[go: up one dir, main page]

CN105888971A - Active load reducing control system and method for large wind turbine blade - Google Patents

Active load reducing control system and method for large wind turbine blade Download PDF

Info

Publication number
CN105888971A
CN105888971A CN201610274672.0A CN201610274672A CN105888971A CN 105888971 A CN105888971 A CN 105888971A CN 201610274672 A CN201610274672 A CN 201610274672A CN 105888971 A CN105888971 A CN 105888971A
Authority
CN
China
Prior art keywords
signal
control
flap
controller
pid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610274672.0A
Other languages
Chinese (zh)
Other versions
CN105888971B (en
Inventor
张文广
李腾飞
白雪剑
刘吉臻
曾德良
牛玉广
杨婷婷
胡阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201610274672.0A priority Critical patent/CN105888971B/en
Publication of CN105888971A publication Critical patent/CN105888971A/en
Application granted granted Critical
Publication of CN105888971B publication Critical patent/CN105888971B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0232Adjusting aerodynamic properties of the blades with flaps or slats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/044Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with PID control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/70Type of control algorithm
    • F05B2270/706Type of control algorithm proportional-integral-differential
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/808Strain gauges; Load cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

本发明涉及一种大型风力机叶片主动降载控制系统及方法。光纤应变传感器测量叶片根部的应力值,传输至控制单元,控制单元包括使用教与学算法进行参数寻优的PID控制器和对叶片根部的应变力信号进行处理的模糊控制器,通过模糊控制器与PID控制器对襟翼摆角进行切换控制,综合了模糊控制与PID控制各自的优点;同时,机前风场信号传感设备测量风力机前风速并传输至控制单元,控制单元中的前馈控制器通过实时监测机前风速变化,计算出因降低随机风或湍流风引起的不均匀载荷所需的控制量;控制单元将两部分控制量进行耦合,完成对襟翼摆角的控制。本发明有效降低了叶片根部的应变力,延长了叶片的使用寿命,降低了风力机组的使用成本。

The invention relates to a large-scale wind turbine blade active load reduction control system and method. The fiber optic strain sensor measures the stress value at the root of the blade and transmits it to the control unit. The control unit includes a PID controller that uses teaching and learning algorithms for parameter optimization and a fuzzy controller that processes the strain signal at the root of the blade. Through the fuzzy controller The switching control of the flap swing angle with the PID controller combines the respective advantages of fuzzy control and PID control; at the same time, the front wind field signal sensing device measures the front wind speed of the wind turbine and transmits it to the control unit, and the feedforward in the control unit The controller calculates the control amount required to reduce the uneven load caused by random wind or turbulent wind by monitoring the wind speed in front of the aircraft in real time; the control unit couples the two parts of the control amount to complete the control of the flap swing angle. The invention effectively reduces the strain force at the root of the blade, prolongs the service life of the blade, and reduces the use cost of the wind power unit.

Description

一种大型风力机叶片主动降载控制系统及方法A large-scale wind turbine blade active load reduction control system and method

技术领域technical field

本发明属于风力发电技术领域,特别涉及一种大型风力机叶片主动降载控制系统及方法。The invention belongs to the technical field of wind power generation, and in particular relates to a large-scale wind turbine blade active load reduction control system and method.

背景技术Background technique

随着风力发电的高速发展,风力机也逐渐向着离岸化、大型化的趋势发展,这就对风力机的核心部件—风机叶片提出了更高的要求。风机大型化意味着增加了风机的载荷和系统的质量,使疲劳载荷和极限载荷急剧增加,严重降低了机组的使用寿命,同时也增加了硬件和工程成本以及后期维护费用。With the rapid development of wind power generation, wind turbines are also gradually developing towards offshore and large-scale trends, which puts forward higher requirements for the core components of wind turbines - fan blades. The large-scale fan means increasing the load of the fan and the quality of the system, which will increase the fatigue load and ultimate load sharply, seriously reduce the service life of the unit, and also increase the hardware and engineering costs and post-maintenance costs.

为了降低风机的疲劳载荷和极限载荷,提高风机寿命、发电量和出力的稳定性,近年来产生了一种含有主动尾缘襟翼的大型风力机叶片,其硬件结构和控制方法与传统的叶片不尽相同。由于该叶片结构的复杂性,建立其精确的数学模型是非常困难的,并且随机风和湍流风对风机叶片的载荷影响不可忽视,因此常规的单级PID控制很难满足叶片的降载需求。In order to reduce the fatigue load and ultimate load of the wind turbine and improve the life of the wind turbine, the stability of the power generation and output, a large wind turbine blade with active trailing edge flaps has been produced in recent years. Its hardware structure and control method are different from traditional blades. not exactly. Due to the complexity of the blade structure, it is very difficult to establish an accurate mathematical model, and the impact of random wind and turbulent wind on the load of the fan blades cannot be ignored, so the conventional single-stage PID control is difficult to meet the load reduction requirements of the blades.

发明内容Contents of the invention

针对现有技术不足,本发明提供了一种大型风力机叶片主动降载控制系统及方法。Aiming at the deficiencies in the prior art, the present invention provides an active load reduction control system and method for large wind turbine blades.

一种大型风力机叶片主动降载控制系统,所述系统包括信号采集模块、控制模块和电气伺服模块;A large-scale wind turbine blade active load reduction control system, the system includes a signal acquisition module, a control module and an electrical servo module;

所述信号采集模块包括光纤应变传感器、机前风场信号传感设备和光纤应变信号处理设备;所述控制模块包括5路低通滤波器,5路模数转换器,4路控制单元,PLC,4路数模转换器和4路信号隔离器;所述电气伺服模块包括4路襟翼作动器驱动电路和4路襟翼作动器;The signal acquisition module includes an optical fiber strain sensor, a wind field signal sensing device in front of the machine, and an optical fiber strain signal processing device; the control module includes a 5-way low-pass filter, a 5-way analog-to-digital converter, a 4-way control unit, and a PLC , 4-way digital-to-analog converters and 4-way signal isolators; the electrical servo module includes 4-way flap actuator drive circuits and 4-way flap actuators;

所述光纤应变传感器安装在风力机叶片根部,并与光纤应变信号处理设备连接;光纤应变信号处理设备的1路信号输出和机前风场信号传感设备对应4路襟翼的4路信号输出分别对应1路低通滤波器和1路模数转换器顺次连接;与光纤应变信号处理设备对应的1路模数转换器分别连接至4路控制单元,与机前风场信号传感设备对应的4路模数转换器一一对应连接至4路控制单元,每路控制单元通过PLC分别对应1路数模转换器、1路信号隔离器、1路襟翼作动器驱动电路和1路襟翼作动器顺次连接;The optical fiber strain sensor is installed at the root of the wind turbine blade, and is connected with the optical fiber strain signal processing equipment; 1 signal output of the optical fiber strain signal processing equipment and 4 signal outputs of the front wind field signal sensing equipment corresponding to 4 flaps Corresponding to 1 channel of low-pass filter and 1 channel of analog-to-digital converter are connected sequentially; 1 channel of analog-to-digital converter corresponding to the optical fiber strain signal processing equipment is respectively connected to 4 channels of control units, and connected to the wind field signal sensing equipment in front of the machine The corresponding 4-way analog-to-digital converters are connected to 4-way control units one by one, and each control unit corresponds to 1-way digital-to-analog converter, 1-way signal isolator, 1-way flap actuator drive circuit and 1-way control unit through PLC. Road flap actuators are connected sequentially;

