CN105826801A - Dual-wavelength tunable short pulse fiber laser - Google Patents
Dual-wavelength tunable short pulse fiber laser Download PDFInfo
- Publication number
- CN105826801A CN105826801A CN201610296532.3A CN201610296532A CN105826801A CN 105826801 A CN105826801 A CN 105826801A CN 201610296532 A CN201610296532 A CN 201610296532A CN 105826801 A CN105826801 A CN 105826801A
- Authority
- CN
- China
- Prior art keywords
- wavelength
- fiber
- branch
- division multiplexer
- pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 178
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 49
- 239000006096 absorbing agent Substances 0.000 claims abstract description 40
- 239000013307 optical fiber Substances 0.000 claims description 18
- 238000005086 pumping Methods 0.000 claims description 17
- 230000008878 coupling Effects 0.000 claims description 15
- 238000010168 coupling process Methods 0.000 claims description 15
- 238000005859 coupling reaction Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 10
- 239000010410 layer Substances 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 4
- 238000002310 reflectometry Methods 0.000 claims description 4
- 229910052689 Holmium Inorganic materials 0.000 claims description 2
- 229910052775 Thulium Inorganic materials 0.000 claims description 2
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 2
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 claims description 2
- 239000002356 single layer Substances 0.000 claims description 2
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 claims description 2
- -1 bait Inorganic materials 0.000 claims 1
- 150000002910 rare earth metals Chemical class 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 abstract description 6
- 238000011084 recovery Methods 0.000 abstract description 2
- 150000001336 alkenes Chemical class 0.000 abstract 1
- 229910002804 graphite Inorganic materials 0.000 abstract 1
- 239000010439 graphite Substances 0.000 abstract 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 9
- 239000004926 polymethyl methacrylate Substances 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002109 single walled nanotube Substances 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
本发明请求保护一种波长可调谐短脉冲光纤激光器,本发明主要包括泵浦源(1)(10)、波分复用器(2)(4)(6)(11)、增益光纤(3)(12)、石墨烯可饱和吸收体(5)、光纤耦合器(7)(13)、环形器(16)(17)、反射式可调滤波器(8)(14)、50:50光纤耦合器组成的宽带光纤环镜(9)(15)。本发明采用双环形腔或双线性腔结构,波分复用器(4)(6)和石墨烯可饱和吸收体(5)作为双环形腔或双线性腔结构共同的分支,利用石墨烯可饱和吸收体的波长吸收范围广、吸收平稳、低饱和强度、超快恢复时间等优点,结合反射式可调滤波器可实现光纤激光器稳定输出单波长可调谐、双波长间隔大的同步短脉冲。
The invention claims a wavelength-tunable short-pulse fiber laser. The invention mainly includes a pump source (1) (10), a wavelength division multiplexer (2) (4) (6) (11), and a gain fiber (3) )(12), graphene saturable absorber(5), fiber coupler(7)(13), circulator(16)(17), reflective tunable filter(8)(14), 50:50 A broadband fiber optic loop mirror (9)(15) composed of a fiber coupler. The present invention adopts double annular cavity or bilinear cavity structure, wavelength division multiplexer (4) (6) and graphene saturable absorber (5) as the common branch of double annular cavity or bilinear cavity structure, utilizes graphite The alkene saturable absorber has the advantages of wide wavelength absorption range, stable absorption, low saturation intensity, and ultra-fast recovery time. Combined with reflective tunable filters, it can realize stable output of fiber lasers with single-wavelength tunable and dual-wavelength intervals. pulse.
Description
技术领域technical field
本发明属于激光技术与非线性光学领域,具体为一种双波长可调谐短脉冲光纤激光器。The invention belongs to the field of laser technology and nonlinear optics, in particular to a dual-wavelength tunable short-pulse fiber laser.
背景技术Background technique
随着已有的双波长短脉冲固体激光器存在着操作和技术复杂、体积庞大、效率低下、可靠性差等缺陷,极大地限制了双波长短脉冲激光器使用范围,目前只限于实验室内使用。而双波长短脉冲光纤激光器由于具有损耗小、紧凑性高、光纤程度高、效率高、散热性好、与通讯光纤兼容性好,因而受到人们的广泛关注,在激光加工、通信传感、探测诊断、生物医学、光谱学、军事等众多领域有着广阔的前景。As the existing dual-wavelength short-pulse solid-state lasers have defects such as complex operation and technology, bulky volume, low efficiency, and poor reliability, this greatly limits the scope of use of dual-wavelength short-pulse lasers, and is currently limited to laboratory use. The dual-wavelength short-pulse fiber laser has received widespread attention due to its low loss, high compactness, high fiber degree, high efficiency, good heat dissipation, and good compatibility with communication optical fibers. It is used in laser processing, communication sensing, and detection. Diagnosis, biomedicine, spectroscopy, military and many other fields have broad prospects.
