CN1058863A - Rotor of motor having no brush and manufacture method thereof - Google Patents
Rotor of motor having no brush and manufacture method thereof Download PDFInfo
- Publication number
- CN1058863A CN1058863A CN91104792A CN91104792A CN1058863A CN 1058863 A CN1058863 A CN 1058863A CN 91104792 A CN91104792 A CN 91104792A CN 91104792 A CN91104792 A CN 91104792A CN 1058863 A CN1058863 A CN 1058863A
- Authority
- CN
- China
- Prior art keywords
- magnetic
- permanent magnet
- yoke
- rotor
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 238000000034 method Methods 0.000 title claims description 12
- 229910000976 Electrical steel Inorganic materials 0.000 claims abstract description 49
- 230000004907 flux Effects 0.000 claims description 52
- 230000002093 peripheral effect Effects 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 20
- 239000011230 binding agent Substances 0.000 claims description 10
- 239000003822 epoxy resin Substances 0.000 claims description 10
- 229920000647 polyepoxide Polymers 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 238000000748 compression moulding Methods 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 229910000859 α-Fe Inorganic materials 0.000 claims description 6
- 239000000696 magnetic material Substances 0.000 claims description 5
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 4
- 150000002910 rare earth metals Chemical class 0.000 claims description 4
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 3
- 230000004323 axial length Effects 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 3
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims description 3
- 229920001187 thermosetting polymer Polymers 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 2
- 238000003475 lamination Methods 0.000 claims 1
- 230000000149 penetrating effect Effects 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 21
- 229910052742 iron Inorganic materials 0.000 abstract description 10
- 238000010030 laminating Methods 0.000 abstract description 3
- 230000002265 prevention Effects 0.000 description 7
- 230000035699 permeability Effects 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910000576 Laminated steel Inorganic materials 0.000 description 1
- 241000950638 Symphysodon discus Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- HOQADATXFBOEGG-UHFFFAOYSA-N isofenphos Chemical compound CCOP(=S)(NC(C)C)OC1=CC=CC=C1C(=O)OC(C)C HOQADATXFBOEGG-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2746—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets arranged with the same polarity, e.g. consequent pole type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
- H02K1/2766—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/01—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
- H02K11/012—Shields associated with rotating parts, e.g. rotor cores or rotary shafts
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/03—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/22—Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
- H02K9/225—Heat pipes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/04—Balancing means
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
本发明有关具有永久磁铁的无刷电动机转子,用 层叠多片硅钢片形成轭铁,使此轭铁外周上包含偶数 至少为4的磁极,在这些磁极中,每隔一磁极从中心 起以大致相等的距离设置为配置磁场有永久磁铁的 槽,使面对回转轴一侧的面具有同一磁性的磁场用永 久磁铁被设置在此槽内而构成本发明无刷电动机转 子,据此能达到小型和高效率化,且能在高速回转时 也不会使永久磁铁破损或飞散。
The present invention relates to a brushless motor rotor with permanent magnets. A yoke iron is formed by laminating a plurality of silicon steel sheets, so that the outer circumference of the yoke iron includes an even number of at least 4 magnetic poles. Among these magnetic poles, every other magnetic pole is approximately Equal distances are provided to arrange the grooves with permanent magnets for the magnetic field, so that the permanent magnets for the magnetic field with the same magnetic field on the side facing the rotating shaft are arranged in the grooves to constitute the rotor of the brushless motor of the present invention, thereby achieving a small size. And high efficiency, and the permanent magnet will not be damaged or scattered during high-speed rotation.
Description
本发明有关高效、适于高速回转的无刷电动机,更确切地说有关其转子。This invention relates to high efficiency brushless motors suitable for high speed rotation, and more particularly to their rotors.
对附图的简单说明A brief description of the attached drawings
图1为本发明采用永久磁铁转子的无刷电动机纵剖面图;Fig. 1 is the longitudinal sectional view of the brushless motor adopting the permanent magnet rotor of the present invention;
图2为转子的立体图;Figure 2 is a perspective view of the rotor;
图3为硅钢片主视图;Figure 3 is a front view of the silicon steel sheet;
图4为示意表示在无刷电动机内部永久磁铁转子磁力线的图;Fig. 4 is a diagram schematically showing the magnetic force lines of the permanent magnet rotor inside the brushless motor;
图5表示本发明第2实施例,为改变磁极宽度时永久磁铁转子的主视图;Fig. 5 shows the second embodiment of the present invention, the front view of the permanent magnet rotor when changing the pole width;
图6为在磁极上具有狭缝的第3实施例转子的主视图;Fig. 6 is the front view of the third embodiment rotor with slits on the magnetic poles;
图7为示意表示磁极上具有狭缝的第3实施例永久磁铁转子的无刷电动机内部磁力线的图;Fig. 7 is a diagram schematically showing the internal magnetic force lines of the brushless motor with the permanent magnet rotor of the third embodiment having slits on the magnetic poles;
图8表示本发明第4实施例,具有6磁极永久磁铁转子的主视图;Fig. 8 shows the 4th embodiment of the present invention, has the front view of permanent magnet rotor with 6 magnetic poles;
图9为放大表示本发明第5实施例的永久磁铁转子跨接部的剖面图;Fig. 9 is an enlarged cross-sectional view showing the bridging portion of the permanent magnet rotor of the fifth embodiment of the present invention;
图10为本发明第6实施例的硅钢片的俯视图;Fig. 10 is the plan view of the silicon steel sheet of the 6th embodiment of the present invention;
图11为表示根据磁场分析,当有负荷扭矩作用时磁力线流向的图;Fig. 11 is a diagram showing the flow direction of magnetic lines of force when a load torque acts according to the magnetic field analysis;
图12为本发明第7实施例的永久磁铁转子的立体分解图;Fig. 12 is a three-dimensional exploded view of the permanent magnet rotor of the seventh embodiment of the present invention;
图13为图12所示转子组装后的剖面图;Fig. 13 is a sectional view of the assembled rotor shown in Fig. 12;
图14为表示构成磁路时磁力线流向的图;Fig. 14 is a diagram showing the flow of magnetic lines of force when forming a magnetic circuit;
图15为采用本发明第1实施例永久磁铁转子无刷电动机的轴向剖面图;Fig. 15 is an axial sectional view of a brushless motor with a permanent magnet rotor according to the first embodiment of the present invention;
图16为表示本发明第8实施例的永久磁铁转子的立体图;Fig. 16 is a perspective view showing a permanent magnet rotor according to an eighth embodiment of the present invention;
图17为表示采用第8实施例永久磁铁转子的无电刷电动机轴向剖面图;Fig. 17 is an axial sectional view showing a brushless motor adopting the permanent magnet rotor of the eighth embodiment;
图18为分解表示本发明第9实施例的永久磁铁转子的立体图;Fig. 18 is an exploded perspective view showing a permanent magnet rotor according to a ninth embodiment of the present invention;
图19为和第9实施例永久磁铁转子回转轴垂直相交的剖面图;Fig. 19 is a sectional view perpendicular to the axis of rotation of the permanent magnet rotor of the ninth embodiment;
图20为和放大表示第9实施例轭铁一部分的轭铁回转轴垂直相交的横剖面图;Fig. 20 is a cross-sectional view perpendicularly intersecting with the yoke rotating shaft showing a part of the 9th embodiment yoke;
图21为和将第9实施例的另一例的轭铁的一部分放大表示的回转轴垂直相交的剖面图;Fig. 21 is a sectional view vertically intersecting with a part of the yoke iron of another example of the ninth embodiment shown in enlarged form;
图22为放大表示本发明第10实施例永久磁铁转子的轴向剖面图;Fig. 22 is an enlarged axial sectional view of a permanent magnet rotor according to a tenth embodiment of the present invention;
图23为表示本发明第11实施例永久磁铁转子立体图;Fig. 23 is a perspective view showing the permanent magnet rotor of the eleventh embodiment of the present invention;
图24为表示上述实施例其他例子的永久磁铁转子立体图;Fig. 24 is a perspective view of a permanent magnet rotor showing another example of the above-mentioned embodiment;
图25为对上述实施例回转轴切断表示的转子主视图;Fig. 25 is the front view of the rotor shown by cutting off the rotary shaft of the above embodiment;
图26为表示根据本实施例永久磁铁转子立体图;Fig. 26 is a perspective view showing a permanent magnet rotor according to the present embodiment;
图27为使扭曲的永久磁铁转子立体图;Fig. 27 is a perspective view of a permanent magnet rotor that is twisted;
图28为无刷电动机传统例的纵剖面图Fig. 28 is a longitudinal sectional view of a conventional example of a brushless motor
图29为转子传统例的立体图;Fig. 29 is a perspective view of a conventional example of a rotor;
图30为表示具有防护构件转子传统例的立体图。Fig. 30 is a perspective view showing a conventional example of a rotor having a guard member.
一般说,无刷电动机是在圆筒形转子的外表面上设置由铁氧体等构成的永久磁铁。Generally speaking, in a brushless motor, a permanent magnet made of ferrite or the like is provided on the outer surface of a cylindrical rotor.
例如,传统的无刷电动机1如图28所示,具有电动机壳体(定子)2,此电动机壳体2具有圆筒状的侧壁3,封闭此侧壁两端的前面板4和后面板5。在侧壁3内侧,将配置成圆筒形的多个激磁线圈6固定在其壁面上。在转子7的中心固定形成同心回转轴8。使回 转轴8从转子7的两端伸出,用安装在电动机体2的后面板5的孔9内的轴承10使其一端回转自由地受到支承,用安装在电动机壳体2的前面板4的孔11内的轴承12使回转轴8的另一端回转自由地受到支承。在电动机体2的侧壁3内侧上设置着圆环形磁极传感器支承构件13,将多个磁极传感器14保持固定在该支承构件13上,以使其位于转子7的表面附近。For example, as shown in FIG. 28, a conventional
图29表示传统的转子7。将此转子7构成使回转轴8插入圆筒状的轭铁70内,使回转轴8和轭铁70形成一体。将构成外侧为N极,内侧为S极的一对圆弧形磁化永久磁铁71和构成外侧为S极、内侧为N极的一对圆弧状磁化永久磁铁72成交叉形贴附在轭铁70的外周表面上。FIG. 29 shows a
在此无刷电动机1中,用上述磁极传感器14检测转子7的磁极位置,用未图示的控制回路使电流在对应的激磁线圈6内流过,依靠电流和磁力线的相互作用使转子回转。用磁极传感器14再次检测回转的转子7的磁极位置用上述控制回路向不同的激磁线圈6内供给电流,再次回转驱动转子7。通过反复进行上述动作,使转子7连续回转,该回转力作为动力,通过回转轴8,被取出到电动机外部。In this
此外,无刷电动机1,由于贴附在转子7上的永久磁铁71、72的离心力变大,故如图30所示,设置由非磁性金属材料构成的复盖圆弧状断面的永久磁铁71、72的防护构件73,并用以防护构件73来防止因伴随高速回转产生的离心力而使永久磁铁71、72飞散。In addition, since the centrifugal force of the permanent magnets 71 and 72 attached to the
然而,在使用铁氧体磁铁的无电刷电动机中,由于最大能量积为3.3MGOe、残留磁力线密度小仅为3.8KG,故为了产生驱动电动机所需充分的扭矩,需要提高磁路的磁导率,为此需要使用较多的磁铁,因而存在造成电动机大型化的不适当情况。However, in brushless motors using ferrite magnets, since the maximum energy product is 3.3MGOe and the residual magnetic force line density is as small as 3.8KG, in order to generate sufficient torque for driving the motor, it is necessary to increase the permeability of the magnetic circuit Therefore, it is necessary to use more magnets, so there is an inappropriate situation that causes the size of the motor to increase.
此外,在用于高速回转的涡旋型压缩机等场合,当因伴随高速 回转的离心力所引起的应力比永久磁铁的材料强度、或磁铁向转子的固定力还大时,有可能发生永久磁铁的破坏或永久磁铁飞散。In addition, in the case of a scroll compressor used for high-speed rotation, when the stress caused by the centrifugal force accompanying high-speed rotation is greater than the material strength of the permanent magnet or the fixing force of the magnet to the rotor, permanent magnet damage may occur. damage or permanent magnet flying.
进而,在为了防止永久磁铁飞散而用防护构件复盖转子时,不仅转子的制造工序复杂,而且使转子和定义间的空隙增加相当于实际的防护构件的厚度,其结果磁阻增加,而磁密度变减少,从而使效率降低。Furthermore, when covering the rotor with a protective member in order to prevent the permanent magnet from flying, not only the manufacturing process of the rotor is complicated, but also the gap between the rotor and the definition is increased by the thickness of the actual protective member. As a result, the magnetic resistance increases and the magnetic Density becomes reduced, thereby reducing efficiency.
本发明就是鉴于上述在传统无刷电动机中存在的问题,且为了有效解决这些问题。The present invention is in view of the above-mentioned problems existing in conventional brushless motors, and aims to effectively solve these problems.
因此,本发明目的要提供能小型、高效构成、且在高速回转时也不使永久磁铁破损或飞散的无刷电动机的转子。Therefore, an object of the present invention is to provide a rotor for a brushless motor that can be compactly configured with high efficiency and does not cause permanent magnets to be damaged or scattered during high-speed rotation.
为达到上述目的本发明的无刷电动机的转子是对具有永久磁铁的无刷电动机转子的改进,用叠层的多层硅钢片形成轭铁,在此轭铁的外周面上形成至少偶数为4的磁极,在这些磁极上,每隔一磁极设置有安排磁场用永久磁铁所需的槽,使该槽距离中心的距离大致相等,且要使面对回转轴一侧的面具有同一磁极。In order to achieve the above object, the rotor of the brushless motor of the present invention is an improvement to the rotor of the brushless motor with permanent magnets. The yoke is formed by stacked multilayer silicon steel sheets, and at least 4 even numbers are formed on the outer peripheral surface of the yoke. On these magnetic poles, every other magnetic pole is provided with the required grooves for arranging the permanent magnets for the magnetic field, so that the distances between the grooves and the center are approximately equal, and the surface facing the rotary shaft side has the same magnetic pole.
以下通过参照附图对本发明实施例的说明,从而可对本发明特征、目的和效果有进一步深刻的了解。By referring to the description of the embodiments of the present invention with reference to the accompanying drawings, the characteristics, purpose and effects of the present invention can be further understood.
实施例Example
首先,参照图1至图4对第1实施例进行说明。First, a first embodiment will be described with reference to FIGS. 1 to 4 .
图1表示根据本发明的具有永久磁铁转子的无刷电动机,用20表示其全体的无刷电动机具有将其周围包围起来的电动机壳体(定子)2,此电动机壳体2是由圆筒形侧壁3,前面板4和后面板5组成,在侧壁3的内侧壁面上固定着排列成圆筒状的多个激磁线圈6。将回转轴8同心固定在转子7的中心。使回转轴8从转子7的两端伸出,其一端回转自由地被支承在安装在电动机壳体2的后面板5上的轴承10内,其另一端回转自由地被支承在安装在电动机体2的前面板4上的轴承12内。在电动机壳体2的侧壁3的内侧设置圆 环形磁极传感器的支承构成13,将多个磁极传感器14安装保持在该支承构件13上,且要使其位于转子7的表面附近。Fig. 1 shows a brushless motor with a permanent magnet rotor according to the present invention, with 20 representing its overall brushless motor having a motor casing (stator) 2 that surrounds it, and this
在此无电刷电动机20中,用上述磁极传感器14检测转子7的磁极位置,用未予图示的控制回路使电流流过对应的激磁线圈6,依靠电流和磁力线的相互作用使转子7回转。再次用磁极传感器14检测已回转的转子7的磁极位置,用上述控制回路向不同的激磁线圈6供给电流,再复回转驱动转子7。通过反复进行上述动作使转子连续回转,将此回转力作为动力通过回转轴8取出到电动机外部。In this
图2表示本实施例转子7,图3表示构成转子7的硅钢片22。转子7的轭铁21是通过将多个硅钢片22沿回转轴8的轴方向层叠,且相互压入通过模压而成的长方形下陷的敛缝23部而结合成一体。FIG. 2 shows the
硅钢片22是由高导磁率材料构成,在其表面上形成厚0.35mm或0.5mm的无机性质的绝缘被覆膜,如图3所示具有4个互成90°角度成辐射状伸出的、其顶端成圆弧状的磁极24a,24b,在这些磁极中的互相面对面的2个磁极24a上,相对回转中心对称设置为插入永久磁铁30和31,的一对槽25。通过在磁极24a上设置上述槽25,用槽两端的桥26使磁极24a的顶端部和基部相连接。此外,在硅钢片22的中心设置为插入回转轴8的回转轴开口27,在此回转轴开口27的周围部上设键槽28。The
回转轴8形成中央部向外膨胀,具有能相对上述回转轴开口27进行无间隙嵌合的形状。在将硅钢片22层叠成一体而构成轭铁21后,将上述回转轴8插入回转轴开口27内。在回转轴8的膨胀的中央部分设置键29,使此键和上述键槽28接合,形成转子7不能相对回转轴8个别回转。The
在本实施例中,轭铁21是由硅钢片22层叠而成,然而也可以采用冷压钢材(SPCC钢材)代替硅钢片22层叠形成轭铁21。In this embodiment, the
把上述轭铁21构成,将一对永久磁铁30、31使它们的N极相 互面对面地插入槽25内。因此,形成用高导磁率材料的硅钢片22将各永久磁铁30、31沿半径方向夹持住的构造。而且,通过此永久磁铁30、31的N极的相互对向排斥作用,而使磁板24a带S极极性,24b带N极极性,整个转子7成为带4个极的转子结构。The above-mentioned
图4表示使转子7位于无刷电动机20内部时该转子7的磁力线流。从永久磁铁30的N极出来的磁力线,通过上述桥26到达S极,然后由于将桥26的宽设置待十分窄,因而其内的磁力线密度易达到饱和。在相邻的S极24a和N极24b间设置缺口部24',由于相互为同一极性而面对面的永久磁铁30、31的磁极相斥作用,使磁力线如图4所示那样,从磁极24b的磁极面出来,从激磁线圈6的内部通过,通过磁极24a的磁极面到达S极。将上述敛槽部23形成长方形,为了不对此磁力线产生干扰,使长边相对转子7的磁性方向倾斜45°。FIG. 4 shows the flow of magnetic lines of force of the
这样,在本实施例中,通过设置多个沿硅钢片呈辐射形伸出的磁极,在每一个磁极上设置槽,在此槽内插入相对回转中心使同一极面对面的永久磁铁,利用磁极间的同极相斥,能得到具有相当于永久磁铁数两倍的磁极数的转子。In this way, in this embodiment, by setting a plurality of magnetic poles protruding radially along the silicon steel sheet, a groove is provided on each magnetic pole, and a permanent magnet with the same pole facing each other relative to the center of rotation is inserted in the groove, and the gap between the magnetic poles is utilized. The same poles repel each other, and a rotor with twice the number of magnetic poles equivalent to the number of permanent magnets can be obtained.
此外,由于构成将永久磁铁插入槽内,沿半径方向被高导磁材料夹持着,因而不存在因高速回转而产生的飞散,因此,也不需要包复转子外周、为防止飞散用的构件,使因防止此飞散用构件引起的铁损不再存在的同时,且由于是用层叠的钢板构成轭铁,因而能使铁损维持在最小限度。In addition, since the permanent magnets are inserted into the slots, and are clamped by high magnetic permeability materials along the radial direction, there is no scattering caused by high-speed rotation, and therefore, there is no need to wrap the outer circumference of the rotor to prevent scattering. , while the iron loss caused by the scattering preventing member does not exist, and since the yoke is composed of laminated steel plates, the iron loss can be kept to a minimum.
此外,由于将本实施例的永久磁铁构成简单形状,不需要高精度表面加工,因而加工简单,使永久磁铁的制作极容易。In addition, since the permanent magnet of this embodiment is formed into a simple shape, high-precision surface processing is not required, so the processing is simple, making the permanent magnet extremely easy to manufacture.
接着,参照图5对第2实施例进行说明。Next, a second embodiment will be described with reference to FIG. 5 .
在图5中,由于从永久磁铁30的N极出来的磁力线的一部分,因所谓漏磁,而不通过磁极24b的磁极面反回到S极,因此,在磁 极24a的磁极面的宽W1和磁极24b的磁极面宽W2相等的场合,磁极24a的磁极面的总磁通量比磁极24b的总磁通量多。因此,在本实施例中,通过加大磁极24b的磁极面宽W2,使磁极24a,24b的磁极面的总磁通量相同,据此能使产生的扭矩均匀化。In FIG. 5 , since a part of the magnetic force lines coming out from the N pole of the
进而,参照图6和图7对第3实施例进行说明。Furthermore, a third embodiment will be described with reference to FIGS. 6 and 7 .
在本实施例中,如图6所示,是在磁极24a,24b上沿和各自的磁性方向相同的方向设置槽33。由于一般具有使从N极出来的磁力线通过最短距离到达S极的性质,因此和上述实施例的图4比较时,由于在磁极24a的磁极面的端部的磁通密度比其中央部的还大,对此,通过在磁极上设置槽33,能强制地引导磁力线,使其能沿着槽33从磁极面进出。In this embodiment, as shown in FIG. 6,
图7表示此实施例的磁力线流,使从永久磁铁30的N极出来的磁力线被导向槽33内,通过激磁线圈6,导向磁极24a的槽33内的同时而返回到永久磁铁30的S极。使磁力线固槽33的作用而在同一磁极面上磁力线分布均匀,使发生的扭矩也均匀,使永久磁铁转子的热分布得到改善的同时,能获得增大冷却面积的优点。Fig. 7 shows the flow of magnetic lines of force in this embodiment, so that the lines of magnetic force coming out from the N pole of the
接下来,参照图8对第4实施例进行说明。Next, a fourth embodiment will be described with reference to FIG. 8 .
图8表示具有6个磁极转子7的剖面。在此实施例中,使各磁极24a、24b、24c互相成60°角度,呈辐射状伸出,在这些磁极的每隔一个中分别嵌入使其N极朝内侧配置的永久磁铁34a、34b、34c。在轭铁21的中心设置可插入回转轴的回转轴开口27,在此回转轴开口27内设置防止回转轴相对转子回转的键槽28。FIG. 8 shows a section through a six-
由于此实施例的各永久磁铁34a、34b、34c被设置成使各自的N极面向内侧,使来自一N极的磁力线,如图中所示那样,因其它永久磁铁的N极的相斥作用,通过邻靠的磁极面到达S极。据此,使具有永久磁铁的磁极具有S极、不包含永久磁铁的磁极N极具有磁力。Since each permanent magnet 34a, 34b, 34c of this embodiment is arranged so that the respective N poles face inwardly, the magnetic lines of force from one N pole, as shown in the figure, are repelled by the N poles of other permanent magnets. , to reach the S pole through the adjacent magnetic pole surface. According to this, the magnetic pole having the permanent magnet has the S pole, and the magnetic pole not including the permanent magnet has the magnetic force in the N pole.
在本实施例中永久磁铁是采用镨(Pr)合金铸造磁铁,然而,也可采用铸造型(Al nico磁铁、镨磁铁)烧结型磁铁(铁氧体磁铁、稀土类磁铁)、树脂结合型磁铁(铁氧体磁铁,稀土类磁铁)中任何一种磁铁。In this embodiment, the permanent magnets are cast magnets made of praseodymium (Pr) alloys. However, cast magnets (Alnico magnets, praseodymium magnets), sintered magnets (ferrite magnets, rare earth magnets), and resin bonded magnets can also be used. (Ferrite magnets, rare earth magnets) any kind of magnet.
此外,将永久磁铁轧制成断面为矩形的板状,且使和转子轴方向相一致的边长为接近转子回转方向一边的边长的2至5倍。由于形成断面为矩形的板状,和传统的瓦状磁铁相比,加工容易,此外,由于不需要在轭铁的外周贴附,因而能省去精密的表面加工。此外,由于将永久磁铁插入槽25内,且用高导磁材料使其沿半径方向被夹住,因而不会发生因回转力而使磁铁飞散的情形,能用于高速回转电动机。In addition, the permanent magnet is rolled into a plate shape with a rectangular cross section, and the length of the side corresponding to the direction of the rotor axis is 2 to 5 times the length of the side close to the rotation direction of the rotor. Since it is formed into a plate shape with a rectangular cross section, it is easier to process than conventional tile-shaped magnets. In addition, since it does not need to be attached to the outer periphery of the yoke, it can save precise surface processing. In addition, since the permanent magnets are inserted into the
另外,由于用压力加工成形本发明轭铁21用的硅钢片22,因而生产率高,而且由于能获得精密外径尺寸的转子,故能制成高效率的电动机。In addition, since the
以下,对第5实施例进行说明。Hereinafter, a fifth embodiment will be described.
本实施例就是在桥26上设置限制磁通通过的沟。In this embodiment, the
也就是在将磁极24a的一部分放大的图9中,从磁场用永久磁铁30的N极出来的磁通的一部分,如图中所示,通过桥26达到永久磁铁30的S极。由于通过此桥26的磁通不会通过轭铁21的外部空间,不会和电动机的定子相交,因而不产生回转驱动转子的力。通过减少通过此桥26的磁通,能更有效地利用永久磁铁30的磁力。That is, in FIG. 9 in which a part of the
通过上述桥26的磁通φ可用下式计算。当将桥26的断面积定为S,硅钢片22的磁通密度定为B、关系式The magnetic flux φ passing through the above-mentioned
φ=B×Sφ=B×S
成立。由此式可知,若要减少通过桥26的磁通,只要使桥26的断面积变小就可以。established. It can be seen from the formula that if the magnetic flux passing through the
在本实施例中,是在桥26上设置限制磁通用的沟。形成了此沟26a的桥26的一部分的断面积变小。用此小的断面积能限制通过桥26的磁通。In this embodiment, the
通过分别在桥26,26上设置上述限制磁通用的沟26a,限制通过桥26,26的磁通,能更有效地利用磁场用永久磁铁的磁力从而获得更有效的好的永久磁铁的转子。By respectively providing the above-mentioned magnetically limiting
在形成上述限制磁通用沟26a中,最初,用起模加工使各硅钢片22成形,接着,叠置硅钢片22形成轭铁21,用磨削设备等在形成的轭铁21的桥26,26上形成沟26a,26a。形成此沟26a,26a的加工和硅钢片22的起膜加工比较,容易控制高尺寸精度,能在桥26,26上形成断面积极小的部分。据此,本发明的永久磁铁转子和在桥部分上不设沟的永久磁铁的转子相比,制造容易,而且能使其具有断面积非常小的桥部。In forming the above-mentioned limiting magnetic
接下来,对第6实施例进行说明。Next, a sixth embodiment will be described.
本实施例是仅在槽25的一侧设置上述桥26,而且要使该桥26存在于回转方向一侧。In this embodiment, the above-mentioned
就是如图10所示那样,槽25为半封闭型,也就是使磁极的一侧部26b和磁极基部连接的桥26为单支承,其形状为相对回转中心为点对称,沿回转方向侧具有桥26,逆回转方向侧不设桥。Just as shown in Figure 10, the
将永久磁铁30,31沿轴方向插入叠置硅钢片后形成的轭铁21的槽25内。如图10所示那样,在硅钢片的不设桥的一侧设制止部26c,由于它在插入永久磁铁30、31后起止动器作用,即使回转时也不会发生磁铁飞出现象。The
图11根据磁场分析,表示有负荷扭矩作用时的磁力线。桥26的宽为漏磁通通过的宽,而且为永久磁铁30在两端产生漏磁通通过的厚度。Figure 11 shows the magnetic force lines when a load torque acts according to the magnetic field analysis. The width of the
因此,如图11所示的在桥26产生漏磁通,在桥及其附近的磁 极一侧部形成磁通饱和。为此,即使有负荷电流流过的场合,从永久磁铁30,31出来的磁通难于在磁极的一侧部26b产生弯曲。因此,使转子外周上的磁极中心不易因负荷而移动,容易引入无传感器技术。此外,由于在不设桥的一侧不产生漏磁通,使自磁极一侧部的中心偏左侧的磁通量多,因此,即使在桥部有漏磁通,对总磁通来说,不会减少很多。Therefore, leakage magnetic flux occurs in the
接着,在第7实施例进行说明。Next, a seventh embodiment will be described.
本实施例就是用非磁性体把面对桥26一侧的永久磁铁30,31的端部30a,31a,以及沿该永久磁铁轴方向的端部30b,31b覆盖起来。In this embodiment, the
就是如图12所示那样,把用铝或非磁性不锈钢等制成的隔板32成形能把永久磁铁30,31的两端以及沿其轴方向的两端覆盖起来的框。框的大小就是其中能放入永久磁铁的尺寸,为了放入磁铁时不让磁铁露出,应使框的高度比磁铁厚度小一些。Just as shown in FIG. 12, the
组装时,将永久磁铁30,31沿磁化方向插入隔板32中使成一体后,将其插入轭铁21的槽25内。图13为表示组装后的剖面图。When assembling, the
此外,图14表示装入磁路后的磁通走向。如该图所示,由于在永久磁铁30的两端有非磁性隔板32,使磁通难于在这里流过,因此从磁铁出来的磁通几乎不产生漏泄,因而能使漏磁通减少,可以不漏掉从间隙漏掉的有效磁通。In addition, Fig. 14 shows the direction of the magnetic flux after it is installed in the magnetic circuit. As shown in the figure, since there are
况且,由于永久磁铁未从隔板露出,在将磁铁和隔板插入之际,磁铁不会和轭铁的槽相互接触,其结果,因能不使磁铁表面受伤,而不用担心生锈。Moreover, since the permanent magnet is not exposed from the spacer, when the magnet and the spacer are inserted, the magnet does not come into contact with the groove of the yoke. As a result, the surface of the magnet is not damaged and there is no need to worry about rust.
接下来,对第8实施例进行说明。Next, an eighth embodiment will be described.
本实施例如图16所示,在上述轭铁21内形成直径比上述回转轴8的外径大的回转轴用通孔15,将上述回转轴8大致同心地设置在此回转轴用通孔15内,在回转轴8的外周面和轭铁21的回转轴 用通孔15间形成防止磁通漏泄的构件16,通过此防止磁通漏泄的构件16,使轭铁21和回转轴8固定形成一体。In this embodiment, as shown in FIG. 16 , a through-hole 15 for a rotary shaft having a diameter larger than the outer diameter of the
就是本发明的一种无刷电动机如图15所示,转子7的磁通因磁场用永久磁铁30,31的相同磁极的相斥作用,通过永久磁铁转子7的外部空间,且如图所示而与定子铁芯17交叉。此定子铁芯17的磁极因流过激磁线圈6的电流而产生旋转磁场。永久磁铁转子7因上述定子铁芯17的磁极的旋转磁场而被驱动回转。Exactly a kind of brushless motor of the present invention is shown in Figure 15, and the magnetic flux of
此外,上述永久磁铁转子7,是在轭铁21的中心部形成和回转轴8的直径大致相等内径的回转轴用通过孔,在进行永久磁铁转子7的组装时,对轭铁21加热使上述回转轴用通孔受热膨胀后,压入回转轴8。压入后当使轭铁21冷却,就能使轭铁21的回转轴用通孔和转轴8的外周表面密切接合,从而使轭铁21和回转轴8结合成一体。In addition, the above-mentioned
对在轭铁21的两端面上具有平衡重的永久磁铁转子进行组装时,在用另外工序制造平衡重后,和上述一样将回转轴向平衡重和轭铁的回转轴用通孔压力。When assembling the permanent magnet rotor having balance weights on both ends of the
上述由申请人开发的无刷电动机的永久磁铁转子,仍担心有一部分磁通通过回转轴内部漏泄到永久磁铁转子轴方向端面的外侧。如果有一部分磁通漏泄,则由于这部分磁通不和定义铁芯交链,不能使永久磁铁的磁力有效地对电动机回转产生有利作用,有可能使无刷电动机的效率降低。In the above-mentioned permanent magnet rotor of the brushless motor developed by the applicant, there is still concern that part of the magnetic flux leaks through the inside of the rotating shaft to the outside of the end surface of the permanent magnet rotor in the axial direction. If a part of the magnetic flux leaks, since this part of the magnetic flux does not interlink with the defined iron core, the magnetic force of the permanent magnet cannot effectively have a beneficial effect on the rotation of the motor, which may reduce the efficiency of the brushless motor.
因此,第8实施例的目的是对于上述申请人开发的无刷电动机的永久磁铁转子,提供能大致防止磁通漏泄转子轴向端面外侧,而容易制造的永久磁铁转子。Therefore, an object of the eighth embodiment is to provide a permanent magnet rotor which can substantially prevent leakage of magnetic flux to the outside of the axial end surface of the rotor and is easy to manufacture for the permanent magnet rotor of the brushless motor developed by the above-mentioned applicant.
也就是如图16所示,使永久磁铁转子7的中心部具有回转轴用通孔15,在轭铁21和回转轴8间具有由铝压铸材组成的防止磁通漏浅构件16,进而,在轭铁21的两端面上具有由铝压铸材组成 的平衡重18。由于铝压铸材具有阻挡磁通性质,因而使磁通不会通过防止磁通漏泄构件16和平衡重18。为此,在磁场用永久磁铁两端,使通过回转轴8内部流到轭铁21两端面外侧的磁通因防止磁通漏泄构件16和平衡重18而被阻挡,而不伸出到轭铁21的两端面外侧。That is, as shown in FIG. 16, the center portion of the
在将此永久磁铁转子7用于无刷电动机场合,由于如图17所示,那样,磁力线通过与回转轴8相垂直的面内,使所有的磁力线有效地和定子铁芯17相交链。使电流流过无电刷电动机的激磁用线圈6,使定子铁饼17的磁极上发生旋转磁场,用此定子铁芯的回转磁场和永久磁铁转子的磁力线的相互作用回转驱动永久磁铁的转子,如果和定子铁芯交链的磁力线多,能使回转扭转更大。因此,若采用本实施例的永久磁铁转子7,由于磁场用永久磁铁30,31的磁力线不伸出到轭铁21的两端面的外侧,而全部和定子铁芯17交链,因而能有效地利用其磁力线产生回转力。When the
此外,由于本实施例的永久磁铁转子7通过缓慢地将回转轴8插入回转轴用通孔15内,用铸造铝材将防止磁通漏泄构件16、平衡重18进行一体化成形,用个别的工序制造平衡重,从而能省去除其和轭铁一起向永久磁铁转子上组装的工序。据此,能使永久磁铁转子的制造变得容易。In addition, since the
在上述实施例中,是用具有平衡重的永久磁铁转子来进行说明,然而即使对仅用防止磁通漏泄构件的永久磁铁转子,由于防止磁通漏泄构件把通过回转轴的磁通阻挡住,因而能提高电动机效率。In the above-mentioned embodiment, the permanent magnet rotor with the balance weight is used for explanation. However, even for the permanent magnet rotor using only the magnetic flux leakage prevention member, since the magnetic flux leakage prevention member blocks the magnetic flux passing through the rotary shaft, Therefore, the motor efficiency can be improved.
此外,制作防止磁通漏泄构件,也不限于使用铸造铝材,用导磁率低的材料,例如树脂也能得到同样效果。In addition, the fabrication of the magnetic flux leakage prevention member is not limited to the use of cast aluminum, and the same effect can also be obtained by using materials with low magnetic permeability, such as resin.
接下来,对第9实施例进行说明。Next, a ninth embodiment will be described.
本实施例是在形成上述槽25的轭铁21的内周表面上设置和压 入槽内部的磁场用永久磁铁30,31相接合的突起部。In this embodiment, protrusions engaged with the magnetic field
也就是如图18和图19所示那样,在形成槽25,25的硅钢片22的内侧周围表面上设置多个棱36,使这些棱的三角形的两条边向槽25内部突出。That is, as shown in FIG. 18 and FIG. 19 , a plurality of
磁场用永久磁铁30,31,就如图中所示那样,使其表面的一部分在压入时和棱36的尖端相接合,而被保持在槽25内部。利用此棱36使永久磁铁30,31和槽25的内周表面不形成面接触,因此,将永久磁铁30,31向槽25内部压入时,使因永久磁铁30,31和槽25的接触产生的摩擦力小,能够用小的力进行压入。The magnetic field
此外,压入后,如图中所示那样,因永久磁铁的外周表面的棱的尖端相接合,因此使永久磁铁不会脱落。本实施例永久磁铁转子7,由于没有用粘着剂使永久磁铁30,31保持在槽25的内部,因而在制冷剂或加压流体内部使用的场合,不会因粘着剂溶解在制冷剂或加压流体内而使永久磁铁脱落。In addition, after press-fitting, as shown in the figure, since the tips of the ribs on the outer peripheral surface of the permanent magnet are joined, the permanent magnet does not come off. The
如图20所示,在形成槽25的硅钢片22的内侧周缘部分上设置有将硅钢片22叠置成一体所需的敛槽部23。用金属模压机使硅钢片的一部分陷落而形成上述敛槽部。通过将此敛槽设置在硅钢片的周缘部,使硅钢片的周缘部因金属模的压力而变形,如图中所示那样,向槽25内部突出而形成棱36。这样,通过形成棱36,能省去形成棱的工序中一部分,能得到更容易制造的永久磁铁转子7。As shown in FIG. 20, on the inner peripheral edge portion of the
图21表示作为本实施例永久磁铁转子其它例子的轭铁的一部分。Fig. 21 shows a part of a yoke as another example of the permanent magnet rotor of this embodiment.
在此例中,硅钢片22的棱36是由具有和图中未表示的磁场用永久磁铁接合的三角形形状的接合部37,和在此接合部37的三角形底边两侧上形成的缺口部38组成。将接合37的三角形底边设置在比形成槽25的硅钢片22的内侧周缘部更向轭铁的内侧。使此接合部37通过缺口部38和形成槽25的硅钢片的内侧周缘部连接。In this example, the
为了使能和磁场用永久磁铁相接合,必需使棱的突起具有规定角度以内的顶角和规定的高度。当使此棱的突起顶角过份大时,需要用大的力压入磁场用永久磁铁。此外,当棱不具有规定高度时时,因压入磁场用永久磁铁而使棱变形,从而使棱未能发挥其应有的作用。但是,所谓在形成槽的硅钢片的周缘上设置具备上述条件的顶角和高度的棱,就等于使能压入槽内的磁场用永久磁铁的断面积小,或者使槽的开口部大,这与无电刷电动机的小形化和高效率化要求相违背。In order to engage with the permanent magnet for the magnetic field, it is necessary for the protrusion of the rib to have an apex angle within a predetermined angle and a predetermined height. When the protrusion angle of this rib is made too large, it is necessary to press in the permanent magnet for the magnetic field with a large force. In addition, when the ribs do not have a predetermined height, the ribs are deformed by pressing in the permanent magnets for the magnetic field, so that the ribs cannot function as they should. But so-called on the periphery of the silicon steel sheet that forms groove, be provided with the rib of apex angle and height of above-mentioned condition, just equal to make the sectional area of the permanent magnet that can be pressed into the magnetic field in the groove small, or make the opening of the groove large, This is contrary to the miniaturization and high efficiency requirements of the brushless motor.
由于棱36具有上述接合部37和缺口部38,从而能不使槽25的开口部变大,或不使磁场用永久磁铁断面积变小,使永久磁铁容易被压入的同时,且压入后能有效地使之和永久磁铁接合,防止永久磁铁脱落。Since the
此外,以上作为和上述磁场用永久磁铁接合的突出部,是用具有三角形的棱进行了说明,然而作为突出部形状不限于此,例如,也可以是顶端形成直径小的半圆形突出部。In addition, above, the protruding part which engages with the permanent magnet for a magnetic field has been described as having a triangular edge, but the shape of the protruding part is not limited thereto. For example, a semicircular protruding part with a small diameter may be formed at the tip.
此外,作为轭铁,也不限于层叠的硅钢片,也可以由整体的金属材料构成、其内部具有压入磁场用永久磁铁的槽,进而在槽的内周表面上形成和磁场用永久磁铁接合的突出部。In addition, as the yoke, it is not limited to laminated silicon steel sheets, but can also be made of an integral metal material, with a slot for pressing a permanent magnet for a magnetic field inside, and then formed on the inner peripheral surface of the slot to engage with the permanent magnet for a magnetic field. of the protrusion.
接着,对第10实施例进行说明。Next, a tenth embodiment will be described.
本实施例是把比轭铁21的轴方向长度短的磁场用永久磁铁30,31插入上述槽25内,在插入磁场用永久磁铁后的上述槽的空腔部内按照被回转驱动物的重心偏移充填油灰等材料,由于固化学后上述油灰等材料形成平衡重。In this embodiment, the magnetic field
也就是图22是表示设置了平衡重的永久磁铁转子7,该永久磁铁转子7,由于是将磁场用永久磁铁30,31的长度形成比轭铁21的轴向长度短,因此,在轭铁21的槽25内存在空腔。在此空腔内,如图所示,充填混合了金属微小粒子和树脂的油灰材料,使此油灰材 料固化而形成平衡重39。That is, FIG. 22 shows a
这样,由于在永久磁铁转子7的轭铁21的内部,将平衡重39,39分别设置在磁场用永久磁铁30,31的各不相同的一侧,因此轭铁21的重心位置分别在轭铁21的两端部产生偏位,能防止由回转轴和上述偏心转子组成的整个系统振荡的谐振,从而能吸收因回转而引起的偏心转子的振动。Like this, because in the interior of the
在图22中,为了达到上述目的,平衡重39,39的重量受到调节。也就是为了消除由回转轴和上述偏心转子组成的整个系统的振荡的谐振,调节油灰的相对树脂的金属粒子的比例,然后将其向槽25的空腔部充填。或者调节油灰材料的量,形成不同大小的平衡重39也可以。此外,作为上述油灰材料也可以使用由金属粒子和树脂组成的油灰材料以外的铝铸件。In Fig. 22, the weights of the
如上所述,由于是将本实施例永久磁铁转子的平衡重设置在轭铁内部,因而在轭铁外表面上没有平衡重的伸出部分,在回转中不存在平衡重的伸出部分承受流体阻力的问题。进而由于是将平衡重设置在轭铁内部,因而也不发生因永久磁铁回转产生的离心力使平衡重飞散的问题。据此而得到回转驱动效率好,能完全防止平衡重飞散事故的永久磁铁转子。As mentioned above, since the balance weight of the permanent magnet rotor in this embodiment is set inside the yoke, there is no protruding portion of the balance weight on the outer surface of the yoke, and there is no protruding portion of the balance weight to receive the fluid during rotation. The problem of resistance. Furthermore, since the balance weight is installed inside the yoke, there is no problem that the balance weight is scattered due to the centrifugal force generated by the rotation of the permanent magnet. According to this, a permanent magnet rotor with high rotary driving efficiency and which can completely prevent the accident of flying of the counterweight can be obtained.
以下,对第11实施例进行说明。Hereinafter, an eleventh embodiment will be described.
本实施例是在转子上附加冷却构造。This embodiment is an additional cooling structure on the rotor.
也就是在图23中,在轭铁21内埋入使和上述永久磁铁30,31接触的热管19,19。在热管19内充满动作液体,用此动作液体进行热交换。具体地说,使从插入轭铁21内部的受热部接受了轭铁内部热量的热管19通过其从轭铁伸出的放热部和外界大气进行热交换,然后使动作液再次返回受热部。这样使热管19不断将永久磁铁或轭铁内部热向外部放出,使永久磁铁冷却。That is, in FIG. 23 ,
图24,25是表示将回转轴8作为热管轴。在这样构成场合,能 形成全封闭式,且能向外部放出热量的永久磁铁转子。此外,在此实施例场合,能采用烧结合金、块装铁、或冷轧钢材(SPCC材)制造轭铁。24 and 25 show that the
以下,对有关本发明的转子制造方法进行详细说明。Hereinafter, the rotor manufacturing method according to the present invention will be described in detail.
从以上说明可知,本发明的永久磁铁转子是通过一方面形成具有可插入磁场用永久磁铁的槽的轭铁,一方面形成和和轭铁的槽形状相吻合的磁场用永久磁铁,然后将上述磁场用永久磁铁压入轭铁的槽内进行制造。As can be seen from the above description, the permanent magnet rotor of the present invention forms a yoke with a slot for inserting a permanent magnet for a magnetic field on the one hand, and forms a permanent magnet for a magnetic field matching the shape of the slot of the yoke on the one hand, and then the above-mentioned The magnetic field is produced by pressing permanent magnets into slots in the yoke.
也就是,在制造永久磁铁转子7中,分别制造轭铁21和磁场用永久磁铁30,31,将制成的磁场用永久磁铁插入轭铁内部而形成永久磁铁转子7。通过叠层多个硅钢片22形成轭铁21。在各硅钢片22和外周上形成磁极24(24a,24b,24c),在磁极的内侧,通过成形拨模形成使磁场用永久磁铁通过的开口。进而在各硅钢片22上,通过模压形成长方形陷落的敛槽部23。That is, in manufacturing the
通过使上述各硅钢片22的敛槽部23互相压入,而使硅钢片22接合成一体,而形成轭铁21。使硅钢片22的开口重合,形成为插入磁场用永久磁铁30,31的槽25。The
另一方面,关于磁场用永久磁铁,最初,将粉末状磁性体和环氧树脂粘结剂相互混练后放入模型内,在磁场中形成规定的形状。用热处理使成形的磁场用永久磁铁硬化,进而进行表面切削加工,使和上述轭铁21的槽25的形状相吻合,成为组装用的磁场用永久磁铁30,31。On the other hand, as for the permanent magnet for magnetic field, firstly, a powdery magnetic body and an epoxy resin binder are kneaded together, put into a mold, and formed into a predetermined shape in a magnetic field. The formed magnetic field permanent magnets are hardened by heat treatment, and the surface is cut to conform to the shape of the
将上述磁场用永久磁铁压入轭铁21的槽25内,即完成永久磁铁转子7的制造。The permanent magnet for the magnetic field is pressed into the
接下来,对能制造具有复杂形状的磁场用永久磁铁和永久磁铁转子,在进行永久磁铁转子组装时不会使磁场用永久磁铁破损,且制造容易的无刷电动机的永久磁铁转子的其它制造方法进行说明。Next, another manufacturing method for the permanent magnet rotor of the brushless motor that can manufacture the permanent magnets for the magnetic field and the permanent magnet rotor with complex shapes, and does not damage the permanent magnets for the magnetic field when the permanent magnet rotor is assembled. Be explained.
该制方法就是在无刷电动机的永久磁铁转子的轭铁的内部设置安放磁场用永久磁铁的槽,将粉碎的粉末状磁性体和环氧树脂粘结剂混练后充填入此槽内,使其处在相对永久磁铁转子的回转轴成辐射方向施加的磁场中,对上述粉末状磁性体和环氧树脂粘结剂进行压缩,在压缩成形后进行热硬化处理,在轭铁的槽内直接形成磁场用永久磁铁。The production method is to set a groove for placing a permanent magnet for the magnetic field inside the yoke of the permanent magnet rotor of the brushless motor, and mix the pulverized powdery magnetic body and epoxy resin binder to fill it into the groove, so that It is in the magnetic field applied in the radial direction relative to the rotation axis of the permanent magnet rotor. The above-mentioned powdery magnetic body and epoxy resin binder are compressed, and after compression molding, thermal hardening treatment is performed, and directly in the groove of the yoke Permanent magnets are used to form a magnetic field.
图23表示槽25中形成磁场用永久磁铁的工序。将轭铁21如图所示配置在具有线圈41的台座42上面。在轭铁21的顶部面上设置具有和槽25为同一形状的压缩用开口43和压缩用活塞44的夹具40。此夹具40包含线圈45。在轭铁21的槽25内充真使粉末状磁性体和环氧树脂粘结剂混练后的永久磁铁原料46。由于永久磁铁原料46因压缩而体积缩小,予先充填比槽25的容积稍多的原料,使其一部分从上述夹具40的压缩用开口43内挤出。FIG. 23 shows a step of forming a permanent magnet for a magnetic field in the
使电流从线圈41和45流过,如图所示,形成使磁力线通过轭铁中心,从槽25内侧朝向外侧和充填的永久磁铁原料46交链的磁场。接着,用油压等机构使压缩用活塞44强制地沿图中所示方向P移动,压缩永久磁铁原料46,形成磁场用永久磁铁。The current flows through the
在上述压缩成形后,从夹具40和台座42上取下轭铁21,在100°-150℃对其进行热硬化处理,使轭铁21内的磁场用永久磁铁硬化。After the above-mentioned compression molding, the
这样,如图4等所示那样,在永久磁铁转子7的槽25内部形成磁场用永久磁铁。利用压缩成形时的磁场影响,使磁场用永久磁铁的内侧磁化成S极,外侧成N极。由于使磁场用永久磁铁30,31和具有相同磁性的磁极面形成面对面,如图所示,利用同极相斥作用,使磁力线从轭铁21的磁极24a出来到达磁极24b。使此磁力线和图中未表示的配置在轭铁外周表面附近的电动机的定子相交链,利用和定子的相互作用,驱动永久磁铁转子7回转。In this way, as shown in FIG. 4 and the like, permanent magnets for the magnetic field are formed inside the
若根据如上所述本实施例永久磁铁转子的制造方法,由于能在轭铁内部直接形成磁场用永久磁铁,使制造容易,并且不会在压入磁场用永久磁铁过程中破损。此外,能在轭铁内部形成形状复杂的磁场用永久磁铁,尤其在使轭铁的每一磁极的位置沿永久磁铁转子轴方向稍稍产生扭转的永久磁铁转子中,此效果更显著。According to the manufacturing method of the permanent magnet rotor of the present embodiment as described above, since the permanent magnets for the magnetic field can be directly formed inside the yoke, the manufacture is easy, and the permanent magnets for the magnetic field will not be damaged during the process of pressing them in. In addition, a permanent magnet for a magnetic field with a complex shape can be formed inside the yoke, especially in a permanent magnet rotor in which the position of each magnetic pole of the yoke is slightly twisted in the direction of the permanent magnet rotor axis.
如图24所示那样,在形成扭转的永久磁铁转子7中,使多片硅钢片22分别相对回转轴8每次形成微小角度的回转而形成层叠。此永久磁铁转子7的槽25在永久磁铁转子内部形成螺旋状弯曲。即使对于这样复杂形状的槽25,采用在图23中说明过的同样方法,能在槽25内部直接形成磁场用永久磁铁30,31。As shown in FIG. 24 , in the twisted
此外,在上述实施例中,是用使轭铁内部具有一对磁场用永久磁铁,利用此磁场用永久磁铁相同磁极的相斥作用,在其外周表面上形成相互交替N和S极的4个磁极的永久磁铁转子来进行了说明,然而本发明的无刷电动机永久磁铁转子的制造方法不限于上述构造的永久磁铁转子。也就是对于在外周表面上具有任意数磁极的永久磁铁转子,或对于使各磁极具有磁场用永久磁铁的永久磁铁转子,也能同样在轭铁内部直接形成磁场用永久磁铁。In addition, in the above-mentioned embodiment, a pair of permanent magnets for the magnetic field are provided inside the yoke, and four alternating N and S poles are formed on the outer surface of the yoke by utilizing the mutual repulsion of the same magnetic poles of the permanent magnets for the magnetic field. The permanent magnet rotor with magnetic poles was described, however, the method of manufacturing the permanent magnet rotor for a brushless motor according to the present invention is not limited to the permanent magnet rotor with the above-mentioned structure. That is, for a permanent magnet rotor having any number of magnetic poles on the outer peripheral surface, or a permanent magnet rotor having magnetic field permanent magnets for each magnetic pole, the magnetic field permanent magnets can be formed directly inside the yoke similarly.
此外,在实施例中是用断面呈矩形的磁场用永久磁铁进行说明,然而磁场用永久磁铁的断面形状也可以是任意形状。In addition, in the embodiment, a permanent magnet for a magnetic field having a rectangular cross-section is used for description, but the cross-sectional shape of the permanent magnet for a magnetic field may be any shape.
若采用上述制造方法,能得到制造容易且效率高的永久磁铁转子。此外,若采用此制造方法,在制造过程中无需对永久磁铁进行切削。进而,由于在制造过程中不发生永久磁铁的破损,能使永久磁铁得到有效利用。According to the above manufacturing method, a permanent magnet rotor that is easy to manufacture and highly efficient can be obtained. In addition, if this manufacturing method is adopted, the permanent magnet does not need to be cut during the manufacturing process. Furthermore, since damage to the permanent magnet does not occur during the manufacturing process, the permanent magnet can be effectively used.
此外,由于是在轭铁的槽内直接形成磁场用永久磁铁,故即使对于复杂形状的槽也能适应。即除了能容易形成断面形状复杂的磁场用永久磁铁以外,即使对于在轭铁内部形成弯曲槽的永久磁铁转子也能得到容易制造的制造方法。In addition, since the permanent magnets for the magnetic field are directly formed in the slots of the yoke, it is also applicable to slots of complex shapes. That is, in addition to being able to easily form permanent magnets for magnetic fields with complex cross-sectional shapes, it is also possible to obtain a manufacturing method that is easy to manufacture for permanent magnet rotors in which curved grooves are formed inside the yoke.
Claims (21)
Applications Claiming Priority (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP121724/90 | 1990-05-11 | ||
JP02184491A JP3142002B2 (en) | 1990-07-12 | 1990-07-12 | Permanent magnet rotor |
JP184491/90 | 1990-07-12 | ||
JP28153790 | 1990-10-19 | ||
JP281537/90 | 1990-10-19 | ||
JP315398/90 | 1990-11-20 | ||
JP12172490 | 1990-11-20 | ||
JP31539890 | 1990-11-20 | ||
JP12233290 | 1990-11-21 | ||
JP122332/90 | 1990-11-21 | ||
JP026420/91 | 1991-02-20 | ||
JP2642091 | 1991-02-20 | ||
JP5703791 | 1991-03-20 | ||
JP057037/91 | 1991-03-20 | ||
JP8864691 | 1991-04-19 | ||
JP088646/91 | 1991-04-19 | ||
JP092361/91 | 1991-04-23 | ||
JP9236191 | 1991-04-23 | ||
JP10015091 | 1991-05-01 | ||
JP100150/91 | 1991-05-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1058863A true CN1058863A (en) | 1992-02-19 |
CN1037646C CN1037646C (en) | 1998-03-04 |
Family
ID=27579790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN91104792A Expired - Fee Related CN1037646C (en) | 1990-07-12 | 1991-07-11 | Brushless motor rotor and manufacturing method thereof |
Country Status (6)
Country | Link |
---|---|
US (1) | US5369325A (en) |
EP (1) | EP0538472B1 (en) |
CN (1) | CN1037646C (en) |
DE (1) | DE69128083T2 (en) |
SG (1) | SG47864A1 (en) |
WO (1) | WO1992001326A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102035330A (en) * | 2009-10-07 | 2011-04-27 | 阿斯莫有限公司 | Motor |
CN102386727A (en) * | 2011-11-15 | 2012-03-21 | 浙江寰亚电子有限公司 | Structure of corner on punching sheet of motor rotor |
CN102497045A (en) * | 2011-11-15 | 2012-06-13 | 浙江寰亚电子有限公司 | Magnet body structure for motor rotor |
CN101682244B (en) * | 2007-02-15 | 2012-09-19 | 哈米尔顿森德斯特兰德公司 | Magnet retention system for permanent magnet motors and generators |
CN101692588B (en) * | 2008-12-01 | 2013-03-13 | 通用汽车环球科技运作公司 | Method and device for permanent-magnet machine with additional air casings |
CN103117611A (en) * | 2013-02-01 | 2013-05-22 | 广东威灵电机制造有限公司 | Permanent magnet motor |
CN103872821A (en) * | 2012-12-10 | 2014-06-18 | 株式会社电装 | Rotating electric machine |
CN105490416A (en) * | 2016-01-13 | 2016-04-13 | 卢建国 | Inner rotor core of brushless motor and laminating method |
CN106979138A (en) * | 2016-07-29 | 2017-07-25 | 松下知识产权经营株式会社 | Close-type refrigerant compressor and refrigerating plant |
CN107104568A (en) * | 2017-07-04 | 2017-08-29 | 杭州同孚环保科技有限公司 | A kind of reluctance motor set to pole |
CN108352743A (en) * | 2015-11-18 | 2018-07-31 | 三菱电机株式会社 | Motor and air conditioner |
CN109075681A (en) * | 2016-04-21 | 2018-12-21 | 三菱电机株式会社 | Motor and air conditioner |
Families Citing this family (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5508576A (en) * | 1990-07-12 | 1996-04-16 | Seiko Epson Corporation | Rotor for brushless electromotor |
US5679995A (en) * | 1992-08-12 | 1997-10-21 | Seiko Epson Corporation | Permanent magnet rotor of brushless motor |
US5864191A (en) * | 1992-08-12 | 1999-01-26 | Seiko Epson Corporation | Efficient permanent magnet rotor for brushless motor |
CA2142089A1 (en) * | 1992-08-12 | 1994-03-03 | Takashi Nagate | Permanent magnet rotor of brushless motor and production method thereof |
USRE37576E1 (en) * | 1993-02-22 | 2002-03-12 | General Electric Company | Single phase motor with positive torque parking positions |
US5773908A (en) * | 1993-02-22 | 1998-06-30 | General Electric Company | Single phase motor with positive torque parking positions |
US5666015A (en) * | 1993-04-30 | 1997-09-09 | Sanyo Electric Co., Ltd. | Electric motor for a compressor with a rotor with combined balance weights and oil separation disk |
TW267271B (en) * | 1994-04-21 | 1996-01-01 | Ebara Corp | |
JP3309393B2 (en) * | 1994-06-01 | 2002-07-29 | セイコーエプソン株式会社 | Permanent magnet rotor |
FR2723272B1 (en) † | 1994-07-27 | 1996-08-30 | Gec Alsthom Parvex Sa | SYNCHRONOUS MOTOR COMPRISING MAGNETS INSERTED IN A ROTOR |
US6018200A (en) * | 1994-09-14 | 2000-01-25 | Coleman Powermate, Inc. | Load demand throttle control for portable generator and other applications |
US6118186A (en) * | 1994-09-14 | 2000-09-12 | Coleman Powermate, Inc. | Throttle control for small engines and other applications |
US5705917A (en) * | 1994-09-14 | 1998-01-06 | Coleman Powermate, Inc. | Light weight machine with rotor employing permanent magnets and consequence poles |
US5929611A (en) * | 1994-09-14 | 1999-07-27 | Coleman Powermate, Inc. | Light weight rotor and stator with multiple coil windings in thermal contact |
US5900722A (en) * | 1994-09-14 | 1999-05-04 | Coleman Powermate, Inc. | Multimode power converter |
EP0729216A3 (en) * | 1995-02-21 | 1998-03-11 | Siemens Aktiengesellschaft | Hybride excited synchronous machine |
DE69636505T2 (en) | 1995-06-07 | 2007-05-24 | General Electric Co. | Dynamoelectric machine and its rotor construction |
US6047460A (en) * | 1996-01-23 | 2000-04-11 | Seiko Epson Corporation | Method of producing a permanent magnet rotor |
US5703421A (en) * | 1996-05-24 | 1997-12-30 | The United States Of America As Represented By The Secretary Of The Air Force | Reluctance generator/motor cooling |
JPH09327140A (en) * | 1996-06-07 | 1997-12-16 | Hitachi Ltd | Permanent magnet rotary electric machine and method of manufacturing the same |
JP3308828B2 (en) * | 1996-10-18 | 2002-07-29 | 株式会社日立製作所 | Permanent magnet rotating electric machine and electric vehicle using the same |
JP3906882B2 (en) * | 1997-10-24 | 2007-04-18 | 株式会社富士通ゼネラル | Permanent magnet motor |
JP3906883B2 (en) * | 1997-10-29 | 2007-04-18 | 株式会社富士通ゼネラル | Permanent magnet motor |
JP3535012B2 (en) * | 1998-06-09 | 2004-06-07 | ミネベア株式会社 | Radial gap type small cylindrical rotating electric machine |
KR20000009230A (en) * | 1998-07-22 | 2000-02-15 | 윤종용 | Brushless dc motor |
JP3601757B2 (en) * | 1998-08-03 | 2004-12-15 | オークマ株式会社 | Permanent magnet motor |
FR2784816B1 (en) * | 1998-10-20 | 2001-01-05 | Valeo Equip Electr Moteur | ROTATING ELECTRIC MACHINE HAVING A NEW ARRANGEMENT OF ROTOR EXCITATION BY PERMANENT MAGNETS |
DE19851883A1 (en) * | 1998-11-10 | 2000-05-18 | Siemens Ag | Permanent magnet polyphase-machine especially synchronous machine |
US6091168A (en) * | 1998-12-22 | 2000-07-18 | Hamilton Sundstrand Corporation | Rotor for a dynamoelectric machine |
JP3609649B2 (en) * | 1999-06-29 | 2005-01-12 | 三洋電機株式会社 | Brushless DC motor and refrigerant compressor using this motor |
US6727627B1 (en) * | 1999-07-16 | 2004-04-27 | Matsushita Electric Industrial Co., Ltd. | Permanent magnet synchronous motor |
JP2001204146A (en) * | 1999-11-08 | 2001-07-27 | Isuzu Motors Ltd | Rotor of rotating machine and method of manufacturing the same |
JP2001136690A (en) * | 1999-11-10 | 2001-05-18 | Isuzu Motors Ltd | Rotor of rotating machine |
US6392370B1 (en) | 2000-01-13 | 2002-05-21 | Bedini Technology, Inc. | Device and method of a back EMF permanent electromagnetic motor generator |
JP3740984B2 (en) * | 2000-02-10 | 2006-02-01 | 日産自動車株式会社 | Electric pole position detector |
JP4363746B2 (en) * | 2000-05-25 | 2009-11-11 | 株式会社東芝 | Permanent magnet type reluctance type rotating electrical machine |
US6917133B2 (en) | 2000-08-29 | 2005-07-12 | Hitachi, Ltd. | Air conditioner having permanent magnet rotating electric machine |
JP3787756B2 (en) * | 2000-08-29 | 2006-06-21 | 株式会社日立製作所 | Permanent magnet rotating electric machine |
EP1746706B1 (en) * | 2001-03-30 | 2011-07-06 | Sanyo Electric Co., Ltd. | Synchronous induction motor |
JP2002320363A (en) * | 2001-04-20 | 2002-10-31 | Denso Corp | Generator-motor for vehicle |
US6784582B1 (en) * | 2001-11-19 | 2004-08-31 | Valeo Electrical Systems, Inc. | Magnet shaping and pole concentration for reduction of cogging torque in permanent magnet motors |
DE10316831A1 (en) * | 2002-04-15 | 2003-11-27 | Denso Corp | Permanent magnet rotor for rotary electric machine with inner rotor has all permanent magnets magnetized in such a way that direction of magnetization is same looking in radial direction |
US6946766B2 (en) * | 2002-08-28 | 2005-09-20 | Emerson Electric Co. | Permanent magnet machine |
US6727623B2 (en) * | 2002-08-28 | 2004-04-27 | Emerson Electric Co. | Reduced impedance interior permanent magnet machine |
US6891298B2 (en) * | 2002-08-28 | 2005-05-10 | Emerson Electric Co. | Interior permanent magnet machine with reduced magnet chattering |
US6717314B2 (en) * | 2002-08-28 | 2004-04-06 | Emerson Electric Co. | Interior permanent magnet motor for use in washing machines |
DE10256523A1 (en) * | 2002-12-04 | 2004-06-24 | Robert Bosch Gmbh | Electrical machine, in particular brushless synchronous motor |
US20040217666A1 (en) * | 2002-12-11 | 2004-11-04 | Ballard Power Systems Corporation | Rotor assembly of synchronous machine |
JP2004270544A (en) * | 2003-03-07 | 2004-09-30 | Matsushita Electric Ind Co Ltd | Magnetizing jig, electric compressor, method of assembling rotor, and method of assembling electric compressor |
US7057323B2 (en) * | 2003-03-27 | 2006-06-06 | Emerson Electric Co. | Modular flux controllable permanent magnet dynamoelectric machine |
JP4248984B2 (en) * | 2003-09-19 | 2009-04-02 | 東芝キヤリア株式会社 | Permanent magnet motor |
US6911756B1 (en) * | 2004-03-23 | 2005-06-28 | Chio-Sung Chang | Rotor core with magnets on the outer periphery of the core having a sine or trapezoidal wave |
JP4599088B2 (en) * | 2004-05-13 | 2010-12-15 | 東芝コンシューマエレクトロニクス・ホールディングス株式会社 | Rotor for rotating electrical machine and method for manufacturing the same |
DE102005060116A1 (en) * | 2004-12-20 | 2006-07-06 | Danfoss Compressors Gmbh | Rotor for an electric motor |
DE102005060117A1 (en) * | 2004-12-20 | 2006-07-06 | Danfoss Compressors Gmbh | Rotor with cover plate for securing a magnet in the rotor |
DE102005060118A1 (en) * | 2004-12-20 | 2006-07-06 | Danfoss Compressors Gmbh | Rotor for an electric motor |
JP2006262553A (en) * | 2005-03-15 | 2006-09-28 | Toyota Motor Corp | Driving device and vehicle equipped with the same |
ITBO20050437A1 (en) * | 2005-06-30 | 2007-01-01 | Spal Automotive Srl | ROTOR FOR ELECTRIC MACHINE |
DE102005041676A1 (en) * | 2005-09-01 | 2007-03-22 | Atb Technologies Gmbh | Laminations stack arrangement for use in rotor of e.g. electrical motor, has stack of magnetically conducting laminations with recesses, where edge of one recess is formed such that elastically flexible elevations are formed to fix magnets |
JP4815204B2 (en) * | 2005-12-01 | 2011-11-16 | アイチエレック株式会社 | Permanent magnet rotating machine and compressor |
JP2007174822A (en) * | 2005-12-22 | 2007-07-05 | Fanuc Ltd | Electric motor rotor and method of manufacturing the same |
JP4692299B2 (en) * | 2006-01-24 | 2011-06-01 | 株式会社豊田自動織機 | Electric pump |
US7556082B2 (en) * | 2006-03-29 | 2009-07-07 | Gm Global Technology Operations, Inc. | Interior permanent magnet rotors with multiple properties and methods of making same |
DE102006032215A1 (en) * | 2006-07-12 | 2008-01-24 | Robert Bosch Gmbh | Rotor for an electric machine |
US7932658B2 (en) * | 2007-03-15 | 2011-04-26 | A.O. Smith Corporation | Interior permanent magnet motor including rotor with flux barriers |
US7923881B2 (en) * | 2007-05-04 | 2011-04-12 | A.O. Smith Corporation | Interior permanent magnet motor and rotor |
WO2009054740A2 (en) * | 2007-10-22 | 2009-04-30 | Zoleta Jose C | F.e.d. repulsion type motor |
CN101594011A (en) * | 2008-05-30 | 2009-12-02 | 德昌电机(深圳)有限公司 | Permanent magnetic brushless and rotor thereof |
EP2304863B1 (en) * | 2008-07-30 | 2018-06-27 | Regal Beloit America, Inc. | Interior permanent magnet motor including rotor with unequal poles |
JP5433198B2 (en) * | 2008-10-16 | 2014-03-05 | 日立オートモティブシステムズ株式会社 | Rotating electric machines and electric vehicles |
US8664819B2 (en) * | 2009-08-18 | 2014-03-04 | Northern Power Systems Utility Scale, Inc. | Method and apparatus for permanent magnet attachment in an electromechanical machine |
US9515529B2 (en) | 2009-08-18 | 2016-12-06 | Northern Power Systems, Inc. | Method and apparatus for permanent magnet attachment in an electromechanical machine |
EP2478615B1 (en) * | 2009-09-18 | 2019-09-04 | BRUSA Elektronik AG | Permanent magnet exited synchronous machine with embedded magnets |
DE102009049600A1 (en) * | 2009-10-16 | 2011-04-21 | Minebea Co., Ltd. | Electrical machine i.e. external rotor-electric motor, has opening formed between pole shoes that lie in interval, where interval is calculated from diameter of stator, multiple of number of rotor and stator poles and correction factor |
DE102010013748A1 (en) * | 2010-03-31 | 2011-10-06 | Siemens Aktiengesellschaft | Device in the manner of an electrical machine with a permanent magnetic rotor and a stator |
DE102010029514A1 (en) * | 2010-05-31 | 2011-12-01 | Robert Bosch Gmbh | Electric machine with reduced noise |
TWI424663B (en) * | 2010-07-01 | 2014-01-21 | Joy Ride Tech Co Ltd | A motor with heat pipe |
US9178392B2 (en) * | 2010-08-27 | 2015-11-03 | Mitsubishi Electric Corporation | Rotor of permanent magnet embedded motor, compressor, and refrigeration and air conditioning apparatus |
CN102611224A (en) | 2011-01-20 | 2012-07-25 | 株式会社安川电机 | Rotating electric machine and wind power generation system |
WO2013006078A1 (en) | 2011-07-06 | 2013-01-10 | General Electric Company | Laminated rotor balancing provisions |
US9190879B2 (en) | 2011-07-06 | 2015-11-17 | General Electric Company | Laminated rotor machining enhancement |
US8970082B2 (en) * | 2011-07-25 | 2015-03-03 | Regal Beloit America, Inc. | Permanent magnet rotors including retention features and methods of assembling the same |
EP2557661B1 (en) * | 2011-08-10 | 2020-03-11 | LG Innotek Co., Ltd. | Rotor core of motor |
TWI427895B (en) * | 2011-09-15 | 2014-02-21 | Rechi Prec Co Ltd | Motor |
EP2608365A1 (en) * | 2011-12-22 | 2013-06-26 | Joy Ride Technology Co., Ltd. | Electric motor having heat pipes |
JP5858232B2 (en) | 2012-02-17 | 2016-02-10 | 日本電産株式会社 | Rotor core, motor, and motor manufacturing method |
US20150084455A1 (en) * | 2012-03-30 | 2015-03-26 | Kollmorgen Corporation | Flux Directing, Pole Span Setting, Feature on Rotor Lamination of Air-Cooled Electric Motor/Generator |
US20140132094A1 (en) * | 2012-11-09 | 2014-05-15 | Remy Technologies, Llc | Thermal management of an ipm motor with non-magnetic bars |
EP2752971B1 (en) * | 2013-01-03 | 2017-09-13 | ABB Schweiz AG | Rotor for an electric machine and electric machine including the same |
US10574125B2 (en) | 2013-03-08 | 2020-02-25 | Mitsubishi Electric Corporation | Rotor with flux barrier for reducing flux generated by winding inductance |
AU2014402196B2 (en) * | 2014-07-31 | 2018-10-04 | Guangdong Welling Motor Manufacturing Co., Ltd. | Motor rotor and motor having same |
US10236742B2 (en) | 2014-11-25 | 2019-03-19 | Black & Decker Inc. | Brushless motor for a power tool |
US10500708B2 (en) | 2015-10-14 | 2019-12-10 | Black & Decker Inc. | Power tool |
FR3055485B1 (en) * | 2016-08-31 | 2022-11-25 | Valeo Equip Electr Moteur | ROTOR OF A ROTATING ELECTRIC MACHINE PROVIDED WITH AT LEAST ONE DEFORMABLE PORTION FOR FILLING A CAVITY |
JP6465496B2 (en) * | 2016-10-27 | 2019-02-06 | 三菱重工サーマルシステムズ株式会社 | Electric rotor and electric compressor |
WO2020057822A1 (en) * | 2018-09-17 | 2020-03-26 | Arcelik Anonim Sirketi | A hermetic compressor weight balancing rotor |
DE102019126763A1 (en) | 2019-10-04 | 2021-04-08 | Schlaeger Kunststofftechnik Gmbh | Method for producing a component provided with at least one component, in particular with a functional element |
CN113394907A (en) * | 2021-06-28 | 2021-09-14 | 威海西立电子有限公司 | Motor cooling structure, motor and manufacturing method of motor |
EP4203271A1 (en) * | 2021-12-23 | 2023-06-28 | Valeo eAutomotive Germany GmbH | A rotor for a rotary electric machine |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS3015907Y1 (en) * | 1954-05-06 | 1955-10-31 | ||
JPS3629332Y1 (en) * | 1960-02-15 | 1961-11-09 | ||
DE1488733A1 (en) * | 1965-12-08 | 1969-06-19 | Siemens Ag | Permanently excited electrical machine with permanent magnet blocks in the runner |
JPS4618489Y1 (en) * | 1966-10-04 | 1971-06-28 | ||
JPS4921525Y1 (en) * | 1970-10-02 | 1974-06-10 | ||
JPS4835302A (en) * | 1971-09-07 | 1973-05-24 | ||
JPS5035354B2 (en) * | 1972-07-29 | 1975-11-15 | ||
SU575733A1 (en) * | 1973-08-06 | 1977-10-05 | Предприятие П/Я Г-4884 | Method of manufacturing rotor of synchronous electrical machine with permanent magnets |
JPS5840422B2 (en) * | 1975-07-25 | 1983-09-06 | 株式会社日立製作所 | magnet generator rotor |
JPS5923179B2 (en) * | 1977-06-24 | 1984-05-31 | 株式会社日立製作所 | permanent magnet motor rotor |
JPS5814691Y2 (en) * | 1977-10-18 | 1983-03-24 | 株式会社安川電機 | Field of rotating electric machine |
FR2425754A1 (en) * | 1978-05-10 | 1979-12-07 | Sorts | Generator having heat engine and alternator - coupled via inductor consisting of tube coaxial with armature and provided with several pairs of radial poles |
US4476408A (en) * | 1979-05-23 | 1984-10-09 | General Electric Company | High efficiency, low cost permanent magnet AC machine |
US4322646A (en) * | 1980-02-29 | 1982-03-30 | Electro-Craft Corporation | Flux focussed DC motor and method for assembly |
JPS56157238A (en) * | 1980-05-07 | 1981-12-04 | Fanuc Ltd | Rotary motor |
JPS5716548A (en) * | 1980-07-04 | 1982-01-28 | Brother Ind Ltd | Cooling device for motor |
US4358696A (en) * | 1981-08-19 | 1982-11-09 | Siemens-Allis, Inc. | Permanent magnet synchronous motor rotor |
JPS5997546A (en) * | 1982-11-25 | 1984-06-05 | Nippon Sheet Glass Co Ltd | Mechanism for lining up suspender in apparatus for automatically suspending glass plate |
JPS5997546U (en) * | 1982-12-22 | 1984-07-02 | 株式会社日立製作所 | Iron core for die-casting rotor |
US4564777A (en) * | 1983-04-27 | 1986-01-14 | Hitachi, Ltd. | Reinforced permanent magnet rotor with cast zinc |
FR2548843B1 (en) * | 1983-07-07 | 1986-11-07 | Labinal | IMPROVEMENT IN ROTARY MAGNET ROTOR MACHINES |
JPS60121949A (en) * | 1983-12-05 | 1985-06-29 | Fanuc Ltd | Rotor of permanent magnet type synchronous motor |
JPS6377355A (en) * | 1986-09-19 | 1988-04-07 | Toshiba Corp | Manufacture of rotor for motor |
US4845837A (en) * | 1986-10-06 | 1989-07-11 | Emerson Electric Co. | Method of making permanent magnet assembly |
JPH01252146A (en) * | 1988-03-31 | 1989-10-06 | Toshiba Corp | Manufacturing method of rotor with permanent magnet |
JPH0222804A (en) * | 1988-07-11 | 1990-01-25 | Seiko Epson Corp | Rare-earth, iron resin-bonded magnet |
JP2574007B2 (en) * | 1988-08-02 | 1997-01-22 | ファナック株式会社 | Synchronous motor rotor |
-
1991
- 1991-07-10 EP EP91912479A patent/EP0538472B1/en not_active Expired - Lifetime
- 1991-07-10 WO PCT/JP1991/000925 patent/WO1992001326A1/en active IP Right Grant
- 1991-07-10 US US07/983,585 patent/US5369325A/en not_active Ceased
- 1991-07-10 DE DE69128083T patent/DE69128083T2/en not_active Expired - Fee Related
- 1991-07-11 CN CN91104792A patent/CN1037646C/en not_active Expired - Fee Related
-
1992
- 1992-07-10 SG SG1996004792A patent/SG47864A1/en unknown
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101682244B (en) * | 2007-02-15 | 2012-09-19 | 哈米尔顿森德斯特兰德公司 | Magnet retention system for permanent magnet motors and generators |
CN101692588B (en) * | 2008-12-01 | 2013-03-13 | 通用汽车环球科技运作公司 | Method and device for permanent-magnet machine with additional air casings |
CN102035330B (en) * | 2009-10-07 | 2014-09-24 | 阿斯莫有限公司 | Motor |
CN102035330A (en) * | 2009-10-07 | 2011-04-27 | 阿斯莫有限公司 | Motor |
CN102386727A (en) * | 2011-11-15 | 2012-03-21 | 浙江寰亚电子有限公司 | Structure of corner on punching sheet of motor rotor |
CN102497045A (en) * | 2011-11-15 | 2012-06-13 | 浙江寰亚电子有限公司 | Magnet body structure for motor rotor |
CN103872821B (en) * | 2012-12-10 | 2018-04-06 | 株式会社电装 | Electric rotating machine |
CN103872821A (en) * | 2012-12-10 | 2014-06-18 | 株式会社电装 | Rotating electric machine |
CN103117611B (en) * | 2013-02-01 | 2016-04-20 | 广东威灵电机制造有限公司 | A kind of permanent magnet motor |
CN103117611A (en) * | 2013-02-01 | 2013-05-22 | 广东威灵电机制造有限公司 | Permanent magnet motor |
CN108352743A (en) * | 2015-11-18 | 2018-07-31 | 三菱电机株式会社 | Motor and air conditioner |
US10855126B2 (en) | 2015-11-18 | 2020-12-01 | Mitsubishi Electric Corporation | Electric motor and air conditioner |
CN105490416A (en) * | 2016-01-13 | 2016-04-13 | 卢建国 | Inner rotor core of brushless motor and laminating method |
CN109075681A (en) * | 2016-04-21 | 2018-12-21 | 三菱电机株式会社 | Motor and air conditioner |
CN109075681B (en) * | 2016-04-21 | 2020-12-22 | 三菱电机株式会社 | Motor and air conditioner |
CN106979138A (en) * | 2016-07-29 | 2017-07-25 | 松下知识产权经营株式会社 | Close-type refrigerant compressor and refrigerating plant |
CN107104568A (en) * | 2017-07-04 | 2017-08-29 | 杭州同孚环保科技有限公司 | A kind of reluctance motor set to pole |
CN107104568B (en) * | 2017-07-04 | 2023-04-25 | 杭州同孚环保科技有限公司 | Reluctance motor with opposite poles |
Also Published As
Publication number | Publication date |
---|---|
DE69128083D1 (en) | 1997-12-04 |
EP0538472A4 (en) | 1994-06-08 |
DE69128083T2 (en) | 1998-03-19 |
CN1037646C (en) | 1998-03-04 |
SG47864A1 (en) | 1998-04-17 |
EP0538472A1 (en) | 1993-04-28 |
US5369325A (en) | 1994-11-29 |
EP0538472B1 (en) | 1997-10-29 |
WO1992001326A1 (en) | 1992-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1037646C (en) | Brushless motor rotor and manufacturing method thereof | |
CN1287503C (en) | Permanent magnet type motor and compressor using it | |
CN1269286C (en) | Rotor for electric machine | |
CN1060892C (en) | Rotor of electric moto used in compressor | |
US5508576A (en) | Rotor for brushless electromotor | |
US7372181B2 (en) | Rotor for brushless motor and brushless motor | |
EP2113984B1 (en) | Motor, and electric pump | |
US6429566B1 (en) | Rotor of rotating machine | |
CN101053139A (en) | Motor generator and automobile carrying the same | |
EP1098421A2 (en) | Rotor of rotating machine and method for producing same | |
CN101258665A (en) | Stator core element and its manufacturing device and manufacturing method | |
JP2001512957A (en) | Electric machine and stator used for it | |
CN1267943A (en) | Motor with rotor containing inner permanent magnet | |
WO2007114079A1 (en) | Armature core, motor using it, and its manufacturing method | |
USRE36367E (en) | Rotor for brushless electromotor and method for making same | |
CN1241310C (en) | Rotor of synchronous induction motor, its mfg. method, compressor and metallic mould | |
WO1992007409A1 (en) | Rotor of brushless motor and its manufacturing method | |
KR100903265B1 (en) | Armature, motor, compressor and method for manufacturing them | |
EP1953901A1 (en) | Motor and device using the same | |
JP7046011B2 (en) | Motor and compressor using it | |
CN201134706Y (en) | Permanent magnet motor and electrical equipment equipped with the permanent magnet motor | |
JP5659803B2 (en) | Rotating electric machine and method of manufacturing rotating electric machine | |
CN1265527C (en) | DC electric motor | |
CN101453154B (en) | Motor | |
CN2102581U (en) | brushless motor rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C15 | Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993) | ||
OR01 | Other related matters | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 19980304 |