CN105869786B - 一种复合芯半硬态铝绞线及其制造方法 - Google Patents
一种复合芯半硬态铝绞线及其制造方法 Download PDFInfo
- Publication number
- CN105869786B CN105869786B CN201610453464.7A CN201610453464A CN105869786B CN 105869786 B CN105869786 B CN 105869786B CN 201610453464 A CN201610453464 A CN 201610453464A CN 105869786 B CN105869786 B CN 105869786B
- Authority
- CN
- China
- Prior art keywords
- hard state
- composite core
- aluminium
- state aluminum
- stranded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 120
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 120
- 239000002131 composite material Substances 0.000 title claims abstract description 52
- 239000004020 conductor Substances 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000004411 aluminium Substances 0.000 claims abstract description 69
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 20
- 239000010959 steel Substances 0.000 claims abstract description 20
- 238000012545 processing Methods 0.000 claims abstract description 14
- 230000005611 electricity Effects 0.000 claims abstract description 7
- 239000011347 resin Substances 0.000 claims description 21
- 229920005989 resin Polymers 0.000 claims description 21
- 230000032683 aging Effects 0.000 claims description 14
- 229910000737 Duralumin Inorganic materials 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 8
- 239000000835 fiber Substances 0.000 claims description 7
- 238000005491 wire drawing Methods 0.000 claims description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 4
- 150000002910 rare earth metals Chemical class 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 238000009749 continuous casting Methods 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 239000002657 fibrous material Substances 0.000 claims description 2
- 230000002787 reinforcement Effects 0.000 claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 229920000049 Carbon (fiber) Polymers 0.000 abstract description 5
- 239000004917 carbon fiber Substances 0.000 abstract description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/02—Stranding-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/023—Alloys based on aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/08—Several wires or the like stranded in the form of a rope