已有的双波长短脉冲光纤激光器的同步方式主要有主动和被动两种方式。主动方式有着重复频率高、线宽窄等优点,但引入的主动调制器件破坏了全光纤结构,且成本较高。被动方式如采用非线性环形镜(NOLM)、非线性偏振旋转技术(NPR)、半导体可饱和吸收镜(SESAM)、以及基于单壁碳纳米管(SWCNT)和石墨烯(Graphene)等技术或器件,被广泛用于短脉冲的产生。其中石墨烯由于零带隙结构使其吸收范围从可见光到远红外光,有与波长无关并且比较平稳的吸收特征,故石墨烯通常看作双波长短脉冲光纤激光器理想的可饱和吸收体。The existing synchronization methods of dual-wavelength short-pulse fiber lasers mainly include active and passive methods. The active method has the advantages of high repetition frequency and narrow line width, but the introduced active modulation device destroys the all-fiber structure and is costly. Passive methods such as the use of nonlinear loop mirror (NOLM), nonlinear polarization rotation technology (NPR), semiconductor saturable absorber mirror (SESAM), and technologies or devices based on single-walled carbon nanotubes (SWCNT) and graphene (Graphene) , are widely used for short pulse generation. Among them, graphene has a wavelength-independent and relatively stable absorption characteristic due to its zero-bandgap structure, which makes its absorption range from visible light to far-infrared light. Therefore, graphene is usually regarded as an ideal saturable absorber for dual-wavelength short-pulse fiber lasers.
已有的双波长短脉冲光纤激光器其单个波长大多不可调谐,限制了其应用范围,而加入反射式可调谐滤波器使双波长皆可调谐的双波长短脉冲可调谐光纤激光器能够扩大其应用范围,更具有实际使用价值。The single wavelength of the existing dual-wavelength short-pulse fiber laser is mostly not tunable, which limits its application range, and the dual-wavelength short-pulse tunable fiber laser with reflective tunable filter can expand its application range. , has more practical value.
发明内容Contents of the invention
本发明所要解决的技术问题是克服目前双波长可调谐短脉冲激光器制作复杂、不稳定、成本高、调谐难度大、光纤化程度低、双波长间隔小等问题,提供一种光纤化程度高、制作简单、成本相对低廉、能稳定输出易调谐且双波长间隔大的同步短脉冲光纤激光器。本发明的技术方案如下:The technical problem to be solved by the present invention is to overcome the problems of current dual-wavelength tunable short-pulse lasers such as complex production, instability, high cost, difficult tuning, low degree of fiberization, and small interval between two wavelengths, and provide a high-degree of fiberization, A synchronous short-pulse fiber laser with simple fabrication, relatively low cost, stable output, easy tuning, and large dual-wavelength interval. Technical scheme of the present invention is as follows:
一种双波长可调谐短脉冲光纤激光器,其包括:用于产生第一波长的可调谐短脉冲光纤激光器第一支路、用于产生第二波长的可调谐短脉冲光纤激光器第二支路、用于分离和结合第一、第二波长,并结合第一支路、第二支路组成的线性腔或环形腔进行调制产生短脉冲的公共支路、用于选择第一波长的第一反射式可调滤波器及用于选择第二波长的第二反射式可调滤波器,所述公共调谐支路包括依次串联连接的第二波分复用器、石墨烯可饱和吸收体及第三波分复用器,所述可调谐短脉冲第一支路通过公共支路与第一反射式可调滤波器相连接,产生可调谐短脉冲光纤激光;所述可调谐短脉冲第二支路通过公共支路与第二反射式可调滤波器相连接。A dual-wavelength tunable short-pulse fiber laser, comprising: a first branch of a tunable short-pulse fiber laser for generating a first wavelength, a second branch of a tunable short-pulse fiber laser for generating a second wavelength, It is used to separate and combine the first and second wavelengths, and combine the first branch and the second branch to form a linear cavity or a ring cavity for modulation to generate a common branch of short pulses, and to select the first reflection of the first wavelength type tunable filter and a second reflective tunable filter for selecting a second wavelength, the common tuning branch includes a second wavelength division multiplexer, a graphene saturable absorber and a third A wavelength division multiplexer, the first branch of the tunable short pulse is connected to the first reflective tunable filter through a common branch to generate a tunable short pulse fiber laser; the second branch of the tunable short pulse It is connected with the second reflective tunable filter through a common branch.
进一步的,所述可调谐短脉冲光纤激光器第一支路与可调谐短脉冲光纤激光器第二支路之间的连接包括以下连接方式:即可调谐短脉冲第一支路与可调谐短脉冲第二支路之间先并联后再与公共调谐支路进行串联连接;或可调谐短脉冲光纤激光器第一支路通过第一环形器、可调谐短脉冲光纤激光器第二支路通过第二环形器分别并联在公共调谐支路的两端;或可调谐短脉冲第一支路通过公共调谐支路与可调谐短脉冲第二支路进行串联连接。Further, the connection between the first branch of the tunable short pulse fiber laser and the second branch of the tunable short pulse fiber laser includes the following connection methods: the first branch of the tunable short pulse and the second branch of the tunable short pulse fiber laser The two branches are first connected in parallel and then connected in series with the common tuning branch; or the first branch of the tunable short-pulse fiber laser passes through the first circulator, and the second branch of the tunable short-pulse fiber laser passes through the second circulator They are respectively connected in parallel at both ends of the common tuning branch; or the first branch of the tunable short pulse is connected in series with the second branch of the tunable short pulse through the common tuning branch.
进一步的,当可调谐短脉冲第一支路与可调谐短脉冲第二支路之间先并联后再与公共调谐支路进行串联连接或可调谐短脉冲第一支路通过公共调谐支路与可调谐短脉冲第二支路进行串联连接时包括用于泵浦第一增益光纤的的第一泵浦源、用于将第一泵浦源激光耦合到线性腔或环形腔当中的第一波分复用器、用于激发出第一波长激光的第一增益光纤、用于输出第一波长激光的第一光纤耦合器、用于反射第一波长激光的第一宽带光纤环镜,可调谐短脉冲第二支路包括用于泵浦第二增益光纤的第二泵浦源、用于将第二泵浦源激光耦合到线性腔或环形腔当中的第四波分复用器、用于激发出的第二波长激光的)第二增益光纤、用于输出第二波长激光的第二光纤耦合器、用于反射第二波长激光的第二宽带光纤环镜,可调谐短脉冲光纤激光器第一支路通过第一环形器、可调谐短脉冲光纤激光器第二支路通过第二环形器分别并联在公共调谐支路的两端时包括除第一宽带光纤环镜、第二宽带光纤环镜之外的上述其他器件。Further, when the first branch of the tunable short pulse and the second branch of the tunable short pulse are first connected in parallel and then connected in series with the public tuning branch, or the first branch of the tunable short pulse is connected to the public tuning branch through the public tuning branch When the second branch of the tunable short pulse is connected in series, it includes the first pumping source for pumping the first gain fiber, and the first wave for coupling the first pumping source laser into the linear cavity or the ring cavity. Division multiplexer, the first gain fiber used to excite the first wavelength laser, the first fiber coupler used to output the first wavelength laser, the first broadband fiber loop mirror used to reflect the first wavelength laser, tunable The short pulse second branch includes a second pump source for pumping the second gain fiber, a fourth wavelength division multiplexer for coupling the second pump source laser into a linear cavity or a ring cavity, and a fourth wavelength division multiplexer for The second gain fiber for the excited second wavelength laser, the second fiber coupler for outputting the second wavelength laser, the second broadband fiber loop mirror for reflecting the second wavelength laser, the tunable short pulse fiber laser One branch passes through the first circulator, and the second branch of the tunable short-pulse fiber laser passes through the second circulator. When the two ends of the common tuning branch are respectively connected in parallel, it includes the first broadband fiber loop mirror and the second broadband fiber loop mirror. other devices than those mentioned above.
进一步的,当可调谐短脉冲第一支路与可调谐短脉冲第二支路之间先并联后再与公共支路进行串联连接时,第一泵浦源连接第一波分复用器泵浦输入端a,第一宽带光纤环镜第一光纤耦合器信号输入端j,第一光纤耦合器信号输出端k连接第一波分复用器信号输入端b,第一波分复用器信号输出端c连接第一增益光纤,第一增益光纤另一端连接第二波分复用器信号输入端d,第二波分复用器信号输出端f连接石墨烯可饱和吸收体,石墨烯可饱和吸收体另一端连接第三波分复用器信号输入端g,第三波分复用器信号输出端h连接第一反射式可调滤波器,形成第一路线性腔,第一路线性腔产生的激光由第一光纤耦合器耦合输出端l输出;第二泵浦源连接第四波分复用器泵浦输入端m,第二宽带光纤环镜第二光纤耦合器信号输入端p,第二光纤耦合器信号输出端q连接第四波分复用器信号输入端n,第四波分复用器信号输出端o连接第二增益光纤,第二增益光纤另一端连接第二波分复用器信号输入端e,第二波分复用器信号输出端f连接石墨烯可饱和吸收体,石墨烯可饱和吸收体另一端连接第三波分复用器信号输入端g,第三波分复用器信号输出端i连接第二反射式可调滤波器,形成第二路线性腔,第二路线性腔产生的激光由第二光纤耦合器耦合输出端r输出。Further, when the first branch of the tunable short pulse and the second branch of the tunable short pulse are first connected in parallel and then connected in series with the common branch, the first pumping source is connected to the first wavelength division multiplexer pump Pu input port a, the first broadband fiber optic loop mirror first fiber coupler signal input port j, the first fiber coupler signal output port k connected to the first wavelength division multiplexer signal input port b, the first wavelength division multiplexer The signal output end c is connected to the first gain fiber, the other end of the first gain fiber is connected to the signal input end d of the second wavelength division multiplexer, and the signal output end f of the second wavelength division multiplexer is connected to the graphene saturable absorber, graphene The other end of the saturable absorber is connected to the signal input port g of the third wavelength division multiplexer, and the signal output port h of the third wavelength division multiplexer is connected to the first reflective tunable filter to form a first line linear cavity, and the first line The laser generated by the linear cavity is output from the coupling output port l of the first fiber coupler; the second pump source is connected to the pump input port m of the fourth wavelength division multiplexer, and the second broadband fiber loop mirror is connected to the signal input port of the second fiber coupler p, the signal output port q of the second optical fiber coupler is connected to the signal input port n of the fourth wavelength division multiplexer, the signal output port o of the fourth wavelength division multiplexer is connected to the second gain fiber, and the other end of the second gain fiber is connected to the second The signal input terminal e of the wavelength division multiplexer, the signal output terminal f of the second wavelength division multiplexer is connected to the graphene saturable absorber, and the other end of the graphene saturable absorber is connected to the third wavelength division multiplexer signal input terminal g, The signal output port i of the third wavelength division multiplexer is connected to the second reflective tunable filter to form a second linear cavity, and the laser light generated by the second linear cavity is output from the coupling output port r of the second optical fiber coupler.
进一步的,所述第一泵浦源和第二泵浦源是半导体激光器、固态激光器、气体激光器、光纤激光器中的任意一种,其输出中心波长分别是793nm、980nm、1570nm中三种之中的任意一种,且二者输出中心波长不一致。Further, the first pumping source and the second pumping source are any one of semiconductor lasers, solid-state lasers, gas lasers, and fiber lasers, and their output center wavelengths are three of 793nm, 980nm, and 1570nm, respectively. Any one of them, and the output center wavelengths of the two are inconsistent.
进一步的,所述第一增益光纤和第二增益光纤是单包层或者双包层稀土掺杂光纤,其中掺杂的稀土元素是镱、饵、铥、钬中的一种或几种。Further, the first gain fiber and the second gain fiber are single-clad or double-clad rare-earth-doped fibers, wherein the doped rare-earth element is one or more of ytterbium, erbium, thulium, and holmium.
进一步的,所述石墨烯可饱和吸收体还可以为氧化石墨烯可饱和吸收体,二者层数是单层、双层、多层。Further, the graphene saturable absorber may also be a graphene oxide saturable absorber, and the number of layers of the two is single layer, double layer, or multilayer.
进一步的,所述第一波分复用器、第二波分复用器、第三波分复用器、第一光纤耦合器、第四波分复用器、第二光纤耦合器中信号可逆向输入,即信号输入端也可以作信号输出端,信号输出端也可以作信号输入端;第二波分复用器和第三波分复用器可以为:1550/2000nm、1550/1050nm、1050/2000nm三种工作波长模式中的任意一种,二者工作波长一致。Further, the signal in the first wavelength division multiplexer, the second wavelength division multiplexer, the third wavelength division multiplexer, the first optical fiber coupler, the fourth wavelength division multiplexer, and the second optical fiber coupler Reversible input, that is, the signal input terminal can also be used as the signal output terminal, and the signal output terminal can also be used as the signal input terminal; the second wavelength division multiplexer and the third wavelength division multiplexer can be: 1550/2000nm, 1550/1050nm , 1050/2000nm any one of the three working wavelength modes, the two working wavelengths are the same.
进一步的,所述第二波分复用器和第三波分复用器可以换成成多路波分复用器,使双波长可调谐短脉冲光纤激光器扩展成多波长可调谐短脉冲光纤激光器。Further, the second wavelength division multiplexer and the third wavelength division multiplexer can be replaced with multiple wavelength division multiplexers, so that the dual-wavelength tunable short-pulse fiber laser can be expanded into a multi-wavelength tunable short-pulse fiber laser.
进一步的,所述第一反射式可调滤波器和第二反射式可调滤波器工作波长分别为1550nm、2000nm、1050nm三种之中的任意一种,二者工作波长不一致,二者反射率都为R,其中0.9<R<1。Further, the operating wavelengths of the first reflective tunable filter and the second reflective tunable filter are any of the three types of 1550nm, 2000nm, and 1050nm respectively, and the operating wavelengths of the two are inconsistent, and the reflectance of the two All are R, where 0.9<R<1.
本发明的优点及有益效果如下:Advantage of the present invention and beneficial effect are as follows:
本发明双波长可调谐短脉冲光纤激光器具有以下优点:The dual-wavelength tunable short-pulse fiber laser of the present invention has the following advantages:
1.该光纤激光器利用掺杂稀土元素的光纤作为增益介质和石墨烯或者氧化石墨烯作为可饱和吸收体,结合双腔设计,全光纤结构,不用空间调制器件,结构相对简单,易于调整,环境稳定性好;1. The fiber laser uses fiber doped with rare earth elements as a gain medium and graphene or graphene oxide as a saturable absorber, combined with a dual-cavity design, an all-fiber structure, and no spatial modulation device. The structure is relatively simple, easy to adjust, and environmentally friendly. Good stability;
2.该光纤激光器采用石墨烯或者氧化石墨烯作为可饱和吸收体,二者具有波长吸收范围广、低饱和强度、超快恢复时间、吸收平稳等优点;2. The fiber laser uses graphene or graphene oxide as a saturable absorber, both of which have the advantages of wide wavelength absorption range, low saturation intensity, ultra-fast recovery time, and stable absorption;
3.该光纤激光器短脉冲输出双波长间隔大,双波长可以分别调节,易实现两种不同波长调谐和短脉冲同步。3. The short pulse output of the fiber laser has a large interval between the dual wavelengths, and the dual wavelengths can be adjusted separately, and it is easy to realize two different wavelength tuning and short pulse synchronization.
附图说明Description of drawings
图1是本发明提供优选实施例1双波长可调谐短脉冲光纤激光器基本原理图;Fig. 1 is a schematic diagram of the basic principle of a dual-wavelength tunable short-pulse fiber laser according to the preferred embodiment 1 provided by the present invention;
图2为实施例2双波长可调谐短脉冲光纤激光器基本原理图;Fig. 2 is a schematic diagram of the basic principle of the dual-wavelength tunable short-pulse fiber laser in Embodiment 2;
图3为实施例3双波长可调谐短脉冲光纤激光器基本原理图;3 is a schematic diagram of the basic principle of the dual-wavelength tunable short-pulse fiber laser in Embodiment 3;
图中:1、第一泵浦源;2、第一波分复用器;3、第一增益光纤;4、第二波分复用器;5、石墨烯可饱和吸收体;6、第三波分复用器;7、第一光纤耦合器;8、第一反射式可调滤波器;9、第一50:50光纤耦合器组成的宽带光纤环镜;10、第二泵浦源;11、第四波分复用器;12、第二增益光纤;13、第二光纤耦合器;14、第二透射式可调滤波器;15、第二50:50光纤耦合器组成的宽带光纤环镜;16、第一环形器;17、第二环形器。In the figure: 1. The first pump source; 2. The first wavelength division multiplexer; 3. The first gain fiber; 4. The second wavelength division multiplexer; 5. Graphene saturable absorber; 6. The first Three-wavelength division multiplexer; 7. The first fiber coupler; 8. The first reflective tunable filter; 9. The broadband fiber loop mirror composed of the first 50:50 fiber coupler; 10. The second pumping source 11. The fourth wavelength division multiplexer; 12. The second gain fiber; 13. The second fiber coupler; 14. The second transmission tunable filter; 15. The broadband composed of the second 50:50 fiber coupler Fiber loop mirror; 16, the first circulator; 17, the second circulator.
具体实施方式detailed description
以下结合附图,对本发明作进一步说明:Below in conjunction with accompanying drawing, the present invention will be further described:
如图1所示,实施例1As shown in Figure 1, Example 1
一种双波长可调谐短脉冲光纤激光器基本原理图如图1所示。图中1、10分别为第一、第二泵浦源,可以分别选用中心波长为1570nm、980nm的半导体激光二极管;2、11分别为第一、第四波分复用器,可以分别选用1570/2000nm、980/1550nm波分复用器;3、12分别为第一、第二增益光纤,可以分别选用掺铥、掺饵单模光纤;4、6分别为第二、第三波分复用器,可选用1550/2000nm波分复用器;5为石墨烯可饱和吸收体,可利用旋转涂膜法将聚甲基丙烯酸甲酯(PMMA)涂在有铜衬底的石墨烯薄层上,随后将之置于过硫酸铵水溶液中消除铜衬底形成聚甲基丙烯酸甲酯/石墨烯堆,用光纤插针将之捕获,在烤箱中干燥后夹在两个跳线头之间,并将跳线头用法兰盘固定制成;7、13分别为第一、第二光纤耦合器,可以分别选用中心波长为2000nm、1550nm的20:80输出光纤耦合器,其中80%用于耦合输出,20%用于循环;8、14分别为第一、第二反射式可调滤波器,可以分别选用中心波长为2000nm、1550nm的可调谐光纤布喇格光栅,反射率为R,其中0.9<R<1;9、15分别为第一、第二50:50光纤耦合器组成的宽带光纤环镜,可以分别选用中心波长为2000nm、1550nm的光纤耦合器用来组成宽带光纤环镜。The basic principle diagram of a dual-wavelength tunable short-pulse fiber laser is shown in Figure 1. 1 and 10 in the figure are the first and second pump sources respectively, and semiconductor laser diodes with center wavelengths of 1570nm and 980nm can be selected respectively; 2 and 11 are the first and fourth wavelength division multiplexers respectively, and 1570 nm can be selected respectively. /2000nm, 980/1550nm wavelength division multiplexer; 3, 12 are the first and second gain fiber, respectively, can choose thulium-doped, erbium-doped single-mode fiber; 4, 6 are the second, third wavelength division multiplexing 1550/2000nm wavelength division multiplexer can be selected for use; 5 is a graphene saturable absorber, and polymethyl methacrylate (PMMA) can be coated on a graphene thin layer with a copper substrate by using a spin coating method Then place it in an aqueous solution of ammonium persulfate to eliminate the copper substrate to form a PMMA/graphene stack, capture it with a fiber optic stud, dry it in an oven, and clamp it between two jumper wires , and fix the jumper head with a flange; 7 and 13 are the first and second fiber couplers respectively, and 20:80 output fiber couplers with center wavelengths of 2000nm and 1550nm can be selected respectively, 80% of which are used for Coupling output, 20% is used for circulation; 8 and 14 are the first and second reflective tunable filters respectively, and tunable fiber Bragg gratings with center wavelengths of 2000nm and 1550nm can be selected respectively, and the reflectivity is R, where 0.9<R<1; 9 and 15 are broadband fiber optic loop mirrors composed of the first and second 50:50 fiber couplers respectively, and fiber couplers with center wavelengths of 2000nm and 1550nm can be selected to form broadband fiber optic loop mirrors.
第一泵浦源1连接第一波分复用器2泵浦输入端a,第一50:50光纤耦合器组成的宽带光纤环镜9第一光纤耦合器7信号输入端j,第一光纤耦合器7信号输出端k连接第一波分复用器2信号输入端b,第一波分复用器2信号输出端c连接第一增益光纤3,第一增益光纤3另一端连接第二波分复用器4信号输入端d,第二波分复用器4信号输出端f连接石墨烯可饱和吸收体5,石墨烯可饱和吸收体5另一端连接第三波分复用器6信号输入端g,第三波分复用器6信号输出端h连接第一反射式可调滤波器8,形成第一路线性腔,第一路线性腔产生的激光由第一光纤耦合器7耦合输出端l输出;第二泵浦源10连接第四波分复用器11泵浦输入端m,第二50:50光纤