[go: up one dir, main page]

CN105921180A - 一种可用于光催化方向上的给受体氢键复合材料及制备方法 - Google Patents

一种可用于光催化方向上的给受体氢键复合材料及制备方法 Download PDF

Info

Publication number
CN105921180A
CN105921180A CN201610338993.2A CN201610338993A CN105921180A CN 105921180 A CN105921180 A CN 105921180A CN 201610338993 A CN201610338993 A CN 201610338993A CN 105921180 A CN105921180 A CN 105921180A
Authority
CN
China
Prior art keywords
carboxyl
composite material
composite
acceptor
derivatives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610338993.2A
Other languages
English (en)
Inventor
张海全
王海龙
王建敏
何恩方
刘宏亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201610338993.2A priority Critical patent/CN105921180A/zh
Publication of CN105921180A publication Critical patent/CN105921180A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

一种可用于光催化方向上的给受体氢键复合材料,该复合材料为氢键连接的N‑吡啶基‑N‑烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的半导体复合材料;其制备方法:将N‑吡啶基‑N‑烷氧基苯非对称苝酰亚胺衍生物溶解在二氯甲烷中,将羧基酞菁类衍生物溶解在N,N′‑二甲基甲酰胺中,将两种溶液混合并用保鲜膜封口,超声震荡1h,再放置24h,然后放进鼓风烘箱中,40℃缓慢干燥,等溶剂挥发完以后再在真空烘箱中80℃保温24h。该半导体复合材料作为光催化剂应用。这种给‑受体型半导体复合材料比单一受体(酞菁类)或给体(苝酰亚胺)半导体复合材料有很宽的吸收光谱范围。因此,和单一酞菁类光催化剂比,有着催化效率高,催化彻底等优点。

