CN105925591B - Cloning and application of a key gene PeIRX10 for xylan synthesis of moso bamboo - Google Patents
Cloning and application of a key gene PeIRX10 for xylan synthesis of moso bamboo Download PDFInfo
- Publication number
- CN105925591B CN105925591B CN201610261714.7A CN201610261714A CN105925591B CN 105925591 B CN105925591 B CN 105925591B CN 201610261714 A CN201610261714 A CN 201610261714A CN 105925591 B CN105925591 B CN 105925591B
- Authority
- CN
- China
- Prior art keywords
- peirx10
- gene
- xylan
- synthesis
- arabidopsis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 244000302661 Phyllostachys pubescens Species 0.000 title claims abstract description 31
- 235000003570 Phyllostachys pubescens Nutrition 0.000 title claims abstract description 31
- 230000013658 xylan biosynthetic process Effects 0.000 title claims abstract description 17
- 101150044508 key gene Proteins 0.000 title claims abstract description 14
- 238000010367 cloning Methods 0.000 title description 2
- 241000219194 Arabidopsis Species 0.000 claims abstract description 31
- 210000002421 cell wall Anatomy 0.000 claims abstract description 25
- 230000007547 defect Effects 0.000 claims abstract description 13
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 12
- 239000002773 nucleotide Substances 0.000 claims abstract description 5
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 5
- 241000196324 Embryophyta Species 0.000 claims description 37
- 229920001221 xylan Polymers 0.000 claims description 12
- 150000004823 xylans Chemical class 0.000 claims description 12
- 230000009261 transgenic effect Effects 0.000 claims description 9
- 238000003786 synthesis reaction Methods 0.000 claims description 8
- 241000219195 Arabidopsis thaliana Species 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 2
- 108090000623 proteins and genes Proteins 0.000 abstract description 29
- 230000000295 complement effect Effects 0.000 abstract description 15
- 230000012010 growth Effects 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 7
- 241001330002 Bambuseae Species 0.000 abstract description 5
- 235000017166 Bambusa arundinacea Nutrition 0.000 abstract description 4
- 235000017491 Bambusa tulda Nutrition 0.000 abstract description 4
- 108700023372 Glycosyltransferases Proteins 0.000 abstract description 4
- 235000015334 Phyllostachys viridis Nutrition 0.000 abstract description 4
- 239000011425 bamboo Substances 0.000 abstract description 4
- 238000010353 genetic engineering Methods 0.000 abstract description 4
- 102000051366 Glycosyltransferases Human genes 0.000 abstract 2
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000014509 gene expression Effects 0.000 description 10
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 8
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 5
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 5
- 238000003757 reverse transcription PCR Methods 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 150000002772 monosaccharides Chemical class 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 230000002018 overexpression Effects 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- 229920002488 Hemicellulose Polymers 0.000 description 3
- 101150051071 IRX10 gene Proteins 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 235000020183 skimmed milk Nutrition 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 102000045442 glycosyltransferase activity proteins Human genes 0.000 description 2
- 108700014210 glycosyltransferase activity proteins Proteins 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 150000004804 polysaccharides Chemical class 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 238000010240 RT-PCR analysis Methods 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 238000010805 cDNA synthesis kit Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 238000012257 pre-denaturation Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000003161 ribonuclease inhibitor Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8245—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
- C12N15/8246—Non-starch polysaccharides, e.g. cellulose, fructans, levans
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8259—Phytoremediation
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Nutrition Science (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
技术领域technical field
本发明属于分子生物学和基因工程领域,具体涉及一个参与木聚糖合成的毛竹糖基转移酶(glycosyltransferases,GTs)关键基因PeIRX10的克隆和功能初探。The invention belongs to the fields of molecular biology and genetic engineering, and specifically relates to the cloning and functional exploration of a key gene PeIRX10 of moso bamboo glycosyltransferases (glycosyltransferases, GTs) involved in xylan synthesis.
背景技术Background technique
半纤维素木聚糖(Xylan)是植物中含量仅次于纤维素的多糖成分,在维持细胞壁的稳定性与完整性中发挥重要作用,是重要的可再生生物质资源。木聚糖由位于高尔基体内的GTs合成。GTs是一系列参与催化双糖、聚糖和糖复合物中糖链合成的一类酶,存在于所有生物中,不仅参与了细胞壁主要成分的合成,还催化各种分子的糖基并参与发育、信号转导、防御等生物学过程。Hemicellulose xylan (Xylan) is a polysaccharide component second only to cellulose in plants. It plays an important role in maintaining the stability and integrity of cell walls and is an important renewable biomass resource. Xylan is synthesized by GTs located in the Golgi. GTs are a series of enzymes involved in catalyzing the synthesis of sugar chains in disaccharides, polysaccharides, and sugar complexes. They exist in all organisms and not only participate in the synthesis of the main components of the cell wall, but also catalyze the sugar groups of various molecules and participate in development. , signal transduction, defense and other biological processes.
IRX10基因是参与半纤维素木聚糖主链延伸的关键基因,对植物次生壁正常的加厚有重要作用。如果IRX10基因缺失,则花序和茎中木糖含量下降,细胞壁表现为不规则的木质部而导致次生细胞壁缺陷。目前,已有植物的IRX10基因功能研究主要集中在拟南芥、水稻等模式植物上,然而毛竹中参与木聚糖合成的关键基因PeIRX10至今仍未见报道。The IRX10 gene is a key gene involved in the elongation of the hemicellulose xylan backbone, which plays an important role in the normal thickening of the plant secondary wall. If the IRX10 gene is deleted, the xylose content in the inflorescence and stem decreases, and the cell wall appears as irregular xylem, resulting in secondary cell wall defects. At present, the research on the function of IRX10 gene in existing plants mainly focuses on model plants such as Arabidopsis thaliana and rice, but the key gene PeIRX10 involved in xylan synthesis in moso bamboo has not been reported so far.
毛竹(Phyllostachys edulis)是我国种植面积最大的经济竹种,被广泛应用于食品、建材、纺织、生物质能源等领域。已经发现毛竹的快速生长过程中伴随着次生细胞壁生长。因此,鉴别出毛竹中合成半纤维素木聚糖的相关基因PeIRX10,对于了解次生细胞壁的形成,阐明毛竹组织快速生长的分子基础具有重要的科学意义。Moso bamboo (Phyllostachys edulis) is the economical bamboo species with the largest planting area in my country, and is widely used in food, building materials, textiles, biomass energy and other fields. It has been found that the rapid growth of Phyllostachys pubescens is accompanied by secondary cell wall growth. Therefore, the identification of PeIRX10, a gene related to the synthesis of hemicellulose xylan in Moso bamboo, is of great scientific significance for understanding the formation of secondary cell walls and clarifying the molecular basis of the rapid growth of Moso bamboo tissues.
发明内容Contents of the invention
针对目前尚没有找到引起毛竹次生细胞生长的原因,本发明旨在提供一个新的来源于毛竹的参与木聚糖合成的关键基因PeIRX10,从而为了解次生细胞壁的形成,阐明毛竹组织快速生长的分子基础提供了一个有力工具。本发明的目的还在于提供基因PeIRX10在植物遗传转化中的应用,以实现利用基因PeIRX10能够修复拟南芥突变体中木聚糖合成缺陷和互补拟南芥突变体中次生细胞壁缺陷。Aiming at the fact that the cause of the growth of secondary cells of Moso bamboo has not been found so far, the present invention aims to provide a new key gene PeIRX10 that is derived from Moso bamboo and participates in xylan synthesis, so as to understand the formation of secondary cell walls and clarify the rapid growth of Moso bamboo tissue. The molecular basis provides a powerful tool. The purpose of the present invention is also to provide the application of gene PeIRX10 in plant genetic transformation, so as to realize the repair of xylan synthesis defect in Arabidopsis mutant and the secondary cell wall defect in complementary Arabidopsis mutant by using gene PeIRX10.
为实现本发明的发明目的,发明人提供如下技术方案:In order to realize the purpose of the invention of the present invention, the inventor provides the following technical solutions:
本发明的目的首先是提供一个新的来源于毛竹的参与木聚糖合成的关键基因PeIRX10,该基因具有SEQ ID No:1所示的核苷酸序列。The purpose of the present invention is firstly to provide a new key gene PeIRX10 involved in xylan synthesis derived from Phyllostachys pubescens, the gene has the nucleotide sequence shown in SEQ ID No:1.
如附图1所示:本发明提供的毛竹木聚糖合成关键基因PeIRX10在竹笋中的表达水平最高,茎、根和花序中表达量的表达量相对较低,在叶片中的表达水平最低。PeIRX10的这一表达模式与竹笋具有快速生长的特性有关。As shown in accompanying drawing 1: the key gene PeIRX10 of moso bamboo xylan synthesis provided by the present invention has the highest expression level in bamboo shoots, the expression level in stems, roots and inflorescences is relatively low, and the expression level in leaves is the lowest. This expression pattern of PeIRX10 is related to the rapid growth of bamboo shoots.
本发明的另一个目的是提供PeIRX10在植物遗传转化中的应用,一方面包括毛竹木聚糖合成关键基因PeIRX10在制备转基因植物中的应用,所述的植物为拟南芥;另一方面包括毛竹木聚糖合成关键基因PeIRX10在修复拟南芥突变体中木聚糖合成缺陷和互补拟南芥突变体中次生细胞壁缺陷上的应用。本发明利用基因工程技术将PeIRX10基因重组转入具有irx10irx10l双突背景的拟南芥植株中,获得过表达PeIRX10基因的转基因拟南芥植株,PeIRX10基因过表达得到的互补的植株表型与野生型几乎一致(如表2和图3所示)。通过单克隆抗体LM10进行标记,对互补植株做免疫荧光检测,显示互补型拟南芥茎的横切面切片中木质部木聚糖具有强烈的免疫信号(如图5所示),说明PeIRX10基因能够修复拟南芥突变体中木聚糖合成缺陷,在毛竹木聚糖合成中起重要作用。Another object of the present invention is to provide the application of PeIRX10 in plant genetic transformation. On the one hand, it includes the application of the key gene PeIRX10 in the preparation of transgenic plants, and the plant is Arabidopsis; on the other hand, it includes Moso bamboo Application of PeIRX10, a key gene for xylan synthesis, in repairing xylan synthesis defects in Arabidopsis mutants and complementing secondary cell wall defects in Arabidopsis mutants. The present invention uses genetic engineering technology to recombine the PeIRX10 gene into Arabidopsis plants with irx10irx10l double mutation background, and obtain transgenic Arabidopsis plants overexpressing the PeIRX10 gene, and the complementary plant phenotype obtained by overexpressing the PeIRX10 gene is the same as that of the wild type Almost the same (as shown in Table 2 and Figure 3). Marked by the monoclonal antibody LM10, the complementary plants were detected by immunofluorescence, which showed that the xylem xylan in the cross-section of the complementary Arabidopsis stem had a strong immune signal (as shown in Figure 5), indicating that the PeIRX10 gene can repair Deficiency in xylan synthesis in Arabidopsis mutants plays an important role in xylan synthesis in Moso bamboo.
与现有技术相比,本发明具有如下优点:Compared with prior art, the present invention has following advantage:
1、本发明找到了一个新的来源于毛竹的参与木聚糖合成的关键基因PeIRX10,从而为了解次生细胞壁的形成,阐明毛竹组织快速生长的分子基础提供了具有重要的科学意义。1. The present invention has found a new key gene PeIRX10 that is derived from Phyllostachys edulis and participates in the synthesis of xylan, thereby providing important scientific significance for understanding the formation of secondary cell walls and clarifying the molecular basis of the rapid growth of Phyllostachys pubescens.
2、本发明利用基因PeIRX10能够修复拟南芥突变体中木聚糖合成缺陷和互补拟南芥突变体中次生细胞壁缺陷,在毛竹木聚糖合成中起着重要作用。2. The invention uses the gene PeIRX10 to repair xylan synthesis defects in Arabidopsis mutants and complement secondary cell wall defects in Arabidopsis mutants, and plays an important role in the synthesis of xylan in Moso bamboo.
附图说明Description of drawings
附图1是毛竹PeIRX10基因在不同组织器官中的表达模式分析柱形图。Accompanying drawing 1 is the bar graph of the expression pattern analysis of PeIRX10 gene of Phyllostachys pubescens in different tissues and organs.
附图2是转PeIRX10基因拟南芥植株RT-PCR检测,Accompanying drawing 2 is the RT-PCR detection of transgenic Arabidopsis plants of PeIRX10,
其中1代表野生型拟南芥;2代表irx10irx10l双突纯合植株;3-6则为转PeIRX10基因植株。Among them, 1 represents wild-type Arabidopsis; 2 represents irx10irx10l double mutation homozygous plants; 3-6 represent PeIRX10 gene transgenic plants.
附图3是野生型、双突植株和互补型拟南芥植株的表型变化。Accompanying drawing 3 is the phenotypic change of wild-type, double mutant plants and complementary Arabidopsis plants.
附图4是野生型、irx10irx10l双突和互补植株茎的次生细胞壁变化。Accompanying drawing 4 is the change of the secondary cell wall of wild type, irx10irx10l double mutant and complementary plant stem.
附图5是过表达PeIRX10基因的拟南芥茎部切片的LM10化学免疫观察,Accompanying drawing 5 is the LM10 chemical immunological observation of the stem section of Arabidopsis thaliana overexpressing the PeIRX10 gene,
其中a代表野生型拟南芥;b代表irx10irx10l双突纯合植株;c则为转PeIRX10基因植株。Where a represents wild-type Arabidopsis; b represents irx10irx10l double mutation homozygous plants; c represents PeIRX10 gene transgenic plants.
具体实施方式Detailed ways
下面结合实施例和说明书附图,更具体地说明本发明的内容。应当理解,本发明的实施并不局限于下面的实施例,对本发明所做的任何形式上的变通和/或改变都将落入本发明保护范围。The content of the present invention will be described in more detail below in conjunction with the embodiments and the accompanying drawings. It should be understood that the implementation of the present invention is not limited to the following examples, and any modifications and/or changes made to the present invention will fall within the protection scope of the present invention.
在本发明中,若非特指,所有的份、百分比均为重量单位,所有的设备和原料等均可从市场购得或是本行业常用的。若无特别指明,实施例采用的方法为本领域通用技术。In the present invention, unless otherwise specified, all parts and percentages are weight units, and all equipment and raw materials can be purchased from the market or commonly used in this industry. Unless otherwise specified, the methods used in the examples are common techniques in the art.
实施例中未注明具体条件的实验方法,是按照常规条件,Sambrook等作者的分子克隆实验室手册(New York:Cold Spring Harbor Laboratory Press,1989)中所述的条件进行。The experimental methods for which specific conditions are not indicated in the examples are carried out according to conventional conditions, the conditions described in the Molecular Cloning Laboratory Handbook of Sambrook et al. (New York: Cold Spring Harbor Laboratory Press, 1989).
实施例1毛竹PeIRX10基因表达Example 1 Phyllostachys pubescens PeIRX10 gene expression
(一)实验方法(1) Experimental method
1.毛竹材料1. Moso bamboo material
不同组织的毛竹材料取自1年实生苗的根、茎、叶、花序和幼笋,液氮速冻后保存–80℃,用于总RNA的提取。Moso bamboo materials of different tissues were obtained from the roots, stems, leaves, inflorescences and young shoots of 1-year-old seedlings, which were quick-frozen in liquid nitrogen and stored at -80°C for the extraction of total RNA.
(1)RNA的提取和cDNA的合成(1) RNA extraction and cDNA synthesis
通过毛竹中已完成的测序的基因序列数据库和其相应的蛋白序列数据库进行BLAST检索及比对分析,得到PeIRX10基因(PH01004923G0080;SEQ ID No:1)的核苷酸序列,设计引物,如下:Perform BLAST retrieval and comparison analysis on the sequenced gene sequence database and its corresponding protein sequence database in Phyllostachys pubescens, obtain the nucleotide sequence of PeIRX10 gene (PH01004923G0080; SEQ ID No: 1), and design primers as follows:
PeIRX10-F1:5′-CCTGAACCACATGTTTGCCG-3′(SEQ ID No:2)PeIRX10-F1:5'-CCTGAACCACATGTTTGCCG-3' (SEQ ID No: 2)
PeIRX10-R1:5′-AATCGCACTGCGCATCATTC-3′(SEQ ID No:3)PeIRX10-R1:5'-AATCGCACTGCGCATCATTC-3' (SEQ ID No: 3)
用RNA提取试剂盒(OMEGA)提取毛竹各样品的总RNA。采用PrimeScriptII1stStrand cDNA Synthesis Kit(Takara)试剂盒进行反转录,反转录的反应体系为:总RNA 2μg,Oligo(dT)1μL,酶0.5μL,RNA酶抑制剂0.5μL,dNTP 2μL,加ddH2O至总体系为20μL;反应条件为:37℃15min;85℃5s;引物合成在中美泰和生物技术(北京)有限公司进行。The total RNA of each sample of Phyllostachys pubescens was extracted with RNA extraction kit (OMEGA). Reverse transcription was performed using the PrimeScriptII1stStrand cDNA Synthesis Kit (Takara). The reverse transcription reaction system was: 2 μg of total RNA, 1 μL of Oligo (dT), 0.5 μL of enzyme, 0.5 μL of RNase inhibitor, 2 μL of dNTP, and ddH 2 O to the total system is 20 μL; the reaction conditions are: 37 ° C for 15 min; 85 ° C for 5 s; the primer synthesis is carried out in Zhongmei Taihe Biotechnology (Beijing) Co., Ltd.
(2)RT-PCR分析(2) RT-PCR analysis
内参选用β-actin基因,引物如下:The β-actin gene was selected as an internal reference, and the primers were as follows:
ACTIN-F:TGAGCTTCCTGATGGGCAAG(SEQ ID No:4);ACTIN-F: TGAGCTTCCTGATGGGCAAG (SEQ ID No: 4);
ACTIN-R:CCTGATATCCACGTCGCACTT(SEQ ID No:5)。ACTIN-R: CCTGATATCCACGTCGCACTT (SEQ ID No: 5).
以步骤(1)得到的cDNA为模板,用步骤(1)中的引物进行PCR扩增,测序显示,得到PeIRX10基因(核苷酸序列如SEQ ID No:1所示)。RT-PCR扩增的反应体系为:cDNA 3μL,10×buffer 5μL,LA Taq 0.5μL,dNTP 8μL,PeIRX10-F1 1μL,PeIRX10-R1 1μL,32.5μL ddH2O,共50μL;反应程序为:95℃30s;95℃5s,60℃30s,40个循环;熔点曲线检测程序为,从60℃按照0.6℃/s速率上升至95℃,连续读取荧光信号值。所用仪器为CFX96实时荧光定量PCR仪(Bio-Rad,美国),每次检测都包括以H2O作反应模板的阴性对照,检测数据采用相对定量△Ct方法,用内参基因β-actin的Ct值进行归一化。Using the cDNA obtained in step (1) as a template, PCR amplification was performed with the primers in step (1), and sequencing showed that the PeIRX10 gene (nucleotide sequence is shown in SEQ ID No: 1) was obtained. The reaction system for RT-PCR amplification is: cDNA 3 μL, 10× buffer 5 μL, LA Taq 0.5 μL, dNTP 8 μL, PeIRX10-F1 1 μL, PeIRX10-R1 1 μL, 32.5 μL ddH 2 O, a total of 50 μL; the reaction program is: 95 ℃ for 30s; 95℃ for 5s, 60℃ for 30s, 40 cycles; the melting point curve detection program is to rise from 60℃ to 95℃ at a rate of 0.6℃/s, and read the fluorescence signal value continuously. The instrument used was CFX96 real-time fluorescent quantitative PCR instrument (Bio-Rad, USA). Each test included a negative control using H 2 O as the reaction template. The relative quantitative △Ct method was used for the test data. Values are normalized.
(二)实验结果(2) Experimental results
在毛竹不同的组织器官中PeIRX10基因的表达量存在差异(参见附图1),其中在竹笋中的表达水平最高,茎、根和花序中表达量的表达量相对较低,在叶片中的表达水平最低。There are differences in the expression of PeIRX10 gene in different tissues and organs of Moso bamboo (see Figure 1), wherein the expression level in bamboo shoots is the highest, the expression level in stems, roots and inflorescences is relatively low, and the expression level in leaves is relatively low. lowest level.
实施例2拟南芥中毛竹PeIRX10基因的过表达Example 2 Overexpression of Phyllostachys pubescens PeIRX10 gene in Arabidopsis thaliana
(一)实验方法(1) Experimental method
1.表达载体的构建1. Construction of expression vector
基于Gateway系统用于PCR扩增毛竹PeIRX10全长cDNA序列,扩增引物为:Based on the Gateway system for PCR amplification of the full-length cDNA sequence of Phyllostachys pubescens PeIRX10, the amplification primers are:
PeIRX10-F:PeIRX10-F:
5′-5′-
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAGGAGGTGGGTCTTGGCC-3′(SEQ ID No:6);GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAGGAGGTGGGTCTTGGCC-3' (SEQ ID No: 6);
PeIRX10-R:PeIRX10-R:
5′-5′-
GGGGACCACTTTGTACAAGAAAGCTGGGTCCCAAGGCTTCAGGTCGCCCACCG-3′(SEQ ID No:7)。GGGGACCACTTTGTACAAGAAAGCTGGGTCCCAAGGCTTCAGGTCGCCCACCG-3' (SEQ ID No: 7).
PCR反应体系为20μL:2×PrimeSTAR Max Premix 10μL,上下游引物(10μmol L-1)各0.5μL,模板2μL,dd H2O 7μL。反应程序:94℃预变性5min;94℃30s,55℃1min 30s,72℃30s,35个循环;72℃延伸10min。将扩增产物与pDONR207连接,转化DH5α,得到阳性克隆,提取质粒后进行质粒PCR鉴定,反应体系:回收的PCR目的片段3μL,pDONR207载体1μL,BPClonase Enzyme Mix1μL,然后测序。将测序正确的重组质粒与pEarlyGate101进行LR重组反应,LR反应体系:pDONR207-PeIRX10 3μL,pEarlyGate101 1μL,LR Clonase Enzyme Mix1μL,然后转化大肠杆菌DH5α,培养后提取质粒并测序。将测序正确的重组质粒转化农杆菌,获得的阳性菌落用蘸花法转化到拟南芥irx10l(-/-)irx10(+/-)杂合植株中。The PCR reaction system was 20 μL: 10 μL of 2×PrimeSTAR Max Premix, 0.5 μL of upstream and downstream primers (10 μmol L −1 ), 2 μL of template, and 7 μL of dd H 2 O. Reaction program: pre-denaturation at 94°C for 5 minutes; 35 cycles at 94°C for 30s, 1min at 55°C for 30s, and 30s at 72°C; extension at 72°C for 10min. The amplified product was ligated with pDONR207, transformed into DH5α, and positive clones were obtained. The plasmid was extracted and identified by PCR. The reaction system: 3 μL of the recovered PCR target fragment, 1 μL of pDONR207 vector, 1 μL of BPClonase Enzyme Mix, and then sequenced. Perform LR recombination reaction with the correctly sequenced recombinant plasmid and pEarlyGate101, LR reaction system: pDONR207-PeIRX10 3 μL, pEarlyGate101 1 μL, LR Clonase Enzyme Mix 1 μL, and then transform Escherichia coli DH5α, extract the plasmid after cultivation and sequence. The recombinant plasmids with correct sequencing were transformed into Agrobacterium, and the obtained positive colonies were transformed into Arabidopsis irx10l(-/-)irx10(+/-) heterozygous plants by flower dipping method.
2.转基因植株鉴定2. Identification of transgenic plants
经基因工程技术转化irx10l(-/-)irx10(-/-)双突拟南芥,获得转基因植株后,通过PCR和RT-PCR手段进行验证,引物为:Transform irx10l(-/-) irx10(-/-) double mutant Arabidopsis thaliana through genetic engineering technology, and after obtaining transgenic plants, verify by means of PCR and RT-PCR, the primers are:
IRX10-F:5′-CCACTCGGAGGACTTGGA-3′(SEQ ID No:8),IRX10-F: 5'-CCACTCGGAGGACTTGGA-3' (SEQ ID No: 8),
IRX10-R:5′-GGAAAAAGCCATTGAAAG GG-3′(SEQ ID No:9),IRX10-R: 5'-GGAAAAAGCCATTGAAAG GG-3' (SEQ ID No: 9),
T-DNA插入引物:T-DNA insertion primer:
LBa1:5′-TGGTTCACGTAGTGGGCCATCG-3′(SEQ ID No:10),LBa1:5'-TGGTTCACGTAGTGGGCCATCG-3' (SEQ ID No: 10),
提取四周大的三种基因型的拟南芥植株的RNA,反转录成cDNA,方法如实施例1所述,内参基因同实施例1,RT-PCR反应体系和反应程序同实施例1。The RNA of four-week-old Arabidopsis plants of three genotypes was extracted, reverse-transcribed into cDNA, the method was as described in Example 1, the internal reference gene was the same as Example 1, and the RT-PCR reaction system and reaction procedure were the same as Example 1.
(二)实验结果(2) Experimental results
通过RT-PCR检测,说明PeIRX10基因已经转入拟南芥并表达(参见附图2),在附图2中,其中1代表野生型拟南芥;2代表irx10irx10l双突纯合植株;3-6则为转PeIRX10基因植株。在irx10irx10l双突植株背景下,在PeIRX10基因过表达得到互补的拟南芥植株的表型大小与野生型几乎一致(参见附图3),同时具有正常的株高、茎粗以及叶片大小和数量(参见表1)。Detected by RT-PCR, it shows that the PeIRX10 gene has been transformed into Arabidopsis thaliana and expressed (see accompanying drawing 2), in accompanying drawing 2, wherein 1 represents wild-type Arabidopsis; 2 represents irx10irx10l double mutation homozygous plant; 3- 6 is the PeIRX10 gene transgenic plant. In the background of irx10irx10l double mutant plants, the phenotype size of Arabidopsis plants complemented by overexpression of the PeIRX10 gene is almost the same as that of the wild type (see Figure 3), and has normal plant height, stem diameter, and leaf size and number (See Table 1).
表1野生型,双突植株和互补型拟南芥植株的表型分析Table 1 Phenotype analysis of wild type, double mutant plants and complementary Arabidopsis plants
实施例3细胞壁木聚糖免疫定位Example 3 Cell wall xylan immunolocalization
(一)实验方法(1) Experimental method
分别取生长八周的野生型、双突植株和互补型拟南芥植株基部的茎,切成1mm厚的切片,用0.1M磷酸盐缓冲液(pH 7.2)洗涤切片5~10min;用新鲜的3%脱脂牛乳浸泡切片1h并不断吹打脱脂牛乳;去除脱脂牛乳,并用PBS缓冲液洗涤切片5min;用大鼠抗木聚糖抗体LM10(Plantprobes)孵育切片2h,然后用PBS缓冲液洗涤切片,以洗净未结合的一抗;用稀释50倍的FITC-羊抗大鼠抗体(Zomanbio,Cat.Z1319)孵育2h,然后用PBS缓冲液洗涤切片10次,以洗净未结合的二抗;最后将切片固定于载玻片上,置于激光共聚焦电子显微镜(ZeissLSM710,495nm)下观察拍照,结果如附图4和附图5所示。Take the stems at the base of wild-type, double-horn plants and complementary Arabidopsis plants that have grown for eight weeks, cut them into 1mm-thick slices, wash the slices with 0.1M phosphate buffer (pH 7.2) for 5-10min; use fresh Soak the slices in 3% skimmed milk for 1 h and blow the skim milk continuously; remove the skim milk and wash the slices with PBS buffer for 5 min; incubate the slices with rat anti-xylan antibody LM10 (Plantprobes) for 2 h, then wash the slices with PBS buffer to Wash unbound primary antibody; incubate with 50-fold diluted FITC-goat anti-rat antibody (Zomanbio, Cat.Z1319) for 2 h, then wash the section with PBS buffer 10 times to wash unbound secondary antibody; finally The slices were fixed on glass slides, observed and photographed under a laser confocal electron microscope (ZeissLSM710, 495nm), and the results are shown in Figure 4 and Figure 5 .
(二)实验结果(2) Experimental results
1.PeIRX10基因能互补拟南芥irx10irx10l双突植株次生细胞壁缺陷1. The PeIRX10 gene can complement the secondary cell wall defect of Arabidopsis irx10irx10l double mutant plants
irx10irx10l双突植株纯合植株次生细胞壁生长基本缺失,在维管束间纤维和木质部导管细胞的细胞壁明显变薄(参见附图4的B和E)。PeIRX10基因的互补植株中维管束间纤维和木质部导管细胞的细胞壁厚度已经与野生型拟南芥近乎相近(参见附图4的A和D)。表明PeIRX10基因能够互补拟南芥irx10irx10l植株细胞壁的次生加厚缺陷。The irx10irx10l homozygous plants basically lacked secondary cell wall growth, and the cell walls of intervascular fibers and xylem vessel cells were significantly thinned (see Figure 4 B and E). The cell wall thickness of the inter-bundle fibers and xylem vessel cells in the PeIRX10 gene-complemented plants was almost similar to that of wild-type Arabidopsis (see Figure 4A and D). It shows that PeIRX10 gene can complement the secondary thickening defect of Arabidopsis irx10irx10l plant cell wall.
2.PeIRX10基因可以修复拟南芥irx10irx10l双突植株细胞壁木聚糖合成缺失2. The PeIRX10 gene can repair the lack of xylan synthesis in the cell wall of Arabidopsis irx10irx10l double mutant plants
表2野生型、双突和互补型拟南芥植株茎部细胞壁单糖组分含量比较Table 2 Comparison of cell wall monosaccharide components in stems of wild-type, double mutant and complementary Arabidopsis plants
从表2可以看出,与野生型相比,irx10irx10l双突植株中木糖含量减少至8%左右,而细胞壁中其他单糖(例如阿拉伯糖、半乳糖和葡萄糖等)的含量与野生型相比则有明显增加。而在互补植株中,木糖含量以及其他单糖的含量与野生型相近,这说明在irx10irx10l突变体中,PeIRX10基因的过表达可以使其细胞壁中的单糖含量恢复到与野生型相似。As can be seen from Table 2, compared with the wild type, the xylose content in the irx10irx10l double mutant plants is reduced to about 8%, while the content of other monosaccharides (such as arabinose, galactose and glucose, etc.) in the cell wall is similar to that of the wild type ratio has increased significantly. In the complementary plants, the content of xylose and other monosaccharides was similar to that of the wild type, which indicated that in the irx10irx10l mutant, the overexpression of the PeIRX10 gene could restore the monosaccharide content in the cell wall to be similar to that of the wild type.
在野生型和互补型拟南芥茎的横切切片中木质部具有强烈的免疫信号,而在irx10irx10l双突植株中没有检测到免疫信号(参见附图5),说明具有双突背景的互补植株中PeIRX10基因的过表达使irx10irx10l双突植株中木聚糖缺乏得到恢复。In the cross-sections of wild-type and complemented Arabidopsis stems, the xylem has a strong immune signal, but no immune signal is detected in the irx10irx10l double mutant plants (see Figure 5), indicating that in the complementary plants with the double mutant background Overexpression of the PeIRX10 gene restored xylan deficiency in irx10irx10l double mutant plants.
尽管发明人已经对本发明的技术方案做了较为详细的阐述和列举,应当理解,对于本领域一个熟练的技术人员来说,对上述实施例作出修改和/或变通或者采用等同的替代方案是显然的,都不能脱离本发明精神的实质,本发明中出现的术语用于对本发明技术方案的阐述和理解,并不能构成对本发明的限制。Although the inventor has described and listed the technical solutions of the present invention in more detail, it should be understood that for a person skilled in the art, it is obvious to make modifications and/or modifications to the above-mentioned embodiments or to adopt equivalent alternatives. None of them can deviate from the essence of the spirit of the present invention, and the terms appearing in the present invention are used to explain and understand the technical solution of the present invention, and cannot constitute a limitation of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610261714.7A CN105925591B (en) | 2016-04-22 | 2016-04-22 | Cloning and application of a key gene PeIRX10 for xylan synthesis of moso bamboo |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610261714.7A CN105925591B (en) | 2016-04-22 | 2016-04-22 | Cloning and application of a key gene PeIRX10 for xylan synthesis of moso bamboo |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105925591A CN105925591A (en) | 2016-09-07 |
CN105925591B true CN105925591B (en) | 2019-12-24 |
Family
ID=56837149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610261714.7A Active CN105925591B (en) | 2016-04-22 | 2016-04-22 | Cloning and application of a key gene PeIRX10 for xylan synthesis of moso bamboo |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105925591B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109081865B (en) * | 2018-09-11 | 2021-08-10 | 安徽农业大学 | Moso bamboo PeVQ28 protein and its encoding gene and application |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112013010825A2 (en) * | 2010-11-03 | 2019-09-24 | Futuragene Israel Ltda | transgenic plants with improved saccharification yields and methods for their generation |
CN107674882B (en) * | 2011-01-28 | 2021-06-25 | 加利福尼亚大学董事会 | Spatially modified gene expression in plants |
-
2016
- 2016-04-22 CN CN201610261714.7A patent/CN105925591B/en active Active
Non-Patent Citations (1)
Title |
---|
The Arabidopsis IRX10 and IRX10-like glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation;Ai-Min Wu,.etc;《The plant journal》;20090129;第57卷(第4期);第718-731页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105925591A (en) | 2016-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9944908B2 (en) | Polypeptide | |
US11732270B2 (en) | Compositions and methods for manipulating the development of plants | |
CN116284300A (en) | Extended protein gene StEXLB1 for enhancing drought resistance of potatoes and application thereof | |
CN116555279B (en) | Gene segment for enhancing lodging resistance of capsicum, coded protein thereof, detection kit, rapid detection method and application | |
JP2022531054A (en) | Genes of resistance to plant diseases | |
CN115992153A (en) | Wheat stem rot resistance gene TaP CS, encoding protein and application thereof | |
CN105925591B (en) | Cloning and application of a key gene PeIRX10 for xylan synthesis of moso bamboo | |
CN104818258B (en) | Upland cotton glycosyl transferase GhUGT85O1 and its encoding gene and application | |
CN106916826B (en) | Rice gene OsNF-YC4 and its application | |
US20090271894A1 (en) | Compositions and methods for modulating biomass in energy crops | |
JPWO2006109424A1 (en) | DNA encoding a protein having a function of forming and controlling a tree fiber cell wall of a plant trunk and its promoter DNA | |
CN118581135A (en) | Application of a Poplar CDPK6 Gene in Forest Tree Breeding | |
CN116949058A (en) | Chilli CaCE gene, protein and application thereof | |
CN112830959B (en) | A paraquat-degrading protein and its encoding gene and application | |
CN114934063B (en) | Application of rice DT1 protein in regulation of rice drought resistance | |
CN117247440B (en) | Protein PalFLA11 for improving plant traits, nucleic acid and application thereof | |
CN112239763B (en) | Application of OsMYB63 gene in improving rice disease resistance | |
JP2013521003A (en) | Adjustment of galactomannan content in coffee | |
WO2017002977A1 (en) | Method for inducing genetic recombination and use thereof | |
Bjorå | Functional analyses of Fvmyb46-CRISPR/Cas9-edited Fragaria vesca plants | |
Borrill | The NAM-B1 transcription factor and the control of grain composition in wheat | |
WO2024225393A1 (en) | Gramineous plant in which number of grains is controlled, and method for producing same | |
CN115927308A (en) | Application of cfo-miR159a in influencing lignin synthesis | |
CN117025627A (en) | Tobacco chloride channel protein NtCLC13, and coding gene and application thereof | |
AU2021264887A1 (en) | Methof for obtaining wheat with increased resistance to powdery mildew |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |