CN105845843A - Organic light emitting display panel and detection and compensation method thereof - Google Patents
Organic light emitting display panel and detection and compensation method thereof Download PDFInfo
- Publication number
- CN105845843A CN105845843A CN201610227153.9A CN201610227153A CN105845843A CN 105845843 A CN105845843 A CN 105845843A CN 201610227153 A CN201610227153 A CN 201610227153A CN 105845843 A CN105845843 A CN 105845843A
- Authority
- CN
- China
- Prior art keywords
- layer
- display panel
- compensation
- light emitting
- organic electroluminescence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本发明提供一种有机发光显示面板及其检测以及补偿方法。首先,提供有机发光显示面板,且将有机发光显示面板进行检测步骤,以检测出异常亮区。标记有机发光显示面板的异常亮区的位置。计算异常亮区的亮度值,并将异常亮区的亮度值换算成补偿厚度值。接着,进行有机发光显示面板的补偿程序,以对有机发光显示面板对应异常亮区进行厚度补偿步骤。
The invention provides an organic light-emitting display panel and a detection and compensation method thereof. First, an organic light-emitting display panel is provided, and the organic light-emitting display panel is subjected to a detection step to detect abnormally bright areas. Mark the location of the abnormally bright area of the organic light-emitting display panel. Calculate the brightness value of the abnormally bright area, and convert the brightness value of the abnormally bright area into a compensation thickness value. Next, a compensation process of the organic light-emitting display panel is performed to perform a thickness compensation step on the corresponding abnormally bright area of the organic light-emitting display panel.
Description
技术领域technical field
本发明是有关于一种有机发光显示面板及其检测以及补偿方法,且特别是有关于一种具有厚度补偿步骤的有机发光显示面板的检测以及补偿方法。The present invention relates to an organic light-emitting display panel and its detection and compensation method, and in particular to a detection and compensation method of the organic light-emitting display panel with a thickness compensation step.
背景技术Background technique
随着科技的进步,平面显示器是近年来最受瞩目的显示技术。其中,有机发光显示面板(Organic Light Emitting Display,OLED)因其自发光、无视角依存、省电、工艺简易、低成本、低温度操作范围、高应答速度以及全彩化等优点而具有极大的应用潜力,可望成为下一代的平面显示器的主流。With the advancement of technology, flat panel display is the most attention-grabbing display technology in recent years. Among them, the organic light emitting display panel (Organic Light Emitting Display, OLED) has great advantages due to its self-illumination, no viewing angle dependence, power saving, simple process, low cost, low temperature operating range, high response speed and full color. Its application potential is expected to become the mainstream of the next generation of flat panel displays.
OLED喷墨涂布技术(Ink Jet Printing,IJP)在OLED的工艺上能够提升材料利用率以降低工艺成本。具体来说,OLED中的膜层能够借由喷墨涂布技术所形成。为了要区别OLED中每一像素电极的区域,在进行喷墨涂布之前需形成多个对应像素结构设置的挡墙结构(Bank)。一般来说,挡墙结构是利用将含氟的负型光刻胶经过微影蚀刻等工艺所形成。然而,在曝光的过程中,在光源镜组交界处会有能量与镜组内不均的情况产生,而形成曝光不均(Lens mura)的现象。因此,会导致蚀刻上的底切(undercut)现象产生。换言之,所得到的挡墙结构会具有倾斜的边缘,影响点片后亮度的差异。The OLED inkjet printing technology (Ink Jet Printing, IJP) can improve the utilization rate of materials in the process of OLED to reduce the process cost. Specifically, the film layers in the OLED can be formed by inkjet coating technology. In order to distinguish the region of each pixel electrode in the OLED, it is necessary to form a plurality of barrier structures (Bank) corresponding to the pixel structure before inkjet coating. Generally speaking, the retaining wall structure is formed by lithographic etching and other processes by using a fluorine-containing negative photoresist. However, during the exposure process, there will be unevenness in the energy and the mirror group at the junction of the light source mirror group, resulting in the phenomenon of uneven exposure (Lens mura). Therefore, an undercut phenomenon on the etching may be caused. In other words, the resulting retaining wall structure will have beveled edges, affecting the difference in brightness after spotting.
目前市场上的显示器是利用IC芯片调整驱动电流,以补偿曝亮度不均的现象。然而,这样的方法需要花费额外的时间去搜集映像信息以及修正,并且需要另外设计与使用补偿电路。对于照明产品而言,利用IC的补偿方法会增加巨量的成本。Displays currently on the market use IC chips to adjust the driving current to compensate for the phenomenon of uneven exposure brightness. However, such a method needs extra time to collect image information and correct it, and additionally design and use a compensation circuit. For lighting products, the compensation method using IC will add a huge amount of cost.
发明内容Contents of the invention
本发明提供一种有机发光显示面板的检测以及补偿方法,其能在降低成本的前提下有效地补偿亮度不均现象。The invention provides a method for detecting and compensating an organic light-emitting display panel, which can effectively compensate uneven brightness under the premise of reducing costs.
本发明提供一种有机发光显示面板的检测以及补偿方法,包括提供一有机发光显示面板且将有机发光显示面板进行一检测步骤,以检测出一异常亮区。标记有机发光显示面板的异常亮区的位置。计算异常亮区的亮度值,并将异常亮区的亮度值换算成一补偿厚度值。进行一有机发光显示面板的补偿程序,以对有机发光显示面板的对应异常亮区进行一厚度补偿步骤。The invention provides a detection and compensation method of an organic light-emitting display panel, which includes providing an organic light-emitting display panel and performing a detection step on the organic light-emitting display panel to detect an abnormally bright area. Mark the location of the abnormally bright area of the organic light emitting display panel. Calculate the brightness value of the abnormally bright area, and convert the brightness value of the abnormally bright area into a compensation thickness value. A compensation process of the organic light emitting display panel is performed to perform a thickness compensation step on the corresponding abnormal bright area of the organic light emitting display panel.
其中,进行该厚度补偿包括:利用一喷墨工艺形成一补偿厚度改变该有机发光显示面板的该异常亮区的厚度。Wherein, performing the thickness compensation includes: using an inkjet process to form a compensation thickness to change the thickness of the abnormally bright area of the organic light emitting display panel.
其中,该有机发光显示面板的制造流程包括:Among them, the manufacturing process of the organic light-emitting display panel includes:
形成一第一电极层;forming a first electrode layer;
于该第一电极层上形成一空穴注入层;forming a hole injection layer on the first electrode layer;
于该空穴注入层上形成一空穴传输层;forming a hole transport layer on the hole injection layer;
于该空穴传输层上形成一发光层;forming a light emitting layer on the hole transport layer;
于该发光层上形成一电子传输层;forming an electron transport layer on the light-emitting layer;
于该电子传输层上形成一电子注入层;以及forming an electron injection layer on the electron transport layer; and
于该电子注入层上形成一第二电极层,该空穴注入层、该空穴传输层、该电子传输层、该电子注入层以及该发光层是使用一喷墨工艺来形成。A second electrode layer is formed on the electron injection layer. The hole injection layer, the hole transport layer, the electron transport layer, the electron injection layer and the light emitting layer are formed by using an inkjet process.
其中,对所述有机发光显示面板的该异常亮区进行该厚度补偿步骤包括在形成所述有机发光显示面板的该空穴注入层、该空穴传输层、该电子传输层、该电子注入层或是该发光层的同时,利用该喷墨工艺于对应该异常亮区进行该厚度补偿步骤。Wherein, the step of performing the thickness compensation on the abnormally bright region of the organic light emitting display panel includes forming the hole injection layer, the hole transport layer, the electron transport layer, the electron injection layer of the organic light emitting display panel Or at the same time as the light-emitting layer, the ink-jet process is used to perform the thickness compensation step corresponding to the abnormally bright area.
其中,该有机发光显示面板的制造流程包括:Among them, the manufacturing process of the organic light-emitting display panel includes:
形成一第一电极层;forming a first electrode layer;
于该第一电极层上形成一空穴注入层;forming a hole injection layer on the first electrode layer;
于该空穴注入层上形成一空穴传输层;forming a hole transport layer on the hole injection layer;
于该空穴传输层上形成一发光层;forming a light emitting layer on the hole transport layer;
于该发光层上形成一电子传输层;forming an electron transport layer on the light-emitting layer;
于该电子传输层上形成一电子注入层;以及forming an electron injection layer on the electron transport layer; and
于该电子注入层上形成一第二电极层,其中该空穴注入层、该空穴传输层、该电子传输层、该电子注入层、该发光层以及该第一电极层是使用一蒸镀工艺来形成。forming a second electrode layer on the electron injection layer, wherein the hole injection layer, the hole transport layer, the electron transport layer, the electron injection layer, the light emitting layer and the first electrode layer are deposited using an evaporation process to form.
其中,对所述有机发光显示面板的该异常亮区进行该厚度补偿步骤包括在形成所述有机发光显示面板的该空穴注入层、该空穴传输层、该电子传输层、该电子注入层、该发光层或该第一电极层的同时,利用该蒸镀工艺于对应该异常亮区进行该厚度补偿步骤。Wherein, the step of performing the thickness compensation on the abnormally bright region of the organic light emitting display panel includes forming the hole injection layer, the hole transport layer, the electron transport layer, the electron injection layer of the organic light emitting display panel , the light-emitting layer or the first electrode layer, the evaporation process is used to perform the thickness compensation step corresponding to the abnormally bright region.
其中,在形成该空穴注入层之前,更包括形成一挡墙结构,以定义出多个单元区域,且该空穴注入层、该空穴传输层以及该发光层是形成在该挡墙结构所定义的单元区域内。Wherein, before forming the hole injection layer, it further includes forming a wall structure to define a plurality of unit regions, and the hole injection layer, the hole transport layer and the light emitting layer are formed on the wall structure within the defined unit area.
其中,对所述有机发光显示面板的对应该异常亮区进行该厚度补偿步骤更包括:Wherein, the step of performing the thickness compensation on the abnormally bright area of the organic light emitting display panel further includes:
对所述有机发光显示面板进行该检测步骤;performing the detection step on the organic light emitting display panel;
倘若所述有机发光显示面板的该异常亮区仍旧存在,计算所述有机发光显示面板的该异常亮区的亮度值并且换算成另一补偿厚度值;以及If the abnormally bright area of the organic light emitting display panel still exists, calculate the brightness value of the abnormally bright area of the organic light emitting display panel and convert it into another compensation thickness value; and
进行再有机发光显示面板的补偿程序,以对所述再有机发光显示面板的对应该异常亮区进行另一厚度补偿步骤。A compensation procedure for the further organic light emitting display panel is performed to perform another thickness compensation step for the abnormally bright region of the further organic light emitting display panel.
本发明提供一种有机发光显示面板,其具有多个单元区域于基板上。多个单元区域包括补偿区域以及未补偿区域。补偿区域具有补偿发光元件层,且补偿发光元件层包括第一电极层、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层、第二电极层以及补偿厚度。第一电极层设置于基板。空穴注入层设置于第一电极层上。空穴传输层设置于空穴注入层上。发光层设置于空穴传输层上。电子传输层设置于发光层上。电子注入层设置于电子传输层上。第二电极层设置于电子注入层上。补偿厚度可选择设置于空穴注入层、空穴传输层、电子传输层、电子注入层、发光层或第一电极层上。未补偿区域具有发光元件层,且发光元件层包括第一电极层、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层以及第二电极层。第一电极层设置于基板。空穴注入层设置于第一电极层上。空穴传输层设置于空穴注入层上。发光层设置于空穴传输层上。电子传输层设置于发光层上。电子注入层设置于电子传输层上。第二电极层设置于电子注入层上,且补偿发光元件层厚度大于发光元件层。The invention provides an organic light emitting display panel, which has a plurality of unit areas on a substrate. The multiple cell areas include compensated areas and uncompensated areas. The compensation area has a compensation light emitting element layer, and the compensation light emitting element layer includes a first electrode layer, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, a second electrode layer and a compensation thickness. The first electrode layer is disposed on the substrate. The hole injection layer is disposed on the first electrode layer. The hole transport layer is disposed on the hole injection layer. The light emitting layer is disposed on the hole transport layer. The electron transport layer is disposed on the light emitting layer. The electron injection layer is disposed on the electron transport layer. The second electrode layer is disposed on the electron injection layer. The compensation thickness can be optionally disposed on the hole injection layer, the hole transport layer, the electron transport layer, the electron injection layer, the light emitting layer or the first electrode layer. The uncompensated area has a light emitting element layer, and the light emitting element layer includes a first electrode layer, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and a second electrode layer. The first electrode layer is disposed on the substrate. The hole injection layer is disposed on the first electrode layer. The hole transport layer is disposed on the hole injection layer. The light emitting layer is disposed on the hole transport layer. The electron transport layer is disposed on the light emitting layer. The electron injection layer is disposed on the electron transport layer. The second electrode layer is disposed on the electron injection layer, and the thickness of the compensation light-emitting element layer is greater than that of the light-emitting element layer.
其中,该补偿区域与该未补偿区域用以发出相同颜色的色光。Wherein, the compensated area and the uncompensated area are used to emit the same color light.
基于上述,本发明借由先行检测有机发光显示面板的异常亮区的亮度值,并将其换算成补偿厚度值以修改后续制造的有机发光显示面板中的膜层厚度,能够有效地补偿亮度不均现象,以使得整片面板的发光均匀度提升。Based on the above, the present invention detects the brightness value of the abnormally bright area of the organic light-emitting display panel in advance, and converts it into a compensation thickness value to modify the thickness of the film layer in the organic light-emitting display panel manufactured subsequently, which can effectively compensate for the abnormal brightness. Uniform phenomenon, so as to improve the uniformity of light emission of the entire panel.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附图式作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.
附图说明Description of drawings
图1是本发明的有机发光显示面板的检测以及补偿方法的流程图。FIG. 1 is a flowchart of a detection and compensation method for an organic light emitting display panel of the present invention.
图2是本发明的有机发光显示面板的剖面示意图。FIG. 2 is a schematic cross-sectional view of an organic light emitting display panel of the present invention.
图3是本发明的有机发光显示面板中的主动元件层以及发光元件层的等效电路图。FIG. 3 is an equivalent circuit diagram of the active element layer and the light emitting element layer in the organic light emitting display panel of the present invention.
图4A是图2的有机发光显示面板的区域R0的放大示意图。FIG. 4A is an enlarged schematic view of a region R0 of the organic light emitting display panel of FIG. 2 .
图4B是本发明一实施例的有机发光显示面板在补偿后的区域R1放大示意图。FIG. 4B is an enlarged schematic view of the compensated region R1 of the organic light emitting display panel according to an embodiment of the present invention.
图5是本发明另一实施例的有机发光显示面板在补偿后的区域R2放大示意图。FIG. 5 is an enlarged schematic diagram of a region R2 of an organic light emitting display panel after compensation according to another embodiment of the present invention.
图6是本发明再一实施例的有机发光显示面板在补偿后的区域R3放大示意图。FIG. 6 is an enlarged schematic view of the compensated region R3 of the organic light emitting display panel according to yet another embodiment of the present invention.
图7是本发明又一实施例的有机发光显示面板在补偿后的区域R4放大示意图。FIG. 7 is an enlarged schematic diagram of a region R4 of an organic light emitting display panel after compensation according to another embodiment of the present invention.
图8是本发明另一实施例的有机发光显示面板在补偿后的区域R5放大示意图。FIG. 8 is an enlarged schematic view of a region R5 of an organic light emitting display panel after compensation according to another embodiment of the present invention.
图9是本发明再一实施例的有机发光显示面板在补偿后的区域R6放大示意图。FIG. 9 is an enlarged schematic view of the compensated region R6 of the organic light emitting display panel according to yet another embodiment of the present invention.
图10是本发明再一实施例补偿后的有机发光显示面板的上视示意图。FIG. 10 is a schematic top view of a compensated organic light emitting display panel according to yet another embodiment of the present invention.
图11是图10的有机发光显示面板沿着A-A’剖线的剖面示意图。FIG. 11 is a schematic cross-sectional view of the organic light-emitting display panel of FIG. 10 along line A-A'.
其中,附图标记:Among them, reference signs:
S1~S5:步骤S1~S5: steps
10:有机发光显示面板10: Organic light-emitting display panel
100:基板100: Substrate
110:主动元件层110: Active component layer
120:第一电极层120: first electrode layer
130、130a:空穴注入层130, 130a: hole injection layer
140、140a:空穴传输层140, 140a: hole transport layer
150、150a:发光层150, 150a: light-emitting layer
160、160a:电子传输层160, 160a: electron transport layer
170、170a:电子注入层170, 170a: electron injection layer
180:第二电极180: second electrode
200:保护层200: protective layer
300:挡墙结构300: retaining wall structure
O:发光元件层O: light emitting element layer
X:补偿发光元件层X: compensation light emitting element layer
U:单元区域U: unit area
P:像素结构P: pixel structure
R0、R1、R2、R3、R4、R5:区域R0, R1, R2, R3, R4, R5: Regions
R0:补偿区域R0: compensation area
R1:未补偿区域R1: Uncompensated region
SL:扫描线SL: scan line
DL:数据线DL: data line
T1、T2:主动元件T1, T2: active components
CS:电容器CS: Capacitor
VDD:电压VDD: Voltage
VSS:电压VSS: Voltage
h:补偿厚度h: compensation thickness
H1、H2:厚度H1, H2: Thickness
具体实施方式detailed description
图1是本发明的有机发光显示面板的检测以及补偿方法的流程图。图2是本发明的有机发光显示面板10的剖面示意图。请先参照图1,在步骤S1中,提供有机发光显示面板10。请参照图2,有机发光显示面板10包括基板100、主动元件层110、第一电极层120、空穴注入层130、空穴传输层140、发光层150、电子传输层160、电子注入层170、第二电极180、保护层200以及挡墙结构300。其中,第一电极层120、空穴注入层130、空穴传输层140、发光层150、电子传输层160、电子注入层170以及第二电极180构成发光元件层O。以下将针对有机发光显示面板10的制造过程详细作解说。FIG. 1 is a flowchart of a detection and compensation method for an organic light emitting display panel of the present invention. FIG. 2 is a schematic cross-sectional view of the organic light emitting display panel 10 of the present invention. Referring to FIG. 1 , in step S1 , an organic light emitting display panel 10 is provided. Referring to FIG. 2, the organic light emitting display panel 10 includes a substrate 100, an active element layer 110, a first electrode layer 120, a hole injection layer 130, a hole transport layer 140, a light emitting layer 150, an electron transport layer 160, and an electron injection layer 170. , the second electrode 180 , the protective layer 200 and the retaining wall structure 300 . Wherein, the first electrode layer 120 , the hole injection layer 130 , the hole transport layer 140 , the light emitting layer 150 , the electron transport layer 160 , the electron injection layer 170 and the second electrode 180 constitute the light emitting element layer O. The manufacturing process of the organic light emitting display panel 10 will be explained in detail below.
图3是本发明的有机发光显示面板10中的主动元件层110以及发光元件层O的等效电路图。请同时参照图2以及图3,先在基板100上形成主动元件层110。基板100主要是作为承载有机发光显示装置的组成元件之用。基板100的材质可为玻璃、石英、有机聚合物、塑料、可挠性塑料或是不透光/反射材料等,本发明不限于此。在本实施例中,为了使发光元件层O所产生的光可以从基板100透射出,基板100较佳为透明基板,例如是透明玻璃基板或是透明软质基板。主动元件层110具有多个像素结构P,每一像素结构P包括至少一主动元件T1、T2。根据本发明的一实施例,主动元件层110更包括多条扫描线SL、多条数据线DL以及多条连接至电压VDD的电源线(未绘示)。其中,每一像素结构P与对应的一条扫描线SL、对应的一条数据线DL以及对应的一条电源线(未绘示)电性连接。在本实施例中,每一像素结构P包括第一主动元件T1、第二主动元件T2以及电容器CS。值得注意的是,在本实施例中,每一像素结构P是以两个主动元件搭配一个电容器(2T1C)为例来说明,但并非用以限定本发明,本发明不限每一像素结构P内的主动元件与电容器的个数。FIG. 3 is an equivalent circuit diagram of the active device layer 110 and the light emitting device layer O in the organic light emitting display panel 10 of the present invention. Referring to FIG. 2 and FIG. 3 at the same time, the active device layer 110 is firstly formed on the substrate 100 . The substrate 100 is mainly used to carry components of the organic light emitting display device. The material of the substrate 100 can be glass, quartz, organic polymer, plastic, flexible plastic or opaque/reflective material, etc., and the present invention is not limited thereto. In this embodiment, in order to allow the light generated by the light-emitting element layer O to transmit through the substrate 100 , the substrate 100 is preferably a transparent substrate, such as a transparent glass substrate or a transparent flexible substrate. The active device layer 110 has a plurality of pixel structures P, and each pixel structure P includes at least one active device T1, T2. According to an embodiment of the present invention, the active device layer 110 further includes a plurality of scan lines SL, a plurality of data lines DL, and a plurality of power lines (not shown) connected to the voltage VDD. Wherein, each pixel structure P is electrically connected to a corresponding scan line SL, a corresponding data line DL, and a corresponding power line (not shown). In this embodiment, each pixel structure P includes a first active device T1 , a second active device T2 and a capacitor CS. It is worth noting that in this embodiment, each pixel structure P is illustrated by using two active elements and a capacitor (2T1C) as an example, but this is not intended to limit the present invention, and the present invention is not limited to each pixel structure P The number of active components and capacitors inside.
在2T1C形式的像素结构中,主动元件T1具有栅极、源极、漏极以及通道区(未绘示),且主动元件T1的源极与数据线DL电性连接,栅极与扫描线SL电性连接,且漏极与主动元件T2电性连接。类似地,主动元件T2亦具有栅极、源极、漏极以及通道区(未绘示),且主动元件T2的栅极是与主动元件T1的漏极电性连接,主动元件T2的源极是与电源线(未绘示)电性连接。电容器CS的一电极端是与主动元件T1的漏极电性连接,电容器CS的另一电极端与主动元件T2的源极以及电源线(未绘示)电性连接。另一方面,至少一主动元件T1、T2电性连接至发光元件层O,如图3所示。In the 2T1C pixel structure, the active element T1 has a gate, a source, a drain, and a channel region (not shown), and the source of the active element T1 is electrically connected to the data line DL, and the gate is connected to the scan line SL. electrically connected, and the drain is electrically connected to the active device T2. Similarly, the active device T2 also has a gate, a source, a drain and a channel region (not shown), and the gate of the active device T2 is electrically connected to the drain of the active device T1, and the source of the active device T2 It is electrically connected with a power line (not shown). One terminal of the capacitor CS is electrically connected to the drain of the active device T1 , and the other terminal of the capacitor CS is electrically connected to the source of the active device T2 and a power line (not shown). On the other hand, at least one active device T1, T2 is electrically connected to the light emitting device layer O, as shown in FIG. 3 .
请再次参照图2,在主动元件层110上形成多个挡墙结构300,以在每个挡墙结构300之间定义出多个对应像素结构P设置于单元区域U内。挡墙结构300例如是利用含氟的负型光刻胶为材料,并经过微影蚀刻等工艺所形成,但本发明不限于此。其它习知的挡墙结构的材质或是形成方法也可以被使用在本发明中。Referring to FIG. 2 again, a plurality of wall structures 300 are formed on the active device layer 110 to define a plurality of corresponding pixel structures P disposed in the unit area U between each wall structure 300 . The retaining wall structure 300 is, for example, made of fluorine-containing negative-type photoresist and is formed through processes such as lithography etching, but the invention is not limited thereto. Other known materials or forming methods of the retaining wall structure can also be used in the present invention.
紧接着,在挡墙结构300所定义出的单元区域U内形成第一电极层120。第一电极层120的材质可为透明导电材料或是不透明的导电材料,且第一电极层120可以是单层结构或多层结构。所述透明导电材料包括金属氧化物,诸如铟锡氧化物、铟锌氧化物、铝锡氧化物、铝锌氧化物、铟锗锌氧化物、或其它合适的氧化物(诸如氧化锌)、或者是上述至少二者的堆栈层。所述不透明导电材料包括金属,诸如银、铝、钼、铜或钛,或其它合适的金属。承上述,第一电极层120与主动元件层110电性连接。换言之,主动元件层110中的第一主动元件T1或是第二主动元件T2是借由第一电极层120而与发光元件层O电性连接。在本实施例中,第一电极层120是作为发光元件层O的阴极,但本发明不限于此。在其它实施例中,第一电极层120亦可以是发光元件层O的阳极。Next, the first electrode layer 120 is formed in the unit area U defined by the wall structure 300 . The material of the first electrode layer 120 can be a transparent conductive material or an opaque conductive material, and the first electrode layer 120 can be a single-layer structure or a multi-layer structure. The transparent conductive material includes a metal oxide, such as indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide, indium germanium zinc oxide, or other suitable oxides (such as zinc oxide), or is a stack layer of at least two of the above. The opaque conductive material includes metals such as silver, aluminum, molybdenum, copper or titanium, or other suitable metals. Based on the above, the first electrode layer 120 is electrically connected to the active device layer 110 . In other words, the first active device T1 or the second active device T2 in the active device layer 110 is electrically connected to the light emitting device layer O through the first electrode layer 120 . In this embodiment, the first electrode layer 120 is used as the cathode of the light emitting element layer O, but the present invention is not limited thereto. In other embodiments, the first electrode layer 120 may also be the anode of the light emitting element layer O. As shown in FIG.
在形成第一电极层120之后,更包括在第一电极层120上依序形成空穴注入层130、空穴传输层140以及发光层150。类似于第一电极层120,空穴注入层130、空穴传输层140以及发光层150也是形成于挡墙结构300所定义出的单元区域U内。空穴注入层130的材料例如是苯二甲蓝铜、星状芳胺类、聚苯胺、聚乙烯二氧噻吩或其它合适的材料。另一方面,空穴传输层140的材料例如是三芳香胺类、交叉结构二胺联苯、二胺联苯衍生物或其它合适的材料。发光层150可为红色有机发光图案、绿色有机发光图案、蓝色有机发光图案或是混合各频谱的光产生的不同颜色(例如白、橘、紫等)发光图案。承上述,在本实施例中,空穴注入层130、空穴传输层140以及发光层150都是使用喷墨工艺来形成。然而,本发明不限于此,在其它实施例中,空穴注入层130、空穴传输层140以及发光层150亦可利用蒸镀制成来形成。After forming the first electrode layer 120 , it further includes sequentially forming a hole injection layer 130 , a hole transport layer 140 and a light emitting layer 150 on the first electrode layer 120 . Similar to the first electrode layer 120 , the hole injection layer 130 , the hole transport layer 140 and the light emitting layer 150 are also formed in the unit area U defined by the barrier structure 300 . The material of the hole injection layer 130 is, for example, blue copper xylylene, star aromatic amines, polyaniline, polyethylene dioxythiophene, or other suitable materials. On the other hand, the material of the hole transport layer 140 is, for example, triarylamines, cross-structure diamine biphenyl, diamine biphenyl derivatives or other suitable materials. The light-emitting layer 150 can be a red organic light-emitting pattern, a green organic light-emitting pattern, a blue organic light-emitting pattern, or a light-emitting pattern of different colors (such as white, orange, purple, etc.) generated by mixing light of each spectrum. Based on the above, in this embodiment, the hole injection layer 130 , the hole transport layer 140 and the light emitting layer 150 are all formed by inkjet process. However, the present invention is not limited thereto. In other embodiments, the hole injection layer 130 , the hole transport layer 140 and the light emitting layer 150 can also be formed by evaporation.
接着,在发光层150上依序形成电子传输层160以及电子注入层170。电子传输层160的材料例如是恶唑衍生物及其树状物、金属螯合物、唑类化合物、二氮蒽衍生物、含硅杂环化合物或其它合适的材料。电子注入层170的材料例如是氧化锂、氧化锂硼、硅氧化钾、碳酸铯、醋酸钠、氟化锂碱或其它合适的材料。在本实施例中,由于电子传输层160以及电子注入层170是利用蒸镀制成所形成,故并不需要设置于挡墙结构300所定义出的单元区域U内。换言之,电子传输层160以及电子注入层170可以直接形成在挡墙结构300之上,如图2所示。然而,本发明不限于此,在其它实施例中,电子传输层160以及电子注入层170亦可利用蒸镀制成来形成。Next, an electron transport layer 160 and an electron injection layer 170 are sequentially formed on the light emitting layer 150 . The material of the electron transport layer 160 is, for example, oxazole derivatives and their dendrimers, metal chelates, azole compounds, diazanthracene derivatives, silicon-containing heterocyclic compounds, or other suitable materials. The material of the electron injection layer 170 is, for example, lithium oxide, lithium boron oxide, potassium silicon oxide, cesium carbonate, sodium acetate, lithium fluoride base or other suitable materials. In this embodiment, since the electron transport layer 160 and the electron injection layer 170 are formed by evaporation, they do not need to be disposed in the unit area U defined by the retaining wall structure 300 . In other words, the electron transport layer 160 and the electron injection layer 170 can be directly formed on the barrier structure 300 , as shown in FIG. 2 . However, the present invention is not limited thereto. In other embodiments, the electron transport layer 160 and the electron injection layer 170 can also be formed by evaporation.