Description

一种可用于光催化方向上的给受体氢键复合材料及制备方法
技术领域
本发明涉及一种有机复合材料,制备方法及其应用。
背景技术
随着社会的发展进步,人们逐渐意识到水资源的重要性。为了解决当下局部地区水资源贫乏的困难,寻找环境友好型的污水降解材料已逐步成为当今研究的热门领域。
在降解体系中催化剂起到了至关重要的作用,尤其是金属酞菁由于其突出的电子转移特性常作为电子给体物质活跃的出现在半导体、光催化剂等领域。但是酞菁类衍生物,它们的光谱吸收范围比较窄,在光催化上等化学反应的应用也不尽如人意。催化效率低,催化不彻底。新型给受体复合材料在这方面表现出良好的应用性。
苝酰亚胺是一类重要的有机N型半导体,苝酰亚胺本身中心核是一个大平面共轭体系,具有良好的热稳定性、光稳定性和化学稳定性,而且非常高的荧光量子产率,非常好的电荷传输性能,因此,苝酰亚胺衍生物是一类性能非常稳定的受体型材料。
越来越多的科研工作者就想着把两种半导体材料整合到一块做成P-N型的给-受体半导体材料,提升光电子器件性能。有些P-N复合材料是通过化学键连接,就是苝酰亚胺和酞菁通过化学反应合成在一起,但是这样由于空间未阻,需要在苛刻的条件下才能实现。有些就是把酞菁类衍生物和苝酰亚胺类衍生物简单混合在一起,这样的复合材料光物理性质不稳定,也难以混匀。
发明内容:
本发明的目的在于提供一类反应条件简单,温和,可操作性强且光物理性质稳定,吸收光谱范围宽的N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的半导体复合材料的制备方法。本发明主要是通过非对称苝酰亚胺衍生物端基的吡啶基团和羧基酞菁的羧基在混合溶液(DMF:Cl2H2C=3:1)中形成氢键,即通过氢键自组装形成给-受体型半导体复合材料。
一、本发明的一种可用于光催化方向上的给受体氢键复合材料,为氢键连接的N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的半导体复合材料,具有如下结构通式(1):
其中,R1为不同碳原子个数烷基链,M为不同金属原子
二、上述N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的半导体复合材料制备方法具体如下:
采用N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物和羧基酞菁类衍生物为原料,将4当量的N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物(PDPI)溶解在4当量的二氯甲烷(DCM)中,将1当量羧基酞菁类衍生物(Pc M)溶解在12当量的N,N′-二甲基甲酰胺(DMF)中,将两种溶液加到烧杯中混合并用保鲜膜封口,用针扎几个眼,大小都行,然后超声震荡1h,放置24h会出现不断堆积的絮状沉淀,然后放进鼓风烘箱中,40℃缓慢干燥,等溶剂挥发完以后再在真空烘箱中80℃保温24h,这样就得到通过氢键连接的N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的给-受体半导体复合材料(PDPI/PcM)
三、利用上述给-受体氢键复合材料作为光催化剂,应用在光催化方向,使用方法如下:
以N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的氢键复合材料和羧基酞菁类衍生物为光催化剂,罗丹明B(RhB)溶液为待催化降解物质,配置10-5mol/L的罗丹明B(RhB)水溶液模拟待降解的水体有机污染物。将3当量的N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的复合材料(PDPI:PcM=4:1)和羧基酞菁类衍生物分别放入盛有10当量的罗丹明B(RhB)水溶液的烧杯中,设置恒温水浴为5℃。黑暗处理10h,充分吸附至饱和状态,然后开启模拟太阳光,每隔30min取样测试其紫外光强度,直至紫外光强度不再变化。然后分析比对所得数据。
本发明中,由于N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物端基含有吡啶基团,可以和羧基酞菁衍生物中的羧基形成1:1的氢键。以N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物为电子给体,羧基酞菁衍生物为电子受体,这样两类半导体材料在混合溶液(DMF:DCM=3:1)中通过氢键自组装形成P-N型的给-受体半导体复合材料。
本发明与现有技术相比具有如下优点:
(1)本方法条件简单,温和,可操作性强,准确的原材料配比,不浪费原料;
(2)这种通过氢键连接的给-受体半导体复合材料,光物理性质稳定;
(3)增宽了吸收光谱范围,在有机太能电池等光电子器件或在光催化反应上存在巨大的潜在应用。
(4)N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的复合材料比单独羧基酞菁衍生物的催化效率更高,更加明显,催化效率快,处理同样多的模拟污水用量少,减少资源浪费。
附图说明
图1是本发明N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的给-受体半导体复合材料和两类原料的红外谱图。
图2是本发明本发明N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的给-受体半导体复合材料和两类原料滴膜的紫外光谱图。
图3是N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的复合材料在不同催化时间(每30分钟测一下)下RhB水溶液紫外-可见吸收图谱图。
图4是单独羧基酞菁衍生物在不同催化时间(每30分钟测一下)下RhB水溶液紫外-可见吸收图谱图。
图5是N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的复合材料对RhB染料的吸附-降解曲线图。
图6单独羧基酞菁衍生物对RhB染料的吸附-降解曲线图。
图7是N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的复合材料与单独羧基酞菁衍生物催化性能对比图。
具体实施方式
实施例1
(1)实验过程
采用N-(3,4,5-三-十二烷氧基-1-氨基苯基)-N′-(4-氨基吡啶基)-3,4,9,10-苝四羧基二酰亚胺和β-四-(4-羧基苯氧基)铜酞菁为原料,将4当量的N-(3,4,5-三-十二烷氧基-1-氨基苯基)-N′-(4-氨基吡啶基)-3,4,9,10-苝四羧基二酰亚胺溶解在4ml的二氯甲烷(Cl2H2C)中,将1当量的β-四-(4-羧基苯氧基)铜酞菁溶解在12ml的N,N′-二甲基甲酰胺(DMF)中,将两种溶液加入到烧杯中,用保鲜膜封口,用针扎几个眼,大小都行,超声震荡1h以后,放置24h会出现不断堆积的絮状沉淀,然后放进鼓风烘箱中,40℃缓慢干燥,等溶剂挥发完以后再在真空烘箱中80℃保温24h,这样就得到通过氢键连接的N-(3,4,5-三-十二烷氧基-1-氨基苯基)-N′-(4-氨基吡啶基)-3,4,9,10-苝四羧基二酰亚胺/β-四-(4-羧基苯氧基)铜酞菁给-受体半导体复合材料。
在图1中,下面一条线是羧基酞菁衍生物(PcCu)的红外吸收光谱图,中间一条线是N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物(PDPI)的红外吸收光谱图,上面一条线是N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物(PDPI-PcCu)的给-受体半导体复合材料的红外光谱图。从图中可以看出PDPI-PcCu复合材料最显著的红外吸收变化是出现了中心位于2447.7CM-1的尖锐的峰,对应羧基处于羧基/吡啶氢键缔合状态的伸缩振动峰,而且对应处于缔合状态的羧羟基伸缩振动的3300-2500CM-1左右的宽峰在复合物中也已几乎看不到.图中没有任何反映羧基与吡啶基之间形成离子键的信号,可见此处是形成了较强的氢键而非离子键,这样就证明形成了P-N型的半导体复合材料。
在图2中,N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物(PDPI)、羧基酞菁衍生物(PcCu)和N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物(PDPI/PcCu)的给-受体半导体复合材料的紫外吸收光谱图。PDPI的紫外吸收光谱中,在476nm处有一个强的吸收峰,吸收光谱范围是417nm到618nm;PcCu的紫外吸收光谱中,在614nm和700nm有两个强吸收峰,吸收光谱范围是519nm到718nm;在复合材料(PDPI-PcCu)紫外吸收光谱中,在476nm、554nm和586nm处有三个强吸收峰,其中554nm和586nm的吸收峰是由PcCu紫外吸收光谱中614nm和700nm处吸收峰蓝移所致,吸收光谱范围是414nm到758nm。可见,复合材料的吸收光谱范围完全覆盖了原有两种材料的吸收光谱的范围,而且增宽了吸收光谱范围。
实施例2
配置10-5mol/L的罗丹明B(RhB)水溶液模拟待降解的水体有机污染物。称量3mg氢键连接的N-(3,4,5-三-十二烷氧基-1-氨基苯基)-N′-(4-氨基吡啶基)-3,4,9,10-苝四羧基二酰亚胺/β-四-(4-羧基苯氧基)铜酞菁给受体复合材料和β-四-(4-羧基苯氧基)铜酞菁分别放入盛有10ml的罗丹明B(10-5mol/L)水溶液的双层烧杯中,设置恒温水浴为5℃。黑暗处理10h,让两类材料充分吸附至饱和状态,然后开启模拟太阳光的灯,每隔30min取样测试。从图3和图4可以看到,随着光照时间的延长,RhB水溶液紫外-可见吸收强度在逐渐下降,说明RhB在不断降解。从图5和图6可以看出RhB染料的降解趋势。从图7看出,本发明的给受体复合材料比单独羧基酞菁衍生物的催化效率更高,RhB的降解更彻底。
从图3和图4可以看到,随着光照时间的延长,RhB水溶液紫外-可见吸收强度在逐渐下降,说明RhB在不断降解。
从图5和图6可以看出RhB染料的降解趋势。
从图7看出,本发明的给受体复合材料比单独羧基酞菁衍生物的催化效率更高,RhB的降解更彻底。

Claims (3)

1.一种可用于光催化方向上的给受体氢键复合材料,其特征在于:该复合材料为氢键连接的N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的半导体复合材料,具有如下结构通式(1)如下:
其中,R1为不同碳原子个数烷基链,M为不同金属原子。
2.权利要求1的可用于光催化方向上的给受体氢键复合材料即氢键连接的N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的半导体复合材料的制备方法,具体如下:
采用N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物和羧基酞菁类衍生物为原料,将4当量的N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物溶解在4当量的二氯甲烷中,将1当量羧基酞菁类衍生物溶解在12当量的N,N′-二甲基甲酰胺(DMF)中,将两种溶液加入到烧杯中混合并用保鲜膜封口,然后用针扎几个眼,大小都行,超声震荡1h,再放置24h会发现不断堆积的絮状沉淀,然后放进鼓风烘箱中,40℃缓慢干燥,等溶剂挥发完以后再在真空烘箱中80℃保温24h,这样就得到通过氢键连接的N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的给-受体半导体复合材料。
3.权利要求1的可用于光催化方向上的给受体氢键复合材料,其特征在于:该氢键连接的N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物 的半导体复合材料,作为光催化剂的应用,
具体如下:
以N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的氢键复合材料和羧基酞菁类衍生物为光催化剂,罗丹明B(RhB)溶液为待催化降解物质,配置10-5mol/L的罗丹明B(RhB)水溶液模拟待降解的水体有机污染物,将3当量的N-吡啶基-N-烷氧基苯非对称苝酰亚胺衍生物/羧基酞菁类衍生物的复合材料放入盛有10当量的罗丹明B(RhB)水溶液的烧杯中,设置恒温水浴为5℃,黑暗处理10h,然后开启模拟太阳光的灯,每隔30min取样测试紫外光强度,直到紫外光强度不再变化为止,然后分析比对所得数据。
CN201610338993.2A 2016-05-20 2016-05-20 一种可用于光催化方向上的给受体氢键复合材料及制备方法 Pending CN105921180A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610338993.2A CN105921180A (zh) 2016-05-20 2016-05-20 一种可用于光催化方向上的给受体氢键复合材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610338993.2A CN105921180A (zh) 2016-05-20 2016-05-20 一种可用于光催化方向上的给受体氢键复合材料及制备方法

Publications (1)

Publication Number Publication Date
CN105921180A true CN105921180A (zh) 2016-09-07

Family

ID=56841831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610338993.2A Pending CN105921180A (zh) 2016-05-20 2016-05-20 一种可用于光催化方向上的给受体氢键复合材料及制备方法

Country Status (1)

Country Link
CN (1) CN105921180A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112791747A (zh) * 2021-01-05 2021-05-14 黑龙江大学 一种超薄二维磷酸调控的金属酞菁/苝酰亚胺复合光催化剂的制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1365120A (zh) * 2002-01-25 2002-08-21 浙江大学 含有氟代苝酰亚胺的单层有机光电导体及其制备方法
CN102757437A (zh) * 2012-06-12 2012-10-31 中国科学院化学研究所 酞菁纳米棒阵列薄膜及其制备方法与应用
CN104868055A (zh) * 2015-04-09 2015-08-26 中国科学院化学研究所 有机异质结薄膜光敏电阻与基于有机共轭分子的光敏分压器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1365120A (zh) * 2002-01-25 2002-08-21 浙江大学 含有氟代苝酰亚胺的单层有机光电导体及其制备方法
CN102757437A (zh) * 2012-06-12 2012-10-31 中国科学院化学研究所 酞菁纳米棒阵列薄膜及其制备方法与应用
CN104868055A (zh) * 2015-04-09 2015-08-26 中国科学院化学研究所 有机异质结薄膜光敏电阻与基于有机共轭分子的光敏分压器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHUAICHENET.AL: ""Enhancement of visible-light-driven photocatalytic H2evolution fromwater over g-C3N4through combination with perylene diimideaggregates"", 《APPLIED CATALYSIS A:GENERAL》 *
俞孝伟等: ""新型酞菁-苝分子异质结的合成及其光伏性能研究"", 《有机化学》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112791747A (zh) * 2021-01-05 2021-05-14 黑龙江大学 一种超薄二维磷酸调控的金属酞菁/苝酰亚胺复合光催化剂的制备方法及应用
CN112791747B (zh) * 2021-01-05 2022-12-23 黑龙江大学 一种超薄二维磷酸调控的金属酞菁/苝酰亚胺复合光催化剂的制备方法及应用

Similar Documents

Publication Publication Date Title
Roy et al. Aggregation induced emission switching based ultrasensitive ratiometric detection of biogenic diamines using a perylenediimide-based smart fluoroprobe
Chen et al. Organic dyes containing a coplanar indacenodithiophene bridge for high-performance dye-sensitized solar cells
Roznyatovskiy et al. Radical anions of trifluoromethylated perylene and naphthalene imide and diimide electron acceptors
Zeng et al. Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks
Zang et al. One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices
Shibano et al. Electron-donating perylene tetracarboxylic acids for dye-sensitized solar cells
Warnan et al. Multichromophoric sensitizers based on squaraine for NiO based dye-sensitized solar cells
Kim et al. Two-step charge separation passing through the partial charge-transfer state in a molecular dyad
Chen et al. Superior light-harvesting heteroleptic ruthenium (II) complexes with electron-donating antennas for high performance dye-sensitized solar cells
Ambre et al. Effects of porphyrinic meso-substituents on the photovoltaic performance of dye-sensitized solar cells: number and position of p-carboxyphenyl and thienyl groups on zinc porphyrins
Zhao et al. Rylene and rylene diimides: Comparison of theoretical and experimental results and prediction for high-rylene derivatives
Li et al. Synthesis and properties of ethylene-annulated di (perylene diimides)
CN102295775A (zh) 碳纳米管/聚希夫碱聚合物及其制备方法和应用
Naqvi et al. Facile synthesis and evaluation of electron transport and photophysical properties of photoluminescent PDI derivatives
Myong et al. Charge-transfer character in excimers of perylenediimides self-assembled on anodic aluminum oxide membrane walls
Huijser et al. Exciton Diffusion and Interfacial Charge Separation in m eso-Tetraphenylporphyrin/TiO2 Bilayers: Effect of Ethyl Substituents
Dai et al. Synthesis and photovoltaic performance of asymmetric di-anchoring organic dyes
Hupfer et al. On the control of chromophore orientation, supramolecular structure, and thermodynamic stability of an amphiphilic pyridyl-thiazol upon lateral compression and spacer length variation
Hayashi et al. Effects of immersion solvent on photovoltaic and photophysical properties of porphyrin-sensitized solar cells
Hsu et al. Field-induced fluorescence quenching and enhancement of porphyrin sensitizers on TiO2 films and in PMMA films
Supur et al. Enhancement of Photodriven Charge Separation by Conformational and Intermolecular Adaptations of an Anthracene–Perylenediimide–Anthracene Triad to an Aqueous Environment
Chung et al. Novel organic dyes containing N-bridged oligothiophene coplanar cores for dye-sensitized solar cells
Reva et al. Understanding the visible absorption of electron accepting and donating CNDs
Bejan et al. n-Type Polyimides with 1, 3, 4-Oxadiazole-Substituted Triphenylamine Units—An Innovative Structural Approach
Langhals et al. Controlling UV/vis absorption and Stokes shifts in highly fluorescent chromophores by molecular dynamics in targeted construction of dyads

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160907