- H01B5/10—Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material
- H01B5/102—Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material stranded around a high tensile strength core
- H01B5/105—Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material stranded around a high tensile strength core composed of synthetic filaments, e.g. glass-fibres
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Non-Insulated Conductors (AREA)
Abstract
本发明公开了一种复合芯半硬态铝绞线及其制造方法,步骤一:加工制得铝杆;步骤二:对铝杆拉制成硬态铝线;步骤三:将硬态铝线高温热处理制成半硬态铝线;步骤四:将多根半硬态铝线与碳纤维复合芯同心绞合成碳纤维复合芯半硬态铝绞线成品。本发明将复合芯和中间态铝线结合,并提供了具体工艺,生产出来的碳纤维复合芯半硬态铝绞线具有拉断力大、拉重比大、导电性能好、表面硬度较大、敷设时不易擦伤和弧垂小等特点,大大提高线路安全性。
Description
技术领域
本发明涉及一种复合芯半硬态铝绞线及其制造方法。
背景技术
纤维增强树脂基复合导线因其具有质量轻、抗张强度大、耐温高、高比模、线膨胀系数小等特点,在电力输送受到人们的广泛关注及逐步推广应用。
目前纤维增强树脂基复合导线一种主要为纤维增强树脂基复合芯软铝导线。该导线结构为复合芯外采用软铝导体,软铝导体因其电阻率相对普通硬铝导体要低,导电率能达到62.5~63.5%IACS,相对于普通的硬铝线其导电率提高1%~2%。有统计资料显示,导电率提高1%,输电线路的损耗将降低1%左右,因此,为提高电能传输效率通常选择采用复合芯软铝导线。然而软铝导体的一个主要缺点是其质地相对较软,表面硬度相对较低,施工过程中极易造成导线表面擦伤,导致导线表面不光滑,容易产生电晕,从而形成电晕损耗造成电能的浪费;同时,软铝的强度相对较低,软铝的强度一般在50~90MPa,在导线架设和运行过程中铝部分发挥的力较小,导致导线整根拉断力相对较低。
另外,我们为了改进软铝导体质地相对较软,表面硬度相对较低、强度小的缺点,为此,我们开发了强度相对较大的硬铝线与复合芯相配合,采用硬铝线与复合芯配合,大大提高了导线耐摩擦力,但是,由于硬铝线伸长率较小,一般为1.5~2.0%,当硬铝线与复合芯配合受力时,往往会造成复合芯还未完全受力而铝丝断裂,从而不能发挥复合芯高抗拉的特性,为此,为了提高硬铝线的伸长率,发挥复合芯的强度优势,我们又开发了复合芯高伸率硬铝绞线,同时,为了不降低硬铝线的强度、提高硬铝线的伸长率,不得不在铝里面添加提高伸率的合金元素,如铁、镁等,这些元素的添加,势必造成导体电阻的下降,因此高伸率硬铝的导电率一般在(60~61)%IACS左右,因此,线路损耗相对较大。
因此由上述分析可知,为了克服现有复合导线的缺点。因此,需要开发一种能实现复合芯和外面的导电层完美结合的导线,即能充分发挥复合芯力的性能优势,提高导线拉重比,增加架设档距,又要降低敷设时被擦伤的风险,能满足在各种条件下应用,同时又能大幅度降低线路损耗的低成本的新型复合导线是业内的研发方向。
发明内容
本发明的第一个目的是提供一种导电性能好、强度大、方便施工的一种复合芯半硬态铝绞线的制造方法。
实现本发明第一个目的的技术方案是一种复合芯半硬态铝绞线的制作方法,包括以下步骤:
步骤一:加工制得铝杆,将铝杆的性能控制在直径为9.50~12.00mm、20℃导体电阻率≤0.02780Ω·mm2/m、抗张强度为110~150MPa,伸长率≥8.0%;
步骤二:将铝杆加工制得硬铝单线,将硬铝单线性能控制在其直径或等效直径为2.50~6.00mm、20℃导体电阻率≤0.02800Ω·mm2/m、抗张强度170~200MPa;
步骤三:将硬铝单线进行高温时效处理,制得半硬态铝线,半硬态铝单线的性能控制在20℃导体电阻率≤0.027585Ω·mm2/m、抗张强度≥120MPa、伸长率≥5.0%;
步骤四:将多根半硬态铝单线与纤维增强树脂基复合芯经框式绞线机按照需要的绞合方式进行绞合,形成纤维增强树脂基复合芯位于内部,半硬态铝单线绞合层位于纤维增强树脂基复合芯外部的复合芯半硬态铝绞线成品;绞合后的复合芯半硬态铝绞线20℃导体电阻率≤0.027585Ω·mm2/m、抗张强度≥115MPa、伸长率≥4.0%、导电率≥62.5%IACS。
所述步骤一加工制得铝杆的方法为:将铝锭通过熔炼、成分配置、连铸连轧工序形成强度为110~150MPa、直径¢9.5mm~12.0mm的铝杆;其中各成分质量百分数控制在:Fe:0.14~0.18%、稀土:0.01~0.03%、Si≤0.03~0.06%、V+Ti+Mn+Cr≤0.015%,其余为铝和不可避免的杂志,铝合金液保温温度为730~760℃,浇铸温度为680~700℃,入轧温度为450~500℃。
所述步骤二加工制得铝单线的方法为:将铝杆通过拉丝拉拔成各种规格、各种形状的铝单线,拉丝各道延伸系数为1.20~1.50。
所述步骤三中,将铝单线放入时效炉中进行时效处理,时效温度为240~280℃,时效时间为2~8h,时效后自然冷却至室温。
所述半硬态铝线绞合层采用紧密绞合方式或者采用疏绕方式。
本发明的第二个目的是解决现有技术存在的问题,提供一种碳纤维复合芯半硬态铝绞线。
实现本发明第二个目的的技术方案是一种碳纤维复合芯半硬态铝绞线,包括位于内部的纤维增强树脂基复合芯和外部绞合的半硬态铝线绞合层;所述半硬态铝线绞合层的半硬态铝单线为圆形线、或者型线、或者圆形线和型线的组合体;所述内纤维增强树脂基复合芯的抗拉强度为1800~3200MPa,伸长率为1.5%~3.5%,Tg≥150℃;所述纤维增强树脂基复合芯由单一纤维或者两种或者两种以上纤维材料组合;纤维增强树脂基复合芯为一根或者两根或者两根以上。绞合后的各半硬态铝单线≤0.027585Ω·mm2/m、抗张强度≥115MPa、伸长率≥4.0%、导电率≥62.5%IACS。所述半硬态铝单线可以是圆形线,也可以为型线,如:截面为“凹”形、“凸”形、梯形或瓦形,也可以是圆形和型线的组合体;所述绞合的半硬态铝单线线可以采用紧密绞合方式,也可以采用疏绕方式;
采用了上述技术方案后,本发明具有以下的优点:(1)为了将复合芯和铝线两种材料发挥最大的力学性能,必须确保外面的铝线的伸长率与复合芯的伸长率同步,为了提高铝线的伸长率,又要提高铝单线导电性能,本发明创新的提出了一种半硬态铝线,并确定了复合性能要求的半硬态铝线的各项性能参数:20℃导体电阻率≤0.027585Ω·mm2/m、抗张强度≥115MPa、伸长率≥4.0%、导电率≥62.5%IACS,根据这个性能要求,设计出合适的工艺和配方,不仅大大提高导线的整根拉断力,而且可以解决常规纤维增强树脂基复合芯软铝导线表面硬度低,在敷设过程中容易擦伤等问题,同时大大降低线路损耗,提高线路输送能力,不仅也可满足大档距、大风区等环境恶劣的输电线路要求,同时又实现线路的节能环保。
(2)经过反复试验分析论证,本发明的工艺是达到本发明目的的最佳方法,任何一步达不到本发明的要求,最终的成品性能都会有至少一个指标达不到成品的要求。在铝导体中,对铝本身性能影响较为关键的是铁、稀土、硅、V+Ti+Mn+Cr,其成分稍有变化,产品的性能就会有较大的变化。在本发明提出的成分范围内波动,则确保可以满足半硬态铝丝能满足要求,如Fe控制在0.14~0.18%,如果达到0.19%,半硬态铝丝的电阻率会超标或者合格率较低,如果0.13%或更小,半硬态铝丝的强度很难达到115MPa的要求,同时成分与工艺必须配合使用,因此本发明是对工艺和配方的联合创新,而且本发明的工艺成熟、效率最高。
(3)本发明不仅保证了半硬态导电率达到62.5%IACS,抗张强度≥120MPa、伸长率≥5.0%,实现导电层与复合芯伸率相匹配,提高了导线整根拉断力,同时导电率比硬铝线提高3%,大大降低了线路损耗,而且本发明的结构多样,可以根据使用场合灵活选择。
具体实施方式
本实施例的复合芯半硬态铝绞线的制造方法以下步骤:
步骤一:加工制得铝杆,将铝杆的性能控制在直径为9.50~12.00mm、20℃导体电阻率≤0.02780Ω·mm2/m、抗张强度为110~150MPa,伸长率≥8.0%;将铝锭通过熔炼、成分配置、连铸连轧工序形成强度为110~150MPa、直径¢9.5mm~12.0mm的铝杆;其中各成分质量百分数控制在:Fe:0.14~0.18%、稀土:0.01~0.03%、Si≤0.03~0.06%、V+Ti+Mn+Cr≤0.015%,其余为铝和不可避免的杂志,铝合金液保温温度为730~760℃,浇铸温度为680~700℃,入轧温度为450~500℃。如果Fe达到0.19%,半硬态铝丝的电阻率会超标或者合格率较低,如果0.13%或更小,半硬态铝丝的强度很难达到115MPa的要求。
步骤二:将铝杆加工制得硬铝单线,将硬铝单线性能控制在其直径或等效直径为2.50~6.00mm、20℃导体电阻率≤0.02800Ω·mm2/m、抗张强度170~200MPa;将铝杆通过拉丝拉拔成各种规格、各种形状的铝单线,拉丝各道延伸系数为1.20~1.50。
步骤三:将硬铝单线进行高温时效处理,制得半硬态铝线,半硬态铝单线的性能控制在20℃导体电阻率≤0.027585Ω·mm2/m、抗张强度≥120MPa、伸长率≥5.0%;将铝单线放入时效炉中进行时效处理,时效温度为240~280℃,时效时间为2~8h,时效后自然冷却至室温。
步骤四:将多根半硬态铝单线与纤维增强树脂基复合芯经框式绞线机按照需要的绞合方式进行绞合,形成纤维增强树脂基复合芯位于内部,半硬态铝单线绞合层位于纤维增强树脂基复合芯外部的复合芯半硬态铝绞线成品;绞合后的复合芯半硬态铝绞线20℃导体电阻率≤0.027585Ω·mm2/m、抗张强度≥115MPa、伸长率≥4.0%、导电率≥62.5%IACS。半硬态铝线绞合层采用紧密绞合方式或者采用疏绕方式。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (6)
1.一种复合芯半硬态铝绞线的制造方法,其特征在于包括以下步骤:
步骤一:加工制得铝杆,将铝杆的性能控制在直径为9.50~12.00mm、20℃导体电阻率≤0.02780Ω·mm2/m、抗张强度为110~150MPa,伸长率≥8.0%;
步骤二:将铝杆加工制得硬铝单线,将硬铝单线性能控制在其直径或等效直径为2.50~6.00mm、20℃导体电阻率≤0.02800Ω·mm2/m、抗张强度170~200MPa;
步骤三:将硬铝单线进行高温时效处理,制得半硬态铝线,半硬态铝单线的性能控制在20℃导体电阻率≤0.027585Ω·mm2/m、抗张强度≥120MPa、伸长率≥5.0%;
步骤四:将多根半硬态铝单线与纤维增强树脂基复合芯经框式绞线机按照需要的绞合方式进行绞合,形成纤维增强树脂基复合芯位于内部,半硬态铝单线绞合层位于纤维增强树脂基复合芯外部的复合芯半硬态铝绞线成品;绞合后的复合芯半硬态铝绞线20℃导体电阻率≤0.027585Ω·mm2/m、抗张强度≥115MPa、伸长率≥4.0%、导电率≥62.5%IACS。
2.根据权利要求1所述的一种复合芯半硬态铝绞线的制造方法,其特征在于:所述步骤一加工制得铝杆的方法为:将铝锭通过熔炼、成分配置、连铸连轧工序形成强度为110~150MPa、直径¢9.5mm~12.0mm的铝杆;其中各成分质量百分数控制在:Fe:0.14~0.18%、稀土:0.01~0.03%、Si≤0.03~0.06%、V+Ti+Mn+Cr≤0.015%,其余为铝和不可避免的杂志,铝液保温温度为730~760℃,浇铸温度为680~700℃,入轧温度为450~500℃。
3.根据权利要求1所述的一种复合芯半硬态铝绞线的制造方法,其特征在于:所述步骤二加工制得铝单线的方法为:将铝杆通过拉丝拉拔成各种规格、各种形状的铝单线,拉丝各道延伸系数为1.20~1.50。
4.根据权利要求1所述的一种复合芯半硬态铝绞线的制造方法,其特征在于:所述步骤三中,将铝单线放入时效炉中进行时效处理,时效温度为240~280℃,时效时间为2~8h,时效后自然冷却至室温。
5.根据权利要求1所述的一种复合芯半硬态铝绞线的制造方法,其特征在于:所述半硬态铝线绞合层采用紧密绞合方式或者采用疏绕方式。
6.一种碳复合芯半硬态铝绞线,其特征在于:由权利要求5所述的方法制得,包括位于内部的纤维增强树脂基复合芯和外部绞合的半硬态铝线绞合层;所述半硬态铝线绞合层的半硬态铝单线为圆形线、或者型线、或者圆形线和型线的组合体;所述内部的纤维增强树脂基复合芯的抗拉强度为1800~3200MPa,伸长率为1.5%~3.5%,Tg≥150℃;所述纤维增强树脂基复合芯由单一纤维或者两种或者两种以上纤维材料组合;纤维增强树脂基复合芯为一根或者两根或者两根以上。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610453464.7A CN105869786B (zh) | 2016-06-22 | 2016-06-22 | 一种复合芯半硬态铝绞线及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610453464.7A CN105869786B (zh) | 2016-06-22 | 2016-06-22 | 一种复合芯半硬态铝绞线及其制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105869786A CN105869786A (zh) | 2016-08-17 |
CN105869786B true CN105869786B (zh) | 2017-10-03 |
Family
ID=56649763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610453464.7A Active CN105869786B (zh) | 2016-06-22 | 2016-06-22 | 一种复合芯半硬态铝绞线及其制造方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105869786B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106363034B (zh) * | 2016-08-26 | 2018-11-20 | 远东电缆有限公司 | 一种中间态高导电铝单线及其制造方法 |
CN107358995A (zh) * | 2017-08-18 | 2017-11-17 | 中复碳芯电缆科技有限公司 | 一种大截面碳纤维复合芯半硬铝导线 |
CN110164619A (zh) * | 2018-02-13 | 2019-08-23 | 中国电力科学研究院有限公司 | 一种大截面绞合型导线 |
CN111223591B (zh) * | 2020-02-26 | 2025-03-07 | 江苏通光强能输电线科技有限公司 | 由特强钢芯和半硬铝型线绞合而成的增容导线及制造方法 |
CN113695571B (zh) * | 2021-07-09 | 2023-02-14 | 中北大学 | 一种连续碳纤维增强镁基复合材料的电弧增材制造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6667110B1 (en) * | 1997-03-14 | 2003-12-23 | Compagnie Générale des Establissements Michelin - Michelin & Cie | Hybrid steel cord for tires |
CN104028961A (zh) * | 2014-06-11 | 2014-09-10 | 远东电缆有限公司 | 一种中强度铝合金线及其生产工艺 |
CN104599772A (zh) * | 2015-01-19 | 2015-05-06 | 浙江亘古电缆股份有限公司 | 一种复合型铝合金节能架空绝缘电缆 |
CN104616786A (zh) * | 2015-01-22 | 2015-05-13 | 远东电缆有限公司 | 智慧能源用复合芯高伸率耐热铝合金导线及其制造方法 |
CN104946936A (zh) * | 2015-05-29 | 2015-09-30 | 国网智能电网研究院 | 一种架空导线用高导电率稀土硬铝单丝材料 |
-
2016
- 2016-06-22 CN CN201610453464.7A patent/CN105869786B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6667110B1 (en) * | 1997-03-14 | 2003-12-23 | Compagnie Générale des Establissements Michelin - Michelin & Cie | Hybrid steel cord for tires |
CN104028961A (zh) * | 2014-06-11 | 2014-09-10 | 远东电缆有限公司 | 一种中强度铝合金线及其生产工艺 |
CN104599772A (zh) * | 2015-01-19 | 2015-05-06 | 浙江亘古电缆股份有限公司 | 一种复合型铝合金节能架空绝缘电缆 |
CN104616786A (zh) * | 2015-01-22 | 2015-05-13 | 远东电缆有限公司 | 智慧能源用复合芯高伸率耐热铝合金导线及其制造方法 |
CN104946936A (zh) * | 2015-05-29 | 2015-09-30 | 国网智能电网研究院 | 一种架空导线用高导电率稀土硬铝单丝材料 |
Also Published As
Publication number | Publication date |
---|---|
CN105869786A (zh) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105869786B (zh) | 一种复合芯半硬态铝绞线及其制造方法 | |
JP5599751B2 (ja) | 伸線加工性および伸線後の疲労特性に優れた高炭素鋼線材 | |
CN103854807B (zh) | 一种高导电率硬铝导线及其制备工艺 | |
CN105803276A (zh) | 一种导电单丝 | |
CN101834012B (zh) | 一种高导电率硬铝导线及制造方法 | |
CN104409132B (zh) | 一种环保电缆及其制作方法 | |
CN103996427A (zh) | 一种非热处理中强度铝合金导线及其生产工艺 | |
CN106065452A (zh) | 一种能降低桥索钢网状碳化物级别的方法 | |
CN104032224B (zh) | 一种非调质钢及其生产工艺 | |
CN108538485A (zh) | 一种绝缘架空电缆及其制备方法 | |
CN101261890B (zh) | 高强度间隙型超耐热铝合金导线及超耐热铝合金的制造工艺 | |
KR20230052282A (ko) | 고강도 고피로수명 케이블용 강철, 선재 및 그 제조 방법 | |
CN104616786B (zh) | 智慧能源用复合芯高伸率耐热铝合金导线及其制造方法 | |
CN104988382B (zh) | 具有超低温高冲击韧性的球墨铸铁齿轮箱及其制造方法 | |
CN107130151B (zh) | 一种预绞式悬垂线夹用高强度耐磨损铝合金及其铸造工艺 | |
CN104332221B (zh) | 一种高强度电缆及其制备方法 | |
CN102134693A (zh) | 电缆用稀土铁铝合金导体材料的退火方法 | |
CN108467980A (zh) | 一种AL-Cu合金圆铝杆的制备方法 | |
CN211699752U (zh) | 一种由特强钢芯和半硬铝型线绞合而成的增容导线 | |
CN107190215A (zh) | 一种铝合金基电力线路用构件及其制备方法 | |
CN106191651B (zh) | 一种自动绑扎钢筋用钢及其盘条的生产方法 | |
CN105023647A (zh) | 架空型两芯用户引入电缆 | |
CN105097115A (zh) | 高强度铜合金用户引入电缆 | |
CN106363034B (zh) | 一种中间态高导电铝单线及其制造方法 | |
CN103545010A (zh) | 非时效铝合金导线及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |