sensors and special virtual sensors.
其中,所述虚拟作动器包括虚拟单元作动器、虚拟特性作动器和虚拟载荷作动器。Wherein, the virtual actuators include virtual unit actuators, virtual characteristic actuators and virtual load actuators.
其中,所述硬点表通过以下步骤建立:Wherein, described hard point table is established through the following steps:
使用Matlab读取所述ADAMS硬点文件中各硬点的坐标数值导入一EXCEL文件中,在所述EXCEL文件的第一表单中存放有所述各硬点名称、坐标数值以及相邻两个坐标之间的距离;在所述EXCEL文件的第二表单的第一列放置硬点坐标名称,第二列链接到第一表单中相应的坐标数值,第三列连接到第一表单中的相应的两个坐标之间的距离,所述EXCEL文件即为所述可修改的硬点表。Use Matlab to read the coordinate values of each hard point in the ADAMS hard point file and import them into an EXCEL file. In the first form of the EXCEL file, each hard point name, coordinate value and adjacent two coordinates are stored. The distance between; put the hard point coordinate name in the first column of the second form of the EXCEL file, the second column is linked to the corresponding coordinate value in the first form, and the third column is connected to the corresponding coordinate value in the first form The distance between two coordinates, the EXCEL file is the modifiable hard point table.
本发明具有以下有益效果:The present invention has the following beneficial effects:
通过在以油气藏工程中常用的岩石弹性力学参数为研究对象,在对油气藏原型进行恢复的条件下,从岩体力学参数与围压、孔隙压力、温度及孔隙流体的函数关系、岩体力学参数动静态测试结果的差异及其影响因素两个方面出发,研究了岩石的结构、构造、成分及孔隙裂缝结构对岩石力学参数的影响;油气藏岩体力力学弹性参数的变化与围压、孔隙压力、温度以及孔隙流体之间的关系;从而将宏观实验现象和微观分析相结合,分析岩石的成分、结构和孔隙裂缝特征对岩石力学参数的影响,得到影响岩石力学参数性质的微观机理;建立了室内恢复油气藏岩体原位模型的方法,通过多点实验定量分析温度、围压、孔隙压力以及孔隙流体对岩体力学参数的影响,并通过定义相关的虚拟作动器(结构作动器等)和虚拟传感器(变形传感器等)后,可以直接驱动仿真算法或仿真方法分析、提取结果,数据的传递在系统内部,从而提高了效率,具有更高的数据一致性;通过可改变硬点表的设置,可以减少在校正或变更物理模型过时所需的工作量;通过定量分析岩体力学参数动态测量方法和静态测量方法之间的结果差异以及造成差异的原因,从而保证地下数千米深处复杂围压、高温、高孔隙压力和多相流体的油气藏岩体力学参数的有效性和准确性。By taking the rock elastic mechanics parameters commonly used in oil and gas reservoir engineering as the research object, under the condition of restoring the prototype of the oil and gas reservoir, from the functional relationship between rock mass mechanical parameters and confining pressure, pore pressure, temperature and pore fluid, rock mass Based on the difference of dynamic and static test results of mechanical parameters and their influencing factors, the influence of rock structure, structure, composition and pore and fracture structure on rock mechanical parameters is studied; The relationship between pore pressure, temperature and pore fluid; thus combining macroscopic experimental phenomena with microscopic analysis, analyzing the influence of rock composition, structure and pore and fracture characteristics on rock mechanical parameters, and obtaining the microscopic mechanism that affects the properties of rock mechanical parameters; Established an indoor method for restoring the in-situ model of rock mass in oil and gas reservoirs, quantitatively analyzed the effects of temperature, confining pressure, pore pressure and pore fluid on rock mass mechanical parameters through multi-point experiments, and defined the relevant virtual actuators (structural action Actuators, etc.) and virtual sensors (deformation sensors, etc.), can directly drive simulation algorithms or simulation methods to analyze and extract results, and data transmission is inside the system, thereby improving efficiency and having higher data consistency; The setting of the hard point table can reduce the workload required when correcting or changing the physical model; by quantitatively analyzing the difference in results between the dynamic measurement method and the static measurement method of rock mechanics parameters and the reasons for the difference, the underground data can be guaranteed. Validity and accuracy of mechanical parameters of oil and gas reservoirs with complex confining pressure, high temperature, high pore pressure and multiphase fluids at depths of kilometers.
附图说明Description of drawings
图1为本发明实施例一种动静态岩石力学参数校正系统的系统框图。Fig. 1 is a system block diagram of a dynamic and static rock mechanics parameter correction system according to an embodiment of the present invention.
具体实施方式detailed description
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objects and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the examples. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
如图1所示,本发明实施例提供了一种动静态岩石力学参数校正系统,包括As shown in Figure 1, the embodiment of the present invention provides a dynamic and static rock mechanics parameter correction system, including
岩石力学参数测量采集模块,用于测量并采集油气藏的岩石力学参数;The rock mechanics parameter measurement and collection module is used to measure and collect rock mechanics parameters of oil and gas reservoirs;
影响参数统计模块,用于统计所述油气藏的岩体力学性质影响参数;Influencing parameter statistical module, used to count the influencing parameters of rock mass mechanical properties of the oil and gas reservoir;
物理模型建立模块,用于根据岩石力学参数测量采集模块所采集到的数据以及影响参数统计模块所统计的岩体力学性质影响参数建立所述油气藏的物理模型;The physical model building module is used to establish the physical model of the oil and gas reservoir according to the data collected by the rock mechanical parameter measurement and acquisition module and the rock mass mechanical property impact parameters counted by the impact parameter statistics module;
硬点表构建模块,用于获得所建立的物理模型的硬点文件,并采用Matlab读取硬点文件中各硬点的坐标数值,从而形成一个可修改的硬点表,所述硬点表中包括各硬点坐标名称,以及每一硬点对应的坐标数值、以及相邻两个坐标之间在距离值;The hard point table construction module is used to obtain the hard point file of the established physical model, and adopts Matlab to read the coordinate values of each hard point in the hard point file, thereby forming a modifiable hard point table, the hard point table Include the coordinate name of each hard point, the coordinate value corresponding to each hard point, and the distance value between two adjacent coordinates;
虚拟作动器,用于驱动参数变化,与物理模型建立模块中的各元素建立关系后,可以在指定的范围内对参数进行变动,从而可以驱动仿真分析模块针对不同的参数进行计算求解;The virtual actuator is used to drive parameter changes. After establishing a relationship with each element in the physical model building module, the parameters can be changed within a specified range, so that the simulation analysis module can be driven to calculate and solve different parameters;
虚拟传感器,为在物理模型中插入的可直接获取相应的结果或信息的目标的逻辑单元;A virtual sensor is a logical unit inserted into a physical model that can directly obtain corresponding results or information;
仿真分析模块,用于将输入参数划分为单元、特性和载荷,再通过各种仿真分析方法和仿真分析算法对所述物理模型进行仿真分析;The simulation analysis module is used to divide the input parameters into units, characteristics and loads, and then perform simulation analysis on the physical model through various simulation analysis methods and simulation analysis algorithms;
所述虚拟作动器通过循环执行仿真分析方法或算法,将结果反馈给仿真分析模块,所述仿真分析模块自动提取数据给虚拟传感器,所述虚拟传感器自动显示结果;The virtual actuator feeds back the result to the simulation analysis module by cyclically executing the simulation analysis method or algorithm, and the simulation analysis module automatically extracts data to the virtual sensor, and the virtual sensor automatically displays the result;
转移节点模块,与硬点表中的各元素相连,通过改变硬点表中硬点的坐标、硬点之间的距离,使物理模型产生相应的变化;The transfer node module is connected with each element in the hard point table, and changes the physical model accordingly by changing the coordinates of the hard points in the hard point table and the distance between the hard points;
关联关系获取模块,用于获取所述油气藏的岩石力学参数及岩体力学性质影响参数的关联关系;A relationship acquisition module, used to acquire the relationship between the rock mechanical parameters of the oil and gas reservoir and the parameters affecting the mechanical properties of the rock mass;
原位模型复原模块,用于依据所述岩石力学参数,以及油气藏的岩石力学参数及岩体力学性质影响参数的关联关系,进行油气藏岩体力学地下原位模型的复原;The in-situ model restoration module is used to restore the underground in-situ model of rock mass mechanics of the oil and gas reservoir according to the rock mechanics parameters, and the relationship between the rock mechanics parameters of the oil and gas reservoir and the parameters affecting the rock mass mechanical properties;
中央处理器,用于协调上述模块进行工作。The central processing unit is used to coordinate the above modules to work.
还包括一数据库,用于储存岩石力学参数测量采集模块所采集到的数据,影响参数统计模块所统计到的数据,物理模型建立模块所建立的物理模型数据,硬点表构建模块所构建的硬点表数据,并按要求进行分类后储存。所述仿真分析模块连接有一仿真分析算法和仿真分析方法数据库,内储存有各种仿真分析算法和仿真分析方法。所述仿真分析算法和仿真分析方法数据库连接有一更新模块,用于进行仿真分析算法和仿真分析方法数据库内数据的更新。It also includes a database for storing the data collected by the rock mechanics parameter measurement acquisition module, the data collected by the impact parameter statistics module, the physical model data established by the physical model establishment module, and the hard point table construction module. The point table data is classified and stored according to requirements. The simulation analysis module is connected with a database of simulation analysis algorithms and simulation analysis methods, which store various simulation analysis algorithms and simulation analysis methods. The simulation analysis algorithm and the simulation analysis method database are connected with an update module for updating the data in the simulation analysis algorithm and simulation analysis method database.
还包括一人机操作模块,用于输入各种控制命令和数据调用命令,并将所数据的控制命令和数据调用命令发送到中央处理器,中央处理器根据预设的算法将收到的命令发送到对应的模块,并根据收到的数据调用命令在数据库中调用相应的数据发送到显示屏进行显示。It also includes a man-machine operation module, which is used to input various control commands and data call commands, and send the data control commands and data call commands to the central processor, and the central processor sends the received commands to the computer according to the preset algorithm. to the corresponding module, and call the corresponding data in the database according to the received data call command and send it to the display screen for display.
所述油气藏的岩体力学性质影响参数包括岩石成分特征参数、岩石结构特征参数、岩石构造特征参数、岩石孔隙裂缝特征参数、温度特征参数、围压特征参数、孔隙流体特征参数和孔隙压力特征参数The rock mass mechanical properties influencing parameters of the oil and gas reservoir include rock composition characteristic parameters, rock structure characteristic parameters, rock structure characteristic parameters, rock pore fracture characteristic parameters, temperature characteristic parameters, confining pressure characteristic parameters, pore fluid characteristic parameters and pore pressure characteristics parameter
所述岩石力学参数包括岩石弹性参数和岩石强度参数,所述岩石弹性参数包括泊松比,杨氏模量和孔隙弹性系数。The rock mechanics parameters include rock elastic parameters and rock strength parameters, and the rock elastic parameters include Poisson's ratio, Young's modulus and porosity elastic coefficient.
所述岩石成分特征参数包括岩石颗粒特征参数和填隙物特征参数。The rock composition characteristic parameters include rock particle characteristic parameters and interstitial matter characteristic parameters.
所述虚拟传感器包括通用虚拟传感器和专用虚拟传感器。The virtual sensors include general virtual sensors and special virtual sensors.
所述虚拟作动器包括虚拟单元作动器、虚拟特性作动器和虚拟载荷作动器。The virtual actuators include virtual unit actuators, virtual characteristic actuators and virtual load actuators.
所述硬点表通过以下步骤建立:The hard point table is established through the following steps:
使用Matlab读取所述ADAMS硬点文件中各硬点的坐标数值导入一EXCEL文件中,在所述EXCEL文件的第一表单中存放有所述各硬点名称、坐标数值以及相邻两个坐标之间的距离;在所述EXCEL文件的第二表单的第一列放置硬点坐标名称,第二列链接到第一表单中相应的坐标数值,第三列连接到第一表单中的相应的两个坐标之间的距离,所述EXCEL文件即为所述可修改的硬点表。Use Matlab to read the coordinate values of each hard point in the ADAMS hard point file and import them into an EXCEL file. In the first form of the EXCEL file, each hard point name, coordinate value and adjacent two coordinates are stored. The distance between; put the hard point coordinate name in the first column of the second form of the EXCEL file, the second column is linked to the corresponding coordinate value in the first form, and the third column is connected to the corresponding coordinate value in the first form The distance between two coordinates, the EXCEL file is the modifiable hard point table.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications should also be It is regarded as the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610231902.5A CN105929461B (en) | 2016-04-13 | 2016-04-13 | A kind of sound state rock mechanics parameters correction system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610231902.5A CN105929461B (en) | 2016-04-13 | 2016-04-13 | A kind of sound state rock mechanics parameters correction system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105929461A true CN105929461A (en) | 2016-09-07 |
CN105929461B CN105929461B (en) | 2018-10-26 |
Family
ID=56838944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610231902.5A Expired - Fee Related CN105929461B (en) | 2016-04-13 | 2016-04-13 | A kind of sound state rock mechanics parameters correction system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105929461B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106599338A (en) * | 2016-10-09 | 2017-04-26 | 钦州学院 | Three-dimensional geologic modeling method for shale gas reservoirs |
CN107393005A (en) * | 2017-07-25 | 2017-11-24 | 中国科学院武汉岩土力学研究所 | A kind of three-dimensional rock block system modeling method |
CN107436964A (en) * | 2017-01-08 | 2017-12-05 | 西安科技大学 | A kind of method of the evolution mechanism simulation analysis of miner's unsafe acts |
CN109668791A (en) * | 2019-01-10 | 2019-04-23 | 清华大学 | A kind of measuring system and method for the formation rock mechanics parameter based on multisensor |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090204328A1 (en) * | 2008-02-12 | 2009-08-13 | Precision Energey Services, Inc. | Refined analytical model for formation parameter calculation |
US20120221306A1 (en) * | 2009-04-08 | 2012-08-30 | Schlumberger Technology Corporation | Multiscale digital rock modeling for reservoir simulation |
CN103267678A (en) * | 2013-04-28 | 2013-08-28 | 北京大学 | Synchronous measurement method and apparatus for dynamic and static rock mechanical parameters |
CN103278614A (en) * | 2013-04-28 | 2013-09-04 | 北京大学 | Method and device for correcting dynamic and static rock mechanical parameters |
CN104036068A (en) * | 2014-05-13 | 2014-09-10 | 苏州合科软件有限公司 | Car crash safety simulation analysis and optimization design integrated system |
CN104573163A (en) * | 2013-10-29 | 2015-04-29 | 广州汽车集团股份有限公司 | Automobile suspension parameterization design method |
CN105363187A (en) * | 2015-12-05 | 2016-03-02 | 郑州航空工业管理学院 | Adjustable martial art training pile with active attacking ability and training system of adjustable martial art training pile |
CN105380613A (en) * | 2015-11-13 | 2016-03-09 | 西京学院 | A sports activity monitoring system |
CN105468859A (en) * | 2015-11-27 | 2016-04-06 | 郑州航空工业管理学院 | Industrial design service platform |
-
2016
- 2016-04-13 CN CN201610231902.5A patent/CN105929461B/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090204328A1 (en) * | 2008-02-12 | 2009-08-13 | Precision Energey Services, Inc. | Refined analytical model for formation parameter calculation |
US20120221306A1 (en) * | 2009-04-08 | 2012-08-30 | Schlumberger Technology Corporation | Multiscale digital rock modeling for reservoir simulation |
CN103267678A (en) * | 2013-04-28 | 2013-08-28 | 北京大学 | Synchronous measurement method and apparatus for dynamic and static rock mechanical parameters |
CN103278614A (en) * | 2013-04-28 | 2013-09-04 | 北京大学 | Method and device for correcting dynamic and static rock mechanical parameters |
CN104573163A (en) * | 2013-10-29 | 2015-04-29 | 广州汽车集团股份有限公司 | Automobile suspension parameterization design method |
CN104036068A (en) * | 2014-05-13 | 2014-09-10 | 苏州合科软件有限公司 | Car crash safety simulation analysis and optimization design integrated system |
CN105380613A (en) * | 2015-11-13 | 2016-03-09 | 西京学院 | A sports activity monitoring system |
CN105468859A (en) * | 2015-11-27 | 2016-04-06 | 郑州航空工业管理学院 | Industrial design service platform |
CN105363187A (en) * | 2015-12-05 | 2016-03-02 | 郑州航空工业管理学院 | Adjustable martial art training pile with active attacking ability and training system of adjustable martial art training pile |
Non-Patent Citations (2)
Title |
---|
林英松等: "岩石动静力学参数的试验研究", 《岩石力学与工程学报》 * |
路保平等: "岩石力学参数求取方法进展", 《石油钻探技术》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106599338A (en) * | 2016-10-09 | 2017-04-26 | 钦州学院 | Three-dimensional geologic modeling method for shale gas reservoirs |
CN107436964A (en) * | 2017-01-08 | 2017-12-05 | 西安科技大学 | A kind of method of the evolution mechanism simulation analysis of miner's unsafe acts |
CN107393005A (en) * | 2017-07-25 | 2017-11-24 | 中国科学院武汉岩土力学研究所 | A kind of three-dimensional rock block system modeling method |
CN109668791A (en) * | 2019-01-10 | 2019-04-23 | 清华大学 | A kind of measuring system and method for the formation rock mechanics parameter based on multisensor |
Also Published As
Publication number | Publication date |
---|---|
CN105929461B (en) | 2018-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113901681B (en) | A three-dimensional compressibility evaluation method for double sweet spots in shale gas reservoirs with full life cycle | |
CN110704888B (en) | An optimization design method for volume fracturing operation parameters of infill wells in unconventional oil and gas reservoirs | |
US10546072B2 (en) | Obtaining micro- and macro-rock properties with a calibrated rock deformation simulation | |
CN109063257B (en) | A seepage-damage-stress coupling numerical simulation method for coal and rock mass subregional water injection | |
Bai et al. | Numerical modelling of coupled flow and deformation in fractured rock specimens | |
CN110286421A (en) | A modeling method for natural fractures in tight sandstone reservoirs | |
CN105386756B (en) | A method of brittle formation porosity is calculated using dependent variable | |
CN107066718B (en) | A four-dimensional dynamic in-situ stress simulation method | |
CN105929461B (en) | A kind of sound state rock mechanics parameters correction system | |
WO2017031615A1 (en) | Method of constructing ground subsidence prediction model of two-cavity salt cavern reservoir | |
CN118261075A (en) | A method for designing fracturing parameters for repeated fracturing and temporary plugging of horizontal wells | |
CN113158315A (en) | Rock-soil body parameter three-dimensional non-stationary condition random field modeling method based on static cone penetration data | |
CN111006987A (en) | A prediction method of reservoir fracture porosity and permeability parameters | |
CN110987985A (en) | Method for evaluating digital core in perforation damage chamber | |
CN115526086B (en) | A method for predicting breakthrough time of water flooding in carbonate reservoirs based on surrogate model | |
CN113255092B (en) | Characteristic point fitting inversion method, electronic equipment and medium for volume fracturing horizontal well | |
RU2416719C1 (en) | Method of isobaric mapping of zone-nonhomogeneous productive formation | |
CN118260982A (en) | Three-dimensional ground stress field characteristic determination method and device | |
CN205689204U (en) | Large scale fracture-cavity type carbonate well testing experimental provision | |
CN114547927A (en) | Hydrothermal deposit three-dimensional quantitative prediction evaluation method based on numerical simulation | |
CN114297950A (en) | A Calculation Method of Water Loss and Compression Distribution in Confined Water-bearing Loose Layers | |
CN115290528B (en) | Characterization method of fracture structure-seepage characteristic interaction of water-rich rock stratum | |
CN116776707A (en) | Foundation pit structure digital numerical analysis method based on geological drilling | |
CN110954942A (en) | Method and system for making chart with clay content identification function | |
CN116522638A (en) | Dynamic characteristic analysis research method for hypotonic tight gas reservoir |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181026 Termination date: 20190413 |
|
CF01 | Termination of patent right due to non-payment of annual fee |