所述光纤应变传感器用于采集叶片根部的应变力信号,所述光纤应变信号处理设备用于将光纤应变传感器采集的信号转换为电压信号;所述机前风场信号传感设备用于测量风力机前风速;光纤应变信号处理设备和机前风场信号传感设备分别将信号传送至对应的低通滤波器,所述低通滤波器用于滤掉高频干扰信号;所述模数转换器用于将模拟信号转换成数字信号;所述控制单元包括对机前风场信号进行处理的前馈控制器,使用教与学算法进行参数寻优的PID控制器和对叶片根部的应变力信号进行处理的模糊控制器,用于减小叶片根部应力的控制运算;所述PLC用于切换PID控制器和模糊控制器的输出信号,并耦合来自前馈控制器的控制信号;所述数模转换器用于将数字信号转换成模拟信号;所述信号隔离器用于将控制系统输出信号和电气伺服模块隔离开;所述襟翼作动器驱动电路产生驱动襟翼作动器的电信号;所述襟翼作动器根据襟翼作动器驱动电路输出信号调节襟翼使其产生不同的摆角。The optical fiber strain sensor is used to collect the strain force signal of the blade root, the optical fiber strain signal processing device is used to convert the signal collected by the optical fiber strain sensor into a voltage signal; the wind field signal sensing device in front of the machine is used to measure the wind force The wind speed in front of the machine; the optical fiber strain signal processing equipment and the wind field signal sensing equipment in front of the machine respectively transmit the signal to the corresponding low-pass filter, and the low-pass filter is used to filter out high-frequency interference signals; the analog-to-digital converter uses The control unit is used to convert the analog signal into a digital signal; the control unit includes a feed-forward controller for processing the wind field signal in front of the machine, a PID controller for parameter optimization using a teaching and learning algorithm, and a signal for strain force at the root of the blade. The processed fuzzy controller is used to reduce the control operation of the blade root stress; the PLC is used to switch the output signal of the PID controller and the fuzzy controller, and couples the control signal from the feedforward controller; the digital-to-analog conversion The device is used to convert digital signals into analog signals; the signal isolator is used to isolate the output signal of the control system from the electrical servo module; the flap actuator drive circuit generates electrical signals for driving the flap actuator; the The flap actuator adjusts the flap to produce different swing angles according to the output signal of the flap actuator drive circuit.

所述前馈控制器是在风力发电机组运行时,通过实时监测机前风速变化,计算出因降低随机风或湍流风引起的不均匀载荷所需的控制量。The feed-forward controller calculates the control amount required to reduce the uneven load caused by random wind or turbulent wind through real-time monitoring of wind speed changes in front of the wind turbine when the wind power generating set is running.

上述一种大型风力机叶片主动降载控制系统的控制方法,具体包括以下步骤:The above-mentioned control method for the active load reduction control system of large-scale wind turbine blades specifically includes the following steps:

步骤1:对模糊控制器FCi、前馈控制器FBi和PID控制器PIDi进行初始化,i=1,2,3,4;Step 1: Initialize fuzzy controller FC i , feedforward controller FB i and PID controller PID i , i=1,2,3,4;

步骤2:读取当前风速和叶片根部的应力值,将得到的叶片根部应力值y(k)与叶片根部额定应力值r(k)进行差值运算,得到应力偏差e(k)及偏差变化率ec(k),其中叶片额定应力值r(k)是由风机出厂前实验测得;Step 2: Read the current wind speed and the stress value of the blade root, and calculate the difference between the obtained blade root stress value y(k) and the blade root rated stress value r(k), and obtain the stress deviation e(k) and deviation change Rate ec(k), where the blade rated stress value r(k) is measured by the fan before leaving the factory;

步骤21:将步骤2得到的应力偏差e(k)、偏差变化率ec(k)作为模糊控制器FCi的输入变量;Step 21: use the stress deviation e(k) and deviation change rate ec(k) obtained in step 2 as input variables of the fuzzy controller FC i ;

步骤22:选择隶属度函数进行模糊化,并依据模糊规则得到襟翼的控制量,反模糊化后求得模糊控制器FCi的输出变量,此输出为襟翼控制期望角θ1iStep 22: Select the membership function for fuzzification, and obtain the control quantity of the flap according to the fuzzy rules, and obtain the output variable of the fuzzy controller FC i after defuzzification, and this output is the desired flap control angle θ1 i ;

步骤23:将步骤21的应力偏差e(k)作为PID控制器PIDi的输入信号,利用教与学寻优算法对PIDi参数KPi,KIi,KDi进行在线自整定,所述PID控制器PIDi的输出变量为襟翼控制期望角θ2iStep 23: Use the stress deviation e(k) of step 21 as the input signal of the PID controller PID i , and use the teaching and learning optimization algorithm to carry out online self-tuning of the PID i parameters KP i , KI i , KD i , the PID The output variable of the controller PID i is the flap control desired angle θ2 i ;

步骤24:采集风力发电机组的机前风速v(t),将其作为自变量,将襟翼摆动角θi作为因变量,对襟翼角度-风速进行拟合,建立襟翼角度-风速的前馈控制器FBi模型:θi(v)=a0+a1v+a2v2+L+anvn,采用最小二乘法确定各项系数;将风速作为前馈控制器FBi的输入信号,则前馈控制器FBi的输出变量为襟翼控制期望角θ3iStep 24: Collect the wind speed v(t) in front of the wind turbine, use it as the independent variable, and use the flap swing angle θi as the dependent variable, fit the flap angle-wind speed, and establish the flap angle-wind speed front Feed-forward controller FB i model: θ i (v)=a 0 +a 1 v+a 2 v 2 +L+a n v n , the coefficients are determined by the least square method; the wind speed is used as the feed-forward controller FB i The input signal of the feedforward controller FB i is the output variable of the flap control desired angle θ3 i ;

步骤3:将步骤22与步骤23得到的襟翼期望角控制信号分别送往PLC进行处理,在PLC中设置切换算法:当叶根应力误差大于设定值时使用来自模糊控制器FCi的信号θ1i,来自PID控制器PIDi的控制信号θ2i将不起作用;当叶根应力误差小于设定值时使用来自PID控制器PIDi的控制信号θ2i,来自模糊控制器FCi的信号θ1i将不起作用;最后,PLC再耦合来自前馈控制器FBi的控制信号θ3i,并将这些信号传输给对应的襟翼作动器驱动电路;Step 3: Send the desired flap angle control signals obtained in Step 22 and Step 23 to the PLC for processing, and set the switching algorithm in the PLC: when the blade root stress error is greater than the set value, use the signal from the fuzzy controller FC i θ1 i , the control signal θ2 i from the PID controller PID i will not work; when the blade root stress error is less than the set value, use the control signal θ2 i from the PID controller PID i , the signal from the fuzzy controller FC i θ1 i will not work; finally, the PLC couples the control signals θ3 i from the feedforward controller FB i , and transmits these signals to the corresponding flap actuator drive circuit;

步骤4:4个襟翼作动器分别接受来自4个襟翼作动器驱动电路的信号,执行襟翼摆动动作以减小叶片根部应力;Step 4: The four flap actuators receive signals from the four flap actuator drive circuits respectively, and perform the flap swing action to reduce the stress on the blade root;

上述步骤2-4反复运行,直至完成控制任务。The above steps 2-4 are run repeatedly until the control task is completed.

用于PID参数的教与学寻优算法包括以下步骤:The teaching and learning optimization algorithm for PID parameters includes the following steps:

步骤1):设置初始参数,搜索区域范围定义为X=(x1,x2,...,xd)∈[L,U],L=(L1,L2,...,Ld)是空间下界,U=(U1,U2,...,Ud)是空间上界,d为优化问题的维数,d维空间第i个学员定义为学员规模为N,最大迭代次数为maxgen;Step 1): Set the initial parameters, the search area is defined as X=(x 1 ,x 2 ,...,x d )∈[L,U], L=(L 1 ,L 2 ,...,L d ) is the lower bound of the space, U=(U 1 , U 2 ,...,U d ) is the upper bound of the space, d is the dimension of the optimization problem, and the i-th student in the d-dimensional space is defined as The size of the trainees is N, and the maximum number of iterations is maxgen;

步骤2):教师的教学阶段:Step 2): Teacher's Teaching Phase:

步骤21):计算每个学生的适应值,选择最好个体作为老师Xteacher,计算个体平均值然后根据学员与个体平均水平的差异进行学习,如下式:Step 21): Calculate the fitness value of each student, select the best individual as the teacher X teacher , and calculate the individual average Then learn according to the difference between the students and the average level of the individual, as follows:

Xx ii nno ee ww == ww 11 ·&Center Dot; Xx ii oo ll dd ++ rr ii ·&Center Dot; (( Xx tt ee aa cc hh ee rr -- TFTF ii ·· mm ee aa nno )) -- -- -- (( 11 ))

TFi=2-gen/max gen (2)TF i =2-gen/max gen (2)

式中:分别表示第i个学员学习前和学习后的值;w1=1-gen/max gen为自适应权系数;ri为0-1之间的随机数;TFi为1-2之间的某个数,其值随迭代次数的变化而变化;ri和TFi用于调整学习速率;gen与max gen分别为当前迭代次数与最大迭代次数;In the formula: and represent the values of the i-th student before and after learning respectively; w1=1-gen/max gen is the adaptive weight coefficient; r i is a random number between 0-1; TF i is a certain value between 1-2 The number, its value changes with the number of iterations; r i and TF i are used to adjust the learning rate; gen and max gen are the current number of iterations and the maximum number of iterations, respectively;

步骤22):学员更新:Step 22): Student update:

如果的适应值比的适应值好,那么用代替否则,继续使用 if The fitness value ratio The fitness value is good, then use replace Otherwise, continue using

步骤3):学员之间相互学习阶段:Step 3): Mutual learning phase among students:

步骤31):每个学员Xi在班级中随机选取一个学习对象Xj(j≠i),Xi通过分析自己和学员Xj之间的差异进行学习调整,如下式:Step 31): Each student X i randomly selects a learning object X j (j≠i) in the class, and X i adjusts learning by analyzing the difference between itself and the student X j , as follows:

若Xi优于XjIf X i is better than X j ,

Xx ii nno ee ww == ww 22 ·&Center Dot; Xx ii oo ll dd ++ rr ii ·&Center Dot; (( Xx ii -- Xx jj )) -- -- -- (( 33 ))

若Xj优于XiIf X j is better than X i ,

Xx ii nno ee ww == ww 22 ·· Xx ii oo ll dd ++ rr ii ·· (( Xx jj -- Xx ii )) -- -- -- (( 44 ))

式中:w2=1-gen/max gen为自适应权系数;ri为0-1之间的随机数;In the formula: w2=1-gen/max gen is the adaptive weight coefficient; r i is a random number between 0-1;

步骤32):学员更新:Step 32): Student update:

如果的适应值比的适应值好,那么用代替否则,继续使用 if The fitness value ratio The fitness value is good, then use replace Otherwise, continue using

步骤4):根据适应度函数计算每个学员的适应度值,其公式如下:Step 4): Calculate the fitness value of each student according to the fitness function, the formula is as follows:

JJ == ∫∫ 00 ∞∞ tt || ee (( tt )) || dd tt -- -- -- (( 55 ))

式中,e(t)为系统误差,根据适应度函数更新学员的全局最优值,当计算所得到最优值达到设定值或算法达到最大迭代次数时,退出教与学寻优算法,否则返回步骤2)。In the formula, e(t) is the system error, and the global optimal value of the students is updated according to the fitness function. When the calculated optimal value reaches the set value or the algorithm reaches the maximum number of iterations, the teaching and learning optimization algorithm is exited. Otherwise return to step 2).

本发明的有益效果为:The beneficial effects of the present invention are:

1.相对于传统的单级PID控制系统,本系统中通过引入前馈控制器可有效降低由于风的随机性波动对叶片根部应力产生的影响。2.使用模糊控制与PID控制在设定值处进行切换控制,既利用了模糊控制器不需要建立精确地数学模型、能适应被控对象非线性和时变性的优点,又利用PID控制器算法简单、稳定性好的特点。3.使用教与学算法寻优速度快,求解精度高的特点,在线优化PID控制器的三个参数,从而有效降低了叶片根部的应变力,延长了叶片的使用寿命,降低了风力机组的使用成本。4.本发明设计简单,应用方便,控制更加准确可靠,非常适合大型风力机叶片的建模和控制。1. Compared with the traditional single-stage PID control system, the introduction of a feed-forward controller in this system can effectively reduce the impact of the random fluctuation of the wind on the stress of the blade root. 2. Use fuzzy control and PID control to switch control at the set value, which not only takes advantage of the advantages of the fuzzy controller that does not need to establish an accurate mathematical model and can adapt to the nonlinearity and time-varying nature of the controlled object, but also uses the PID controller algorithm Simple and stable features. 3. Use the teaching and learning algorithm to optimize the speed of optimization and solve the characteristics of high precision, and optimize the three parameters of the PID controller online, thereby effectively reducing the strain force on the root of the blade, prolonging the service life of the blade, and reducing the wind turbine. The cost. 4. The present invention is simple in design, convenient in application, more accurate and reliable in control, and is very suitable for modeling and control of large-scale wind turbine blades.

附图说明Description of drawings

图1为一种大型风力机叶片主动降载控制系统的结构框图。Figure 1 is a structural block diagram of an active load reduction control system for large wind turbine blades.

图2是一种大型风力机叶片主动降载控制系统的控制原理框图。Fig. 2 is a control principle block diagram of a large-scale wind turbine blade active load reduction control system.

图3为对PID控制器参数进行在线自整定的教与学寻优算法流程图。Fig. 3 is a flow chart of teaching and learning optimization algorithm for online self-tuning of PID controller parameters.

图4为本发明一种大型风力机叶片主动降载控制方法与现有方法的对比结果。Fig. 4 is a comparison result between an active load reduction control method for large wind turbine blades of the present invention and the existing method.

具体实施方式detailed description

下面结合附图和具体实施方式对本发明做进一步说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments. It should be emphasized that the following description is only exemplary and not intended to limit the scope of the invention and its application.

如图1所示一种大型风力机叶片主动降载控制系统,所述系统包括信号采集模块、控制模块和电气伺服模块;As shown in Figure 1, a large-scale wind turbine blade active load reduction control system, the system includes a signal acquisition module, a control module and an electrical servo module;

所述信号采集模块包括光纤应变传感器、机前风场信号传感设备和光纤应变信号处理设备;所述控制模块包括5路低通滤波器,5路模数转换器,4路控制单元,PLC,4路数模转换器和4路信号隔离器;所述电气伺服模块包括4路襟翼作动器驱动电路和4路襟翼作动器;The signal acquisition module includes an optical fiber strain sensor, a wind field signal sensing device in front of the machine, and an optical fiber strain signal processing device; the control module includes a 5-way low-pass filter, a 5-way analog-to-digital converter, a 4-way control unit, and a PLC , 4-way digital-to-analog converters and 4-way signal isolators; the electrical servo module includes 4-way flap actuator drive circuits and 4-way flap actuators;

所述光纤应变传感器安装在风力机叶片根部,并与光纤应变信号处理设备连接;光纤应变信号处理设备的1路信号输出和机前风场信号传感设备对应4路襟翼的4路信号输出分别对应1路低通滤波器和1路模数转换器顺次连接;与光纤应变信号处理设备对应的1路模数转换器分别连接至4路控制单元,与机前风场信号传感设备对应的4路模数转换器一一对应连接至4路控制单元,每路控制单元通过PLC分别对应1路数模转换器、1路信号隔离器、1路襟翼作动器驱动电路和1路襟翼作动器顺次连接;The optical fiber strain sensor is installed at the root of the wind turbine blade, and is connected with the optical fiber strain signal processing equipment; 1 signal output of the optical fiber strain signal processing equipment and 4 signal outputs of the front wind field signal sensing equipment corresponding to 4 flaps Corresponding to 1 channel of low-pass filter and 1 channel of analog-to-digital converter are connected sequentially; 1 channel of analog-to-digital converter corresponding to the optical fiber strain signal processing equipment is respectively connected to 4 channels of control units, and connected to the wind field signal sensing equipment in front of the machine The corresponding 4-way analog-to-digital converters are connected to 4-way control units one by one, and each control unit corresponds to 1-way digital-to-analog converter, 1-way signal isolator, 1-way flap actuator drive circuit and 1-way control unit through PLC. Road flap actuators are connected sequentially;

所述光纤应变传感器用于采集叶片根部的应变力信号,所述光纤应变信号处理设备用于将光纤应变传感器采集的信号转换为电压信号;所述机前风场信号传感设备用于测量风力机前风速;光纤应变信号处理设备和机前风场信号传感设备分别将信号传送至对应的低通滤波器,所述低通滤波器用于滤掉高频干扰信号;所述模数转换器用于将模拟信号转换成数字信号;所述控制单元用于减小叶片根部应力的控制运算,其包括对机前风场信号进行处理的前馈控制器,所述前馈控制器是在风力发电机组运行时,通过实时监测机前风速变化,计算出因降低随机风或湍流风引起的不均匀载荷所需的控制量;使用教与学算法进行参数寻优的PID控制器;以及对叶片根部的应变力信号进行处理的模糊控制器;所述PLC用于切换PID控制器和模糊控制器的输出信号,并耦合来自前馈控制器的控制信号;所述数模转换器用于将数字信号转换成模拟信号;所述信号隔离器用于将控制系统输出信号和电气伺服模块隔离开;所述襟翼作动器驱动电路产生驱动襟翼作动器的电信号;所述襟翼作动器根据襟翼作动器驱动电路输出信号调节襟翼使其产生不同的摆角。The optical fiber strain sensor is used to collect the strain force signal of the blade root, the optical fiber strain signal processing device is used to convert the signal collected by the optical fiber strain sensor into a voltage signal; the wind field signal sensing device in front of the machine is used to measure the wind force The wind speed in front of the machine; the optical fiber strain signal processing equipment and the wind field signal sensing equipment in front of the machine respectively transmit the signal to the corresponding low-pass filter, and the low-pass filter is used to filter out high-frequency interference signals; the analog-to-digital converter uses The control unit is used to convert the analog signal into a digital signal; the control unit is used to reduce the stress of the blade root. It includes a feed-forward controller for processing the wind field signal in front of the machine. When the unit is running, through real-time monitoring of wind speed changes in front of the machine, the control amount required to reduce the uneven load caused by random wind or turbulent wind is calculated; the PID controller using the teaching and learning algorithm for parameter optimization; and the root of the blade A fuzzy controller for processing the strain signal; the PLC is used to switch the output signal of the PID controller and the fuzzy controller, and couples the control signal from the feedforward controller; the digital-to-analog converter is used to convert the digital signal into an analog signal; the signal isolator is used to isolate the output signal of the control system from the electrical servo module; the flap actuator drive circuit generates an electrical signal to drive the flap actuator; the flap actuator is based on The output signal of the flap actuator drive circuit adjusts the flap to produce different swing angles.

如图2所示一种大型风力机叶片主动降载控制方法,具体包括以下步骤:As shown in Figure 2, a large-scale wind turbine blade active load reduction control method specifically includes the following steps:

步骤1:对模糊控制器FCi、前馈控制器FBi和PID控制器PIDi进行初始化,i=1,2,3,4。Step 1: Initialize fuzzy controller FC i , feedforward controller FB i and PID controller PID i , i=1,2,3,4.

步骤2:读取当前风速和叶片根部的应力值,将得到的叶片根部应力值y(k)与叶片根部额定应力值r(k)进行差值运算,得到应力偏差e(k)及偏差变化率ec(k),其中叶片额定应力值r(k)是由风机出厂前实验测得;Step 2: Read the current wind speed and the stress value of the blade root, and calculate the difference between the obtained blade root stress value y(k) and the blade root rated stress value r(k), and obtain the stress deviation e(k) and deviation change Rate ec(k), where the blade rated stress value r(k) is measured by the fan before leaving the factory;

步骤21:将步骤2得到的应力偏差e(k)、偏差变化率ec(k)作为模糊控制器FCi的输入变量;Step 21: use the stress deviation e(k) and deviation change rate ec(k) obtained in step 2 as input variables of the fuzzy controller FC i ;

步骤22:选择隶属度函数进行模糊化,并依据模糊规则得到襟翼的控制量,反模糊化后求得模糊控制器FCi的输出变量,此输出为襟翼控制期望角θ1iStep 22: Select the membership function for fuzzification, and obtain the control quantity of the flap according to the fuzzy rules, and obtain the output variable of the fuzzy controller FC i after defuzzification, and this output is the desired flap control angle θ1 i ;

步骤23:将步骤21的应力偏差e(k)作为PID控制器PIDi的输入信号,利用教与学寻优算法对PIDi参数KPi,KIi,KDi进行在线自整定,所述PID控制器PIDi的输出变量为襟翼控制期望角θ2iStep 23: Use the stress deviation e(k) of step 21 as the input signal of the PID controller PID i , and use the teaching and learning optimization algorithm to carry out online self-tuning of the PID i parameters KP i , KI i , KD i , the PID The output variable of the controller PID i is the flap control desired angle θ2 i ;

如图3所示,用于PID参数的教与学寻优算法包括以下步骤:As shown in Figure 3, the teaching and learning optimization algorithm for PID parameters includes the following steps:

步骤1):设置初始参数,搜索区域范围定义为X=(x1,x2,...,xd)∈[L,U],L=(L1,L2,...,Ld)是空间下界,U=(U1,U2,...,Ud)是空间上界,d为优化问题的维数,d维空间第i个学员定义为学员规模为N,最大迭代次数为max gen;Step 1): Set the initial parameters, the search area is defined as X=(x 1 ,x 2 ,...,x d )∈[L,U], L=(L 1 ,L 2 ,...,L d ) is the lower bound of the space, U=(U 1 , U 2 ,...,U d ) is the upper bound of the space, d is the dimension of the optimization problem, and the i-th student in the d-dimensional space is defined as The size of the trainees is N, and the maximum number of iterations is max gen;

步骤2):教师的教学阶段:Step 2): Teacher's Teaching Phase:

步骤21):计算每个学生的适应值,选择最好个体作为老师Xteacher,计算个体平均值然后根据学员与个体平均水平的差异进行学习,如下式:Step 21): Calculate the fitness value of each student, select the best individual as the teacher X teacher , and calculate the individual average Then learn according to the difference between the students and the average level of the individual, as follows:

Xx ii nno ee ww == ww 11 ·· Xx ii oo ll dd ++ rr ii ·· (( Xx tt ee aa cc hh ee rr -- TFTF ii ·· mm ee aa nno )) -- -- -- (( 11 ))

TFi=2-gen/max gen (2)TF i =2-gen/max gen (2)

式中:分别表示第i个学员学习前和学习后的值;w1=1-gen/max gen为自适应权系数;ri为0-1之间的随机数;TFi为1-2之间的某个数,其值随迭代次数的变化而变化;ri和TFi用于调整学习速率;gen与max gen分别为当前迭代次数与最大迭代次数;In the formula: and represent the values of the i-th student before and after learning respectively; w1=1-gen/max gen is the adaptive weight coefficient; r i is a random number between 0-1; TF i is a certain value between 1-2 The number, its value changes with the number of iterations; r i and TF i are used to adjust the learning rate; gen and max gen are the current number of iterations and the maximum number of iterations, respectively;

步骤22):学员更新:Step 22): Student update:

如果的适应值比的适应值好,那么用代替否则,继续使用 if The fitness value ratio The fitness value is good, then use replace Otherwise, continue using

步骤3):学员之间相互学习阶段:Step 3): Mutual learning phase among students:

步骤31):每个学员Xi在班级中随机选取一个学习对象Xj(j≠i),Xi通过分析自己和学员Xj之间的差异进行学习调整,如下式:Step 31): Each student X i randomly selects a learning object X j (j≠i) in the class, and X i adjusts learning by analyzing the difference between itself and the student X j , as follows:

若Xi优于XjIf X i is better than X j ,

Xx ii nno ee ww == ww 22 ·· Xx ii oo ll dd ++ rr ii ·· (( Xx ii -- Xx jj )) -- -- -- (( 33 ))

若Xj优于XiIf X j is better than X i ,

Xx ii nno ee ww == ww 22 ·· Xx ii oo ll dd ++ rr ii ·· (( Xx jj -- Xx ii )) -- -- -- (( 44 ))

式中:w2=1-gen/max gen为自适应权系数;ri为0-1之间的随机数;In the formula: w2=1-gen/max gen is the adaptive weight coefficient; r i is a random number between 0-1;

步骤32):学员更新:Step 32): Student update:

如果的适应值比的适应值好,那么用代替否则,继续使用 if The fitness value ratio The fitness value is good, then use replace Otherwise, continue using

步骤4):根据适应度函数计算每个学员的适应度值,其公式如下:Step 4): Calculate the fitness value of each student according to the fitness function, the formula is as follows:

JJ == ∫∫ 00 ∞∞ tt || ee (( tt )) || dd tt -- -- -- (( 55 ))

式中,e(t)为系统误差,根据适应度函数更新学员的全局最优值,当计算所得到最优值达到设定值或算法达到最大迭代次数时,退出教与学寻优算法,否则返回步骤2);In the formula, e(t) is the system error, and the global optimal value of the students is updated according to the fitness function. When the calculated optimal value reaches the set value or the algorithm reaches the maximum number of iterations, the teaching and learning optimization algorithm is exited. Otherwise return to step 2);

步骤24:采集风力发电机组的机前风速v(t),将其作为自变量,将襟翼摆动角θi作为因变量,对襟翼角度-风速进行拟合,建立襟翼角度-风速的前馈控制器FBi模型:θi(v)=a0+a1v+a2v2+L+anvn,采用最小二乘法确定各项系数;将风速作为前馈控制器FBi的输入信号,则前馈控制器FBi的输出变量为襟翼控制期望角θ3iStep 24: Collect the wind speed v(t) in front of the wind turbine, use it as the independent variable, and use the flap swing angle θi as the dependent variable, fit the flap angle-wind speed, and establish the flap angle-wind speed front Feed-forward controller FB i model: θ i (v)=a 0 +a 1 v+a 2 v 2 +L+a n v n , the coefficients are determined by the least square method; the wind speed is used as the feed-forward controller FB i The input signal of the feedforward controller FB i is the output variable of the flap control desired angle θ3 i .

步骤3:将步骤22与步骤23得到的襟翼期望角控制信号分别送往PLC进行处理,在PLC中设置切换算法:当叶根应力误差大于设定值时使用来自模糊控制器FCi的信号θ1i,来自PID控制器PIDi的控制信号θ2i将不起作用;当叶根应力误差小于设定值时使用来自PID控制器PIDi的控制信号θ2i,来自模糊控制器FCi的信号θ1i将不起作用;最后,PLC再耦合来自前馈控制器FBi的控制信号θ3i,并将这些信号传输给对应的襟翼作动器驱动电路。Step 3: Send the desired flap angle control signals obtained in Step 22 and Step 23 to the PLC for processing, and set the switching algorithm in the PLC: when the blade root stress error is greater than the set value, use the signal from the fuzzy controller FC i θ1 i , the control signal θ2 i from the PID controller PID i will not work; when the blade root stress error is less than the set value, use the control signal θ2 i from the PID controller PID i , the signal from the fuzzy controller FC i θ1 i will be inactive; finally, the PLC couples the control signals θ3 i from the feed-forward controller FB i and transmits these signals to the corresponding flap actuator drive circuit.

步骤4:4个襟翼作动器分别接受来自4个襟翼作动器驱动电路的信号,执行襟翼摆动动作以减小叶片根部应力。Step 4: The four flap actuators respectively receive the signals from the four flap actuator drive circuits, and perform the flap swing action to reduce the stress on the blade root.

上述步骤2-4反复运行,直至完成控制任务。The above steps 2-4 are run repeatedly until the control task is completed.

5WM参考风力机在风况为11.4m/s的湍流风下,以叶片的叶根弯矩作为风力机降载目标,采用本发明一种大型风力机叶片主动降载控制方法与现有方法的对比结果如图4所示,可见采用本发明的方法有效降低了叶片根部的应变力。The 5WM reference wind turbine is under the turbulent wind whose wind condition is 11.4m/s, and uses the root bending moment of the blade as the load reduction target of the wind turbine, and adopts a kind of active load reduction control method for large wind turbine blades of the present invention and the existing method The comparison results are shown in Fig. 4, it can be seen that the method of the present invention effectively reduces the strain force at the root of the blade.

以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的简单修改、等同变化,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention in any form. Any person skilled in the art can easily think of simple modifications and equivalent changes within the technical scope disclosed in the present invention. , should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.

Claims (4)

1.一种大型风力机叶片主动降载控制系统,其特征在于,所述系统包括信号采集模块、控制模块和电气伺服模块;1. A large-scale wind turbine blade active load reduction control system, characterized in that the system includes a signal acquisition module, a control module and an electrical servo module; 所述信号采集模块包括光纤应变传感器、机前风场信号传感设备和光纤应变信号处理设备;所述控制模块包括5路低通滤波器,5路模数转换器,4路控制单元,PLC,4路数模转换器和4路信号隔离器;所述电气伺服模块包括4路襟翼作动器驱动电路和4路襟翼作动器;The signal acquisition module includes an optical fiber strain sensor, a wind field signal sensing device in front of the machine, and an optical fiber strain signal processing device; the control module includes a 5-way low-pass filter, a 5-way analog-to-digital converter, a 4-way control unit, and a PLC , 4-way digital-to-analog converters and 4-way signal isolators; the electrical servo module includes 4-way flap actuator drive circuits and 4-way flap actuators; 所述光纤应变传感器安装在风力机叶片根部,并与光纤应变信号处理设备连接;光纤应变信号处理设备的1路信号输出和机前风场信号传感设备对应4路襟翼的4路信号输出分别对应1路低通滤波器和1路模数转换器顺次连接;与光纤应变信号处理设备对应的1路模数转换器分别连接至4路控制单元,与机前风场信号传感设备对应的4路模数转换器一一对应连接至4路控制单元,每路控制单元通过PLC分别对应1路数模转换器、1路信号隔离器、1路襟翼作动器驱动电路和1路襟翼作动器顺次连接;The optical fiber strain sensor is installed at the root of the wind turbine blade, and is connected with the optical fiber strain signal processing equipment; 1 signal output of the optical fiber strain signal processing equipment and 4 signal outputs of the front wind field signal sensing equipment corresponding to 4 flaps Corresponding to 1 channel of low-pass filter and 1 channel of analog-to-digital converter are connected sequentially; 1 channel of analog-to-digital converter corresponding to the optical fiber strain signal processing equipment is respectively connected to 4 channels of control units, and connected to the wind field signal sensing equipment in front of the machine The corresponding 4-way analog-to-digital converters are connected to 4-way control units one by one, and each control unit corresponds to 1-way digital-to-analog converter, 1-way signal isolator, 1-way flap actuator drive circuit and 1-way control unit through PLC. Road flap actuators are connected sequentially; 所述光纤应变传感器用于采集叶片根部的应变力信号,所述光纤应变信号处理设备用于将光纤应变传感器采集的信号转换为电压信号;所述机前风场信号传感设备用于测量风力机前风速;光纤应变信号处理设备和机前风场信号传感设备分别将信号传送至对应的低通滤波器,所述低通滤波器用于滤掉高频干扰信号;所述模数转换器用于将模拟信号转换成数字信号;所述控制单元包括对机前风场信号进行处理的前馈控制器,使用教与学算法进行参数寻优的PID控制器和对叶片根部的应变力信号进行处理的模糊控制器,用于减小叶片根部应力的控制运算;所述PLC用于切换PID控制器和模糊控制器的输出信号,并耦合来自前馈控制器的控制信号;所述数模转换器用于将数字信号转换成模拟信号;所述信号隔离器用于将控制系统输出信号和电气伺服模块隔离开;所述襟翼作动器驱动电路产生驱动襟翼作动器的电信号;所述襟翼作动器根据襟翼作动器驱动电路输出信号调节襟翼使其产生不同的摆角。The optical fiber strain sensor is used to collect the strain force signal of the blade root, the optical fiber strain signal processing device is used to convert the signal collected by the optical fiber strain sensor into a voltage signal; the wind field signal sensing device in front of the machine is used to measure the wind force The wind speed in front of the machine; the optical fiber strain signal processing equipment and the wind field signal sensing equipment in front of the machine respectively transmit the signal to the corresponding low-pass filter, and the low-pass filter is used to filter out high-frequency interference signals; the analog-to-digital converter uses The control unit is used to convert the analog signal into a digital signal; the control unit includes a feed-forward controller for processing the wind field signal in front of the machine, a PID controller for parameter optimization using a teaching and learning algorithm, and a signal for strain force at the root of the blade. The processed fuzzy controller is used to reduce the control operation of the blade root stress; the PLC is used to switch the output signal of the PID controller and the fuzzy controller, and couples the control signal from the feedforward controller; the digital-to-analog conversion The device is used to convert digital signals into analog signals; the signal isolator is used to isolate the output signal of the control system from the electrical servo module; the flap actuator drive circuit generates electrical signals for driving the flap actuator; the The flap actuator adjusts the flap to produce different swing angles according to the output signal of the flap actuator drive circuit. 2.根据权利要求1所述一种大型风力机叶片主动降载控制系统,其特征在于,所述前馈控制器是在风力发电机组运行时,通过实时监测机前风速变化,计算出因降低随机风或湍流风引起的不均匀载荷所需的控制量。2. A kind of active load reduction control system for large wind turbine blades according to claim 1, characterized in that, the feedforward controller calculates the reason for the reduction by real-time monitoring of wind speed changes in front of the wind turbine when the wind turbine is running. The amount of control required for uneven loads caused by random or turbulent winds. 3.权利要求1-2任一权利要求所述一种大型风力机叶片主动降载控制系统的控制方法,其特征在于,具体包括以下步骤:3. The control method of a large-scale wind turbine blade active load reduction control system according to any one of claims 1-2, characterized in that it specifically comprises the following steps: 步骤1:对模糊控制器FCi、前馈控制器FBi和PID控制器PIDi进行初始化,i=1,2,3,4;Step 1: Initialize fuzzy controller FC i , feedforward controller FB i and PID controller PID i , i=1,2,3,4; 步骤2:读取当前风速和叶片根部的应力值,将得到的叶片根部应力值y(k)与叶片根部额定应力值r(k)进行差值运算,得到应力偏差e(k)及偏差变化率ec(k),其中叶片额定应力值r(k)是由风机出厂前实验测得;Step 2: Read the current wind speed and the stress value of the blade root, and calculate the difference between the obtained blade root stress value y(k) and the blade root rated stress value r(k), and obtain the stress deviation e(k) and deviation change Rate ec(k), where the blade rated stress value r(k) is measured by the fan before leaving the factory; 步骤21:将步骤2得到的应力偏差e(k)、偏差变化率ec(k)作为模糊控制器FCi的输入变量;Step 21: use the stress deviation e(k) and deviation change rate ec(k) obtained in step 2 as input variables of the fuzzy controller FC i ; 步骤22:选择隶属度函数进行模糊化,并依据模糊规则得到襟翼的控制量,反模糊化后求得模糊控制器FCi的输出变量,此输出为襟翼控制期望角θ1iStep 22: Select the membership function for fuzzification, and obtain the control quantity of the flap according to the fuzzy rules, and obtain the output variable of the fuzzy controller FC i after defuzzification, and this output is the desired flap control angle θ1 i ; 步骤23:将步骤21的应力偏差e(k)作为PID控制器PIDi的输入信号,利用教与学寻优算法对PIDi参数KPi,KIi,KDi进行在线自整定,所述PID控制器PIDi的输出变量为襟翼控制期望角θ2iStep 23: Use the stress deviation e(k) of step 21 as the input signal of the PID controller PID i , and use the teaching and learning optimization algorithm to carry out online self-tuning of the PID i parameters KP i , KI i , KD i , the PID The output variable of the controller PID i is the flap control desired angle θ2 i ; 步骤24:采集风力发电机组的机前风速v(t),将其作为自变量,将襟翼摆动角θi作为因变量,对襟翼角度-风速进行拟合,建立襟翼角度-风速的前馈控制器FBi模型:θi(v)=a0+a1v+a2v2+L+anvn,采用最小二乘法确定各项系数;将风速作为前馈控制器FBi的输入信号,则前馈控制器FBi的输出变量为襟翼控制期望角θ3iStep 24: Collect the wind speed v(t) in front of the wind turbine, use it as the independent variable, and use the flap swing angle θi as the dependent variable, fit the flap angle-wind speed, and establish the flap angle-wind speed front Feed-forward controller FB i model: θ i (v)=a 0 +a 1 v+a 2 v 2 +L+a n v n , the coefficients are determined by the least square method; the wind speed is used as the feed-forward controller FB i The input signal of the feedforward controller FB i is the output variable of the flap control desired angle θ3 i ; 步骤3:将步骤22与步骤23得到的襟翼期望角控制信号分别送往PLC进行处理,在PLC中设置切换算法:当叶根应力误差大于设定值时使用来自模糊控制器FCi的信号θ1i,来自PID控制器PIDi的控制信号θ2i将不起作用;当叶根应力误差小于设定值时使用来自PID控制器PIDi的控制信号θ2i,来自模糊控制器FCi的信号θ1i将不起作用;最后,PLC再耦合来自前馈控制器FBi的控制信号θ3i,并将这些信号传输给对应的襟翼作动器驱动电路;Step 3: Send the desired flap angle control signals obtained in Step 22 and Step 23 to the PLC for processing, and set the switching algorithm in the PLC: when the blade root stress error is greater than the set value, use the signal from the fuzzy controller FC i θ1 i , the control signal θ2 i from the PID controller PID i will not work; when the blade root stress error is less than the set value, use the control signal θ2 i from the PID controller PID i , the signal from the fuzzy controller FC i θ1 i will not work; finally, the PLC couples the control signals θ3 i from the feedforward controller FB i , and transmits these signals to the corresponding flap actuator drive circuit; 步骤4:4个襟翼作动器分别接受来自4个襟翼作动器驱动电路的信号,执行襟翼摆动动作以减小叶片根部应力;Step 4: The four flap actuators receive signals from the four flap actuator drive circuits respectively, and perform the flap swing action to reduce the stress on the blade root; 上述步骤2-4反复运行,直至完成控制任务。The above steps 2-4 are run repeatedly until the control task is completed. 4.根据权利要求3所述一种控制方法,其特征在于,用于PID参数的教与学寻优算法包括以下步骤:4. a kind of control method according to claim 3 is characterized in that, the teaching and learning optimization algorithm for PID parameter comprises the following steps: 步骤1):设置初始参数,搜索区域范围定义为X=(x1,x2,...,xd)∈[L,U],L=(L1,L2,...,Ld)是空间下界,U=(U1,U2,...,Ud)是空间上界,d为优化问题的维数,d维空间第i个学员定义为学员规模为N,最大迭代次数为maxgen;Step 1): Set the initial parameters, the search area is defined as X=(x 1 ,x 2 ,...,x d )∈[L,U], L=(L 1 ,L 2 ,...,L d ) is the lower bound of the space, U=(U 1 , U 2 ,...,U d ) is the upper bound of the space, d is the dimension of the optimization problem, and the i-th student in the d-dimensional space is defined as The size of the trainees is N, and the maximum number of iterations is maxgen; 步骤2):教师的教学阶段:Step 2): Teacher's Teaching Phase: 步骤21):计算每个学生的适应值,选择最好个体作为老师Xteacher,计算个体平均值然后根据学员与个体平均水平的差异进行学习,如下式:Step 21): Calculate the fitness value of each student, select the best individual as the teacher X teacher , and calculate the individual average Then learn according to the difference between the students and the average level of the individual, as follows: Xx ii nno ee ww == ww 11 ·&Center Dot; Xx ii oo ll dd ++ rr ii ·&Center Dot; (( Xx tt ee aa cc hh ee rr -- TFTF ii ·&Center Dot; mm ee aa nno )) -- -- -- (( 11 )) TFi=2-gen/maxgen (2)TF i =2-gen/maxgen (2) 式中:分别表示第i个学员学习前和学习后的值;w1=1-gen/maxgen为自适应权系数;ri为0-1之间的随机数;TFi为1-2之间的某个数,其值随迭代次数的变化而变化;ri和TFi用于调整学习速率;gen与max gen分别为当前迭代次数与最大迭代次数;In the formula: and respectively represent the value of the i-th student before and after learning; w1=1-gen/maxgen is the adaptive weight coefficient; r i is a random number between 0-1; TF i is a certain value between 1-2 number, its value changes with the number of iterations; r i and TF i are used to adjust the learning rate; gen and max gen are the current number of iterations and the maximum number of iterations, respectively; 步骤22):学员更新:Step 22): Student update: 如果的适应值比的适应值好,那么用代替否则,继续使用 if The fitness value ratio The fitness value is good, then use replace Otherwise, continue using 步骤3):学员之间相互学习阶段:Step 3): Mutual learning phase among students: 步骤31):每个学员Xi在班级中随机选取一个学习对象Xj(j≠i),Xi通过分析自己和学员Xj之间的差异进行学习调整,如下式:Step 31): Each student X i randomly selects a learning object X j (j≠i) in the class, and X i adjusts learning by analyzing the difference between itself and the student X j , as follows: 若Xi优于XjIf X i is better than X j , Xx ii nno ee ww == ww 22 ·&Center Dot; Xx ii oo ll dd ++ rr ii ·&Center Dot; (( Xx ii -- Xx jj )) -- -- -- (( 33 )) 若Xj优于XiIf X j is better than X i , Xx ii nno ee ww == ww 22 ·&Center Dot; Xx ii oo ll dd ++ rr ii ·&Center Dot; (( Xx jj -- Xx ii )) -- -- -- (( 44 )) 式中:w2=1-gen/maxgen为自适应权系数;ri为0-1之间的随机数;In the formula: w2=1-gen/maxgen is the adaptive weight coefficient; r i is a random number between 0-1; 步骤32):学员更新:Step 32): Student update: 如果的适应值比的适应值好,那么用代替否则,继续使用 if The fitness value ratio The fitness value is good, then use replace Otherwise, continue using 步骤4):根据适应度函数计算每个学员的适应度值,其公式如下:Step 4): Calculate the fitness value of each student according to the fitness function, the formula is as follows: JJ == ∫∫ 00 ∞∞ tt || ee (( tt )) || dd tt -- -- -- (( 55 )) 式中,e(t)为系统误差,根据适应度函数更新学员的全局最优值,当计算所得到最优值达到设定值或算法达到最大迭代次数时,退出教与学寻优算法,否则返回步骤2)。In the formula, e(t) is the system error, and the global optimal value of the students is updated according to the fitness function. When the calculated optimal value reaches the set value or the algorithm reaches the maximum number of iterations, the teaching and learning optimization algorithm is exited. Otherwise return to step 2).
CN201610274672.0A 2016-04-28 2016-04-28 A kind of large scale wind power machine blade active load shedding control system and method Expired - Fee Related CN105888971B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610274672.0A CN105888971B (en) 2016-04-28 2016-04-28 A kind of large scale wind power machine blade active load shedding control system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610274672.0A CN105888971B (en) 2016-04-28 2016-04-28 A kind of large scale wind power machine blade active load shedding control system and method

Publications (2)

Publication Number Publication Date
CN105888971A true CN105888971A (en) 2016-08-24
CN105888971B CN105888971B (en) 2018-12-18

Family

ID=56702436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610274672.0A Expired - Fee Related CN105888971B (en) 2016-04-28 2016-04-28 A kind of large scale wind power machine blade active load shedding control system and method

Country Status (1)

Country Link
CN (1) CN105888971B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107559143A (en) * 2017-07-27 2018-01-09 华北电力大学 A large-scale wind turbine trailing edge flap structure parameter optimization and multi-objective flap optimization control method
CN107762730A (en) * 2017-08-23 2018-03-06 华北电力大学 A kind of large-scale change oar turbine control system and control method with trailing edge flaps
CN108241288A (en) * 2016-12-23 2018-07-03 重庆邮电大学 A PID Controller Parameter Tuning Method Based on Improved TLBO Algorithm
CN109162878A (en) * 2018-08-01 2019-01-08 汕头大学 A kind of intelligent blade of wind driven generator investigating method and its system
CN109958574A (en) * 2017-12-22 2019-07-02 北京金风科创风电设备有限公司 Load reduction control method and device for wind generating set
CN111749845A (en) * 2019-03-29 2020-10-09 北京金风科创风电设备有限公司 Load reduction control method and device for wind turbine generator
CN113167233A (en) * 2018-12-13 2021-07-23 西门子歌美飒可再生能源公司 estimated wind speed
CN115242072A (en) * 2022-09-16 2022-10-25 深圳市首航新能源股份有限公司 Method and device for reducing stress of inverter tube and inverter
CN119623068A (en) * 2024-11-27 2025-03-14 运达能源科技集团股份有限公司 Design optimization method and device for wind turbine blades, storage medium and electronic equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001195102A (en) * 2000-01-13 2001-07-19 Seiko Seiki Co Ltd Controller having variable saturation function
US20020105189A1 (en) * 1997-08-08 2002-08-08 Mikhail Amir S. Variable speed wind turbine generator
CN102192084A (en) * 2011-06-22 2011-09-21 成都阜特科技有限公司 Servo-driven control system for changing propeller of wind generating set
CN102878016A (en) * 2012-10-26 2013-01-16 华北电力大学 Large-scale wind turbine blade pendulating inhibition system and control method based on intelligent structure
CN102900609A (en) * 2012-10-26 2013-01-30 华北电力大学 Giant magnetostrictive flap wind turbine blade vibration reduction system and control method
CN103912447A (en) * 2014-04-04 2014-07-09 上海电机学院 Attach angle weight coefficient based independent variable pitch control system controlled by fuzzy PID (proportional integral derivative)
CN104005909A (en) * 2014-04-22 2014-08-27 重庆邮电大学 Nonlinear feed-forward and fuzzy PID combined variable pitch control method for wind generating set

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020105189A1 (en) * 1997-08-08 2002-08-08 Mikhail Amir S. Variable speed wind turbine generator
JP2001195102A (en) * 2000-01-13 2001-07-19 Seiko Seiki Co Ltd Controller having variable saturation function
CN102192084A (en) * 2011-06-22 2011-09-21 成都阜特科技有限公司 Servo-driven control system for changing propeller of wind generating set
CN102878016A (en) * 2012-10-26 2013-01-16 华北电力大学 Large-scale wind turbine blade pendulating inhibition system and control method based on intelligent structure
CN102900609A (en) * 2012-10-26 2013-01-30 华北电力大学 Giant magnetostrictive flap wind turbine blade vibration reduction system and control method
CN103912447A (en) * 2014-04-04 2014-07-09 上海电机学院 Attach angle weight coefficient based independent variable pitch control system controlled by fuzzy PID (proportional integral derivative)
CN104005909A (en) * 2014-04-22 2014-08-27 重庆邮电大学 Nonlinear feed-forward and fuzzy PID combined variable pitch control method for wind generating set

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108241288A (en) * 2016-12-23 2018-07-03 重庆邮电大学 A PID Controller Parameter Tuning Method Based on Improved TLBO Algorithm
CN107559143A (en) * 2017-07-27 2018-01-09 华北电力大学 A large-scale wind turbine trailing edge flap structure parameter optimization and multi-objective flap optimization control method
CN107762730A (en) * 2017-08-23 2018-03-06 华北电力大学 A kind of large-scale change oar turbine control system and control method with trailing edge flaps
CN107762730B (en) * 2017-08-23 2019-06-18 华北电力大学 Control system and control method of large-scale pitch wind turbine with trailing edge flaps
CN109958574A (en) * 2017-12-22 2019-07-02 北京金风科创风电设备有限公司 Load reduction control method and device for wind generating set
CN109162878A (en) * 2018-08-01 2019-01-08 汕头大学 A kind of intelligent blade of wind driven generator investigating method and its system
CN113167233A (en) * 2018-12-13 2021-07-23 西门子歌美飒可再生能源公司 estimated wind speed
CN111749845A (en) * 2019-03-29 2020-10-09 北京金风科创风电设备有限公司 Load reduction control method and device for wind turbine generator
CN111749845B (en) * 2019-03-29 2022-04-05 北京金风科创风电设备有限公司 Load reduction control method and device for wind turbine generator
CN115242072A (en) * 2022-09-16 2022-10-25 深圳市首航新能源股份有限公司 Method and device for reducing stress of inverter tube and inverter
CN115242072B (en) * 2022-09-16 2022-12-23 深圳市首航新能源股份有限公司 Method and device for reducing stress of inverter tube and inverter
CN119623068A (en) * 2024-11-27 2025-03-14 运达能源科技集团股份有限公司 Design optimization method and device for wind turbine blades, storage medium and electronic equipment

Also Published As

Publication number Publication date
CN105888971B (en) 2018-12-18

Similar Documents

Publication Publication Date Title
CN105888971A (en) Active load reducing control system and method for large wind turbine blade
CN105179164B (en) Wind-energy changing system sliding-mode control and device based on T-S fuzzy models
CN110566406B (en) Robust control system and method for real-time pitch pitch of wind turbine based on reinforcement learning
CN112632774B (en) Data-driven wind power plant frequency control method based on dynamic modal decomposition
CN106786677B (en) A kind of interconnected electric power system distributed dynamic matrix frequency control method
CN105545595B (en) Wind energy conversion system feedback linearization Poewr control method based on radial base neural net
CN106837678B (en) Based on the turbine-generator units PID governor parameters optimization for improving TLBO algorithms
CN111176115B (en) Valve position control method based on fuzzy neural network and human-like intelligent control
CN109296500B (en) A method for maximum wind energy capture based on robust control theory
CN112883652B (en) Design method of wind power plant active power off-line prediction controller considering dynamic wake flow
CN107559143A (en) A large-scale wind turbine trailing edge flap structure parameter optimization and multi-objective flap optimization control method
CN106406101B (en) An Intelligent Calculation Predictive Control Method for Coordinated Control System of Thermal Power Units
CN105626378A (en) Large wind turbine unit individual pitch control method based on RBF neural network
CN105649877A (en) Ant colony PID individual pitch control method of large wind turbine unit
CN109885077A (en) Attitude control method and controller of a quadrotor aircraft
CN102720634A (en) Variable universe fuzzy electric pitch control method for optimizing parameters
CN102900603B (en) Design method of wind turbine pitch controller based on finite-time non-fragile/cost-stable
CN108223274B (en) Pitch system identification method for large wind turbines based on optimized RBF neural network
CN108343546B (en) A kind of blower variable-pitch control method and system based on PI algorithm
CN111502914B (en) Fan variable pitch controller design method based on linear variable parameter system
CN109611274A (en) A LQG optimization control method for wind turbines in high wind speed area
CN112012875A (en) An optimization method for PID control parameters of hydraulic turbine regulating system
CN101635553A (en) Integrated intelligent decoupling control method for generator excitation system and steam valve system
Wang et al. Wind power compound model-free adaptive predictive control based on full wind speed
Bahraminejad et al. Pitch control of wind turbines using IT2FL controller versus T1FL controller

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181218