在形成电子注入层170之后,更包括在电子注入层170上形成第二电极层180。类似于第一电极层120,第二电极层180的也可以是单层结构或多层结构。除此之外,第二电极层180的材料可以选自前述第一电极层120的材料。换言之,第二电极层180的材料可以与第一电极层120相同或不同。值得注意的是,在本实施例中,第二电极层180是连接至电压VSS,且电压VSS为一接地电位。换言之,如图3所示,发光元件层O是借由第二电极层180而与电压VSS连接。在本实施例中,第二电极层180是作为发光元件层O的阳极,但本发明不限于此。在其它实施例中,第二电极层180亦可以是发光元件层O的阴极。After forming the electron injection layer 170 , further comprising forming a second electrode layer 180 on the electron injection layer 170 . Similar to the first electrode layer 120, the second electrode layer 180 may also have a single-layer structure or a multi-layer structure. Besides, the material of the second electrode layer 180 may be selected from the materials of the aforementioned first electrode layer 120 . In other words, the material of the second electrode layer 180 may be the same as or different from that of the first electrode layer 120 . It should be noted that, in this embodiment, the second electrode layer 180 is connected to the voltage VSS, and the voltage VSS is a ground potential. In other words, as shown in FIG. 3 , the light emitting element layer O is connected to the voltage VSS through the second electrode layer 180 . In this embodiment, the second electrode layer 180 serves as the anode of the light emitting element layer O, but the present invention is not limited thereto. In other embodiments, the second electrode layer 180 can also be the cathode of the light emitting element layer O. As shown in FIG.
在完成第二电极层180之后,本实施例的有机发光显示面板10已大致完成。然而,本实施例的有机发光显示面板10更可以进一步包括保护层200。保护层200的作用为保护发光元件层O,故其材料可为有机材料或无机材料。具体来说,保护层200例如是盖板或是其它封装元件,本发明不限于此。After the second electrode layer 180 is completed, the organic light emitting display panel 10 of this embodiment is substantially completed. However, the organic light emitting display panel 10 of this embodiment may further include a protective layer 200 . The function of the protective layer 200 is to protect the light emitting element layer O, so its material can be organic material or inorganic material. Specifically, the protection layer 200 is, for example, a cover plate or other packaging components, and the invention is not limited thereto.
请再次参照图1,在步骤S2中,进行一检测步骤,以检测出有机发光显示面板10是否具有异常亮区。若有机发光显示面板10并不具有异常亮区,则此有机发光显示面板10可以被判定为有机发光显示面板成品。若有机发光显示面板10被检测出异常亮区,则进行步骤S3,将异常亮区的位置标记出。举例来说,请参照图2,若区域R0被检测出具有异常亮区,则将区域R0标记出。Referring to FIG. 1 again, in step S2, a detection step is performed to detect whether the organic light emitting display panel 10 has an abnormally bright area. If the organic light emitting display panel 10 does not have abnormally bright areas, the organic light emitting display panel 10 can be determined as a finished organic light emitting display panel. If an abnormal bright area is detected in the organic light emitting display panel 10 , step S3 is performed to mark the position of the abnormal bright area. For example, referring to FIG. 2 , if the region R0 is detected to have abnormally bright areas, the region R0 is marked.
在将区域R0标记出之后,进行步骤S4,计算异常亮区的亮度值并将其换算成一补偿厚度值。也就是说,针对区域R0的异常亮度值与其它的无异常的区域作比较,并借由回推的方式计算出一厚度值,以补偿区域R0的亮度值。After the region R0 is marked, step S4 is performed to calculate the brightness value of the abnormally bright region and convert it into a compensation thickness value. That is to say, the abnormal brightness value of the region R0 is compared with other non-abnormal regions, and a thickness value is calculated in a backward manner to compensate the brightness value of the region R0.
在计算出补偿厚度值之后,进行有机发光显示面板的补偿程序,以对有机发光显示面板的对应异常亮区进行厚度补偿,如步骤S5所示。以下将详细叙述步骤S5的具体流程。After the compensation thickness value is calculated, a compensation procedure of the organic light emitting display panel is performed to perform thickness compensation on the corresponding abnormally bright area of the organic light emitting display panel, as shown in step S5. The specific flow of step S5 will be described in detail below.
图4A是图2的有机发光显示面板10的区域R0的放大示意图。图4B是本发明一实施例的有机发光显示面板在补偿后的区域R1放大示意图。请同时参照图4A以及图4B。在本实施例中,有机发光显示面板的检测以及补偿程与有机发光显示面板10的检测以及补偿流程相似,因此相同的元件以相同的符号表示且不再重复说明。两者之间的差异在于,在有机发光显示面板的检测以及补偿流程中,由于已经事先取得异常亮区所要进行补偿的厚度值,故在形成空穴注入层130a的步骤中,可以利用喷墨工艺或蒸镀工艺来改变异常亮区内空穴注入层130a的厚度,以形成补偿发光元件层X。具体来说,有机发光显示面板的区域R1中的空穴注入层130a具有补偿厚度h,故其厚度相较于有机发光显示面板10的区域R0中的空穴注入层130较厚,如图4A以及图4B所示。FIG. 4A is an enlarged schematic view of a region R0 of the organic light emitting display panel 10 of FIG. 2 . FIG. 4B is an enlarged schematic view of the compensated region R1 of the organic light emitting display panel according to an embodiment of the present invention. Please refer to FIG. 4A and FIG. 4B at the same time. In this embodiment, the detection and compensation process of the organic light emitting display panel is similar to the detection and compensation process of the organic light emitting display panel 10 , so the same components are denoted by the same symbols and will not be described again. The difference between the two lies in that in the detection and compensation process of the organic light-emitting display panel, since the thickness value to be compensated for the abnormally bright area has been obtained in advance, in the step of forming the hole injection layer 130a, inkjet can be used to The thickness of the hole injection layer 130a in the abnormally bright region is changed by a process or an evaporation process to form the compensation light-emitting element layer X. Specifically, the hole injection layer 130a in the region R1 of the organic light emitting display panel has a compensation thickness h, so its thickness is thicker than that of the hole injection layer 130 in the region R0 of the organic light emitting display panel 10, as shown in FIG. 4A And as shown in Figure 4B.
在本实施例中,借由先行检测有机发光显示面板的异常亮区的亮度值,并将其换算成补偿厚度值以修改后续制造的有机发光显示面板中的膜层厚度,能够有效地补偿亮度不均匀的现象,以使得整片面板的发光均匀度提升。In this embodiment, by first detecting the brightness value of the abnormally bright area of the organic light emitting display panel and converting it into a compensation thickness value to modify the thickness of the film layer in the organic light emitting display panel manufactured subsequently, the brightness can be effectively compensated Non-uniform phenomenon, so as to improve the uniformity of light emission of the entire panel.
图5是本发明另一实施例的有机发光显示面板在补偿后的区域R2放大示意图。图5的实施例与图4A-4B的实施例相似,因此,相同的元件以相同的符号表示且不再重复说明。图5与图4A-4B两实施例的差异在于,在本实施例中,是利用喷墨工艺或蒸镀工艺来改变异常亮区内空穴传输层140a的厚度,以形成补偿发光元件层X。换言之,有机发光显示面板的区域R2中的空穴传输层140a具有补偿厚度h,故其厚度相较于有机发光显示面板10的区域R0中的空穴传输层140a较厚,如图4A以及图5所示。FIG. 5 is an enlarged schematic diagram of a region R2 of an organic light emitting display panel after compensation according to another embodiment of the present invention. The embodiment of Fig. 5 is similar to the embodiment of Figs. 4A-4B, therefore, the same elements are denoted by the same symbols and will not be described again. The difference between the two embodiments of FIG. 5 and FIGS. 4A-4B is that in this embodiment, the thickness of the hole transport layer 140a in the abnormally bright region is changed by using an inkjet process or an evaporation process to form a compensation light-emitting element layer X . In other words, the hole transport layer 140a in the region R2 of the organic light emitting display panel has a compensation thickness h, so its thickness is thicker than that of the hole transport layer 140a in the region R0 of the organic light emitting display panel 10, as shown in FIG. 4A and FIG. 5.
图6是本发明另一实施例的有机发光显示面板在补偿后的区域R3放大示意图。图6的实施例与图4A-4B的实施例相似,因此相同的元件以相同的符号表示且不再重复说明。图6与图4A-4B两实施例的差异在于,在本实施例中,是利用喷墨工艺或蒸镀工艺来改变异常亮区内发光层150a的厚度,以形成补偿发光元件层X。换言之,有机发光显示面板的区域R3中的发光层150a具有补偿厚度h,故其厚度相较于有机发光显示面板10的区域R0中的发光层150较厚,如图4A以及图6所示。举例而言,相同颜色的发光层150厚度约落在 左右,厚度变化在10%(±5%)左右属工艺误差,厚度值约 如果相同颜色的发光层150厚度变化大于10%(±5%),例如厚度值约小于或大于就为因补偿厚度值而造成的差异。然而上述厚度变化因应不同材料,会有不同的厚度变化,因此不以此为限。FIG. 6 is an enlarged schematic view of a region R3 of an organic light emitting display panel after compensation according to another embodiment of the present invention. The embodiment of Fig. 6 is similar to the embodiment of Figs. 4A-4B, so the same elements are denoted by the same symbols and will not be described again. The difference between FIG. 6 and FIG. 4A-4B is that in this embodiment, the thickness of the light emitting layer 150a in the abnormally bright region is changed by inkjet process or vapor deposition process to form the compensation light emitting element layer X. In other words, the light emitting layer 150 a in the region R3 of the organic light emitting display panel has a compensation thickness h, so its thickness is thicker than that of the light emitting layer 150 in the region R0 of the organic light emitting display panel 10 , as shown in FIG. 4A and FIG. 6 . For example, the thickness of the light-emitting layer 150 of the same color is about About 10% (± 5%) of the thickness change is a process error, and the thickness value is about If the thickness variation of the light-emitting layer 150 of the same color is greater than 10% (±5%), for example, the thickness value is less than about or greater than Just for the difference caused by compensating the thickness value. However, the above-mentioned thickness variation may vary depending on different materials, so it is not limited thereto.
图7是本发明另一实施例的有机发光显示面板在补偿后的区域R4放大示意图。图7的实施例与图4A-4B的实施例相似,因此相同的元件以相同的符号表示且不再重复说明。图7与图4A-4B两实施例的差异在于,在本实施例中,是利用喷墨工艺或蒸镀工艺来改变异常亮区内电子传输层160a的厚度,以形成补偿发光元件层X。换言之,有机发光显示面板的区域R4中的电子传输层160a具有补偿厚度h,故其厚度相较于有机发光显示面板10的区域R0中的电子传输层160较厚,如图4A以及图7所示。FIG. 7 is an enlarged schematic diagram of a region R4 of an organic light emitting display panel after compensation according to another embodiment of the present invention. The embodiment of Fig. 7 is similar to the embodiment of Figs. 4A-4B, so the same elements are denoted by the same symbols and will not be described again. The difference between FIG. 7 and the two embodiments in FIGS. 4A-4B is that in this embodiment, the thickness of the electron transport layer 160a in the abnormally bright region is changed by inkjet process or vapor deposition process to form the compensation light emitting element layer X. In other words, the electron transport layer 160a in the region R4 of the organic light emitting display panel has a compensation thickness h, so its thickness is thicker than that of the electron transport layer 160 in the region R0 of the organic light emitting display panel 10, as shown in FIG. 4A and FIG. 7 Show.
图8是本发明另一实施例的有机发光显示面板在补偿后的区域R5放大示意图。图8的实施例与图4A-4B的实施例相似,因此相同的元件以相同的符号表示且不再重复说明。图8与图4A-4B两实施例的差异在于,在本实施例中,是利用喷墨工艺或蒸镀工艺来改变异常亮区内电子注入层170a的厚度,以形成补偿发光元件层X。换言之,有机发光显示面板的区域R5中的电子注入层170a具有补偿厚度h,故其厚度相较于有机发光显示面板10的区域R0中的电子注入层170较厚,如图4A以及图8所示。FIG. 8 is an enlarged schematic view of a region R5 of an organic light emitting display panel after compensation according to another embodiment of the present invention. The embodiment of Fig. 8 is similar to the embodiment of Figs. 4A-4B, so the same elements are denoted by the same symbols and will not be described again. The difference between FIG. 8 and the two embodiments in FIGS. 4A-4B is that in this embodiment, the thickness of the electron injection layer 170a in the abnormally bright region is changed by inkjet process or vapor deposition process to form the compensation light emitting element layer X. In other words, the electron injection layer 170a in the region R5 of the organic light emitting display panel has a compensation thickness h, so its thickness is thicker than that of the electron injection layer 170 in the region R0 of the organic light emitting display panel 10, as shown in FIG. 4A and FIG. 8 Show.
图9是本发明再一实施例的有机发光显示面板在补偿后的区域R6放大示意图。图8的实施例与图4A-4B的实施例相似,因此相同的元件以相同的符号表示且不再重复说明。图9与图4A-4B两实施例的差异在于,在本实施例中,是利用蒸镀工艺来改变异常亮区内第一电极层120a的厚度,以形成补偿发光元件层X。换言之,有机发光显示面板的区域R6中的第一电极层120a具有补偿厚度h,故其厚度相较于有机发光显示面板10的区域R0中的电子注入层170较厚,如图4A以及图9所示。FIG. 9 is an enlarged schematic view of the compensated region R6 of the organic light emitting display panel according to yet another embodiment of the present invention. The embodiment of Fig. 8 is similar to the embodiment of Figs. 4A-4B, so the same elements are denoted by the same symbols and will not be described again. The difference between FIG. 9 and the two embodiments in FIGS. 4A-4B is that in this embodiment, the thickness of the first electrode layer 120a in the abnormally bright region is changed by evaporation process to form the compensation light emitting element layer X. In other words, the first electrode layer 120a in the region R6 of the organic light emitting display panel has a compensation thickness h, so its thickness is thicker than that of the electron injection layer 170 in the region R0 of the organic light emitting display panel 10, as shown in FIG. 4A and FIG. 9 shown.
在图5至图9的实施例中,皆是借由先行检测有机发光显示面板的异常亮区的亮度值,并将其换算成补偿厚度值以修改后续制造的有机发光显示面板中的膜层厚度,能够有效地补偿Lens mura现象,以使得整片面板的发光均匀度提升。然而,本发明可应用于修补显示面板具有异常亮区(mura),不限于Lens mura。In the embodiments shown in FIG. 5 to FIG. 9, the luminance value of the abnormally bright area of the organic light emitting display panel is detected in advance and converted into a compensation thickness value to modify the film layer in the subsequently manufactured organic light emitting display panel. The thickness can effectively compensate the Lens mura phenomenon, so that the uniformity of the entire panel can be improved. However, the present invention is applicable to repairing display panels with abnormally bright regions (mura), not limited to Lens mura.
请再次参考图1,在执行步骤S5并对有机发光显示面板的对应异常亮区进行厚度补偿步骤后,再次执行步骤S2,以判断有机发光显示面板是否还具有异常亮区。若有机发光显示面板并不具有异常亮区,则此有机发光显示面板可以判定为有机发光显示面板成品。若此有机发光显示面板被检测出异常亮区,则再进行一次步骤S3~S5。换言之,再度计算有机发光显示面板的异常亮区的亮度值并且换算成另一补偿厚度值,并进行再有机发光显示面的补偿程序,以对再有机发光显示面板的对应异常亮区进行另一厚度补偿步骤。值得注意的是,步骤S2至步骤S5是重复进行直到后续的有机发光显示面板在步骤S2中不会被检测出异常亮区且被判定为有机发光显示面板成品为止。Please refer to FIG. 1 again, after executing step S5 and performing the thickness compensation step on the corresponding abnormally bright areas of the OLED panel, step S2 is executed again to determine whether the OLED panel still has abnormally bright areas. If the organic light emitting display panel does not have abnormally bright areas, the organic light emitting display panel can be determined as a finished organic light emitting display panel. If an abnormally bright area is detected on the organic light emitting display panel, steps S3-S5 are performed again. In other words, the luminance value of the abnormally bright area of the OLED display panel is calculated again and converted into another compensation thickness value, and the compensation procedure of the OLED display surface is performed again, so as to perform another compensation for the corresponding abnormally bright area of the OLED display panel. Thickness compensation step. It is worth noting that steps S2 to S5 are repeated until the subsequent organic light emitting display panel does not detect abnormally bright areas in step S2 and is determined to be a finished organic light emitting display panel.
当一个有机发光显示面板被判定为有机发光显示面板成品之后,后续的有机发光显示面板能够依照此有机发光显示面板成品的制造参数进行批次制造,并在批次制造后再找一个有机发光显示面板抽样以确保质量即可。换言之,当得到成品参数之后,只要从之后的批次制造中抽样进行检测,而不需要使得每一有机发光显示面板皆经过上述检测以及补偿步骤,以节省成本。倘若抽样的有机发光显示面板并不具有异常亮区,则继续沿用之前的工艺参数制造下一批有机发光显示面板。另一方面,倘若抽样的有机发光显示面板具有异常亮区,则再次进行上述步骤S1至步骤S5,直到后续的有机发光显示面板能被判定为有机发光显示面板成品为止。When an organic light emitting display panel is judged as a finished organic light emitting display panel, subsequent organic light emitting display panels can be batch manufactured according to the manufacturing parameters of the finished organic light emitting display panel, and another organic light emitting display panel can be found after batch manufacturing. Panel sampling to ensure quality is sufficient. In other words, after the parameters of the finished product are obtained, it is only necessary to sample samples from subsequent batches of manufacturing for testing, without requiring each organic light emitting display panel to go through the above-mentioned testing and compensation steps, so as to save costs. If the sampled organic light-emitting display panels do not have abnormally bright areas, the next batch of organic light-emitting display panels will be manufactured using the previous process parameters. On the other hand, if the sampled organic light emitting display panel has an abnormally bright area, the steps S1 to S5 are repeated until the subsequent organic light emitting display panel can be determined as a finished organic light emitting display panel.
请参考图10与图11。图10是本发明再一实施例补偿后的有机发光显示面板10的上视示意图。图11是图10的有机发光显示面板A-A’剖线的剖面示意图。有机发光显示面板10具有基板100以及设置于基板100对向侧的保护层200。基板10上具有多个单元区域U,分别用以发出不同的颜色。举例而言,单元区域U包括发出红光(R)的单元区域U、绿光(G)的单元区域U与蓝光(B)的单元区域U。于本实施例中发出红光(R)的单元区域U为具有一补偿区域R0。如补偿区域R0相邻周围发出红光(R)的单元区域U未进行补偿步骤,则有机发光显示面板10的A-A’剖面补偿区域R0的补偿发光元件层X整体厚度H1相较于未补偿区域R1的发光元件层O整体厚度H2较厚,即补偿发光元件层X整体厚度H1>发光元件层O整体厚度H2。Please refer to Figure 10 and Figure 11. FIG. 10 is a schematic top view of a compensated organic light emitting display panel 10 according to yet another embodiment of the present invention. FIG. 11 is a schematic cross-sectional view of the organic light-emitting display panel A-A' in FIG. 10 . The organic light emitting display panel 10 has a substrate 100 and a protective layer 200 disposed on a side opposite to the substrate 100 . There are a plurality of unit regions U on the substrate 10 for emitting different colors respectively. For example, the unit area U includes a unit area U that emits red light (R), a unit area U that emits green light (G), and a unit area U that emits blue light (B). In this embodiment, the unit region U that emits red light (R) has a compensation region R0. If the unit region U that emits red light (R) adjacent to the compensation region R0 is not subjected to the compensation step, then the overall thickness H1 of the compensated light-emitting element layer X in the compensation region R0 in the AA' section of the organic light-emitting display panel 10 is compared to that without The overall thickness H2 of the light-emitting element layer O in the compensation region R1 is thicker, that is, the overall thickness H1 of the compensation light-emitting element layer X>the overall thickness H2 of the light-emitting element layer O.
综上所述,本发明借由先行检测有机发光显示面板的异常亮区的亮度值,并将其换算成补偿厚度值以修改后续制造的有机发光显示面板中的膜层厚度,能够有效地补偿亮度不均匀的现象,以使得整片面板的发光均匀度提升。其補偿步骤会造成有机发光显示面板,异常亮区与正常亮区所发出相同颜色的发光元件具有不同厚度值。To sum up, the present invention can effectively compensate by detecting the luminance value of the abnormally bright area of the organic light emitting display panel in advance and converting it into a compensation thickness value to modify the thickness of the film layer in the subsequently manufactured organic light emitting display panel. The phenomenon of uneven brightness, so as to improve the uniformity of light emission of the entire panel. The compensation step will cause the organic light-emitting display panel to have different thickness values for the light-emitting elements emitting the same color in the abnormal bright area and the normal bright area.
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明权利要求的保护范围。Certainly, the present invention also can have other various embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding changes All changes and modifications should belong to the protection scope of the claims of the present invention.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105105203 | 2016-02-23 | ||
TW105105203A TWI569493B (en) | 2016-02-23 | 2016-02-23 | Organic light emitting display panel and testing and compensation methods thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105845843A true CN105845843A (en) | 2016-08-10 |
CN105845843B CN105845843B (en) | 2017-11-17 |
Family
ID=56597532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610227153.9A Active CN105845843B (en) | 2016-02-23 | 2016-04-13 | Organic light emitting display panel and detection and compensation method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105845843B (en) |
TW (1) | TWI569493B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108181739A (en) * | 2017-12-29 | 2018-06-19 | 深圳市华星光电半导体显示技术有限公司 | Display panel mura and the undesirable desalination method of dotted line and display panel |
WO2018149067A1 (en) * | 2017-02-15 | 2018-08-23 | 京东方科技集团股份有限公司 | Ejection volume compensation method, ejection volume compensation apparatus, inkjet printing apparatus, and non-transitory machine readable medium |
CN108995379A (en) * | 2018-07-27 | 2018-12-14 | 深圳市华星光电技术有限公司 | Ink-jet print system and method for panel processing procedure |
US10276796B2 (en) | 2017-02-15 | 2019-04-30 | Boe Technology Group Co., Ltd. | Ejection volume compensation method, ejection volume compensation device, inkjet printing device, and non-transitory machine readable medium |
US10578894B2 (en) | 2017-12-29 | 2020-03-03 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Method of desalinating mura and dot/line defects of display panel and display panel |
CN112018256A (en) * | 2020-09-07 | 2020-12-01 | 江苏仕邦柔性电子研究院有限公司 | OLED display panel with fluorescent emitter and preparation method thereof |
WO2021042488A1 (en) * | 2019-09-06 | 2021-03-11 | 深圳市华星光电半导体显示技术有限公司 | Manufacturing method for tandem oled device |
CN114188383A (en) * | 2021-07-28 | 2022-03-15 | 友达光电股份有限公司 | Display panel and method for manufacturing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1455626A (en) * | 2002-04-26 | 2003-11-12 | 三洋电机株式会社 | Diminishing method for electroluminescence display board and electroluninescence display board |
CN1725921A (en) * | 2004-07-22 | 2006-01-25 | 三星Sdi株式会社 | Organic electroluminescence display and manufacturing method thereof |
CN101661169A (en) * | 2008-08-27 | 2010-03-03 | 北京京东方光电科技有限公司 | Method and device for detecting bright spot and dark spot of liquid crystal display |
WO2015128920A1 (en) * | 2014-02-25 | 2015-09-03 | 株式会社Joled | Method for manufacturing electroluminescent display device |
-
2016
- 2016-02-23 TW TW105105203A patent/TWI569493B/en active
- 2016-04-13 CN CN201610227153.9A patent/CN105845843B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1455626A (en) * | 2002-04-26 | 2003-11-12 | 三洋电机株式会社 | Diminishing method for electroluminescence display board and electroluninescence display board |
CN1725921A (en) * | 2004-07-22 | 2006-01-25 | 三星Sdi株式会社 | Organic electroluminescence display and manufacturing method thereof |
CN101661169A (en) * | 2008-08-27 | 2010-03-03 | 北京京东方光电科技有限公司 | Method and device for detecting bright spot and dark spot of liquid crystal display |
WO2015128920A1 (en) * | 2014-02-25 | 2015-09-03 | 株式会社Joled | Method for manufacturing electroluminescent display device |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018149067A1 (en) * | 2017-02-15 | 2018-08-23 | 京东方科技集团股份有限公司 | Ejection volume compensation method, ejection volume compensation apparatus, inkjet printing apparatus, and non-transitory machine readable medium |
US10276796B2 (en) | 2017-02-15 | 2019-04-30 | Boe Technology Group Co., Ltd. | Ejection volume compensation method, ejection volume compensation device, inkjet printing device, and non-transitory machine readable medium |
CN108181739A (en) * | 2017-12-29 | 2018-06-19 | 深圳市华星光电半导体显示技术有限公司 | Display panel mura and the undesirable desalination method of dotted line and display panel |
WO2019127788A1 (en) * | 2017-12-29 | 2019-07-04 | 深圳市华星光电半导体显示技术有限公司 | Method for fading mura and bad dot lines on display panel and display panel |
US10578894B2 (en) | 2017-12-29 | 2020-03-03 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Method of desalinating mura and dot/line defects of display panel and display panel |
CN108181739B (en) * | 2017-12-29 | 2020-04-10 | 深圳市华星光电半导体显示技术有限公司 | Display panel mura and poor dot line desalting method and display panel |
CN108995379A (en) * | 2018-07-27 | 2018-12-14 | 深圳市华星光电技术有限公司 | Ink-jet print system and method for panel processing procedure |
CN108995379B (en) * | 2018-07-27 | 2020-07-24 | 深圳市华星光电技术有限公司 | Ink-jet printing system and method for panel manufacturing process |
WO2021042488A1 (en) * | 2019-09-06 | 2021-03-11 | 深圳市华星光电半导体显示技术有限公司 | Manufacturing method for tandem oled device |
CN112018256A (en) * | 2020-09-07 | 2020-12-01 | 江苏仕邦柔性电子研究院有限公司 | OLED display panel with fluorescent emitter and preparation method thereof |
CN114188383A (en) * | 2021-07-28 | 2022-03-15 | 友达光电股份有限公司 | Display panel and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
TW201731140A (en) | 2017-09-01 |
TWI569493B (en) | 2017-02-01 |
CN105845843B (en) | 2017-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105845843B (en) | Organic light emitting display panel and detection and compensation method thereof | |
CN102113039B (en) | Display device and method of manufacturing same | |
CN107689389B (en) | Organic Light Emitting Diode Display Device | |
US9508933B2 (en) | Organic light-emitting diode (OLED) device, manufacturing method thereof and display device | |
US9117679B2 (en) | Organic light emitting diode, touch display device and method for fabricating the same | |
US9305983B2 (en) | Organic light emitting display panel and method of manufacturing the same | |
CN107706221B (en) | The production method and OLED display of OLED display | |
CN105097877A (en) | Transparent display device and manufacturing method thereof | |
US7932113B1 (en) | Method of fabricating organic light emitting diode display | |
CN104201187B (en) | A kind of OLED display | |
WO2018120362A1 (en) | Oled substrate and manufacturing method therefor | |
CN105845710B (en) | Display base plate and preparation method thereof, display device | |
US20120112210A1 (en) | Light emitting device and method for manufacturing the same | |
CN109801955A (en) | OLED display and preparation method thereof | |
TWI559380B (en) | Method for manufacturing pixel structure for organic light emitting display | |
KR102016465B1 (en) | Method for Manufacturing of Organic light Emitting Display Device | |
US20220059794A1 (en) | Organic emitting diode and organic light emitting diode display device including the same | |
KR101296651B1 (en) | Method of manufacturing Organic Electroluminescent Device | |
US10879498B2 (en) | OLED display device and manufacturing method thereof | |
KR102127217B1 (en) | Organic light emitting diode display device and fabricating method of the same | |
KR102452176B1 (en) | Organic light emitting diode and method of fabricating the same | |
KR102089248B1 (en) | Organic Light Emitting Diode Device And Method Of Fabricating The Same | |
JP2009276721A (en) | Electro-optical device and its test method, and electronic equipment | |
EP3671848B1 (en) | Organic light emitting diode display device and method of fabricating the same | |
US20240206294A1 (en) | Organic light-emitting diode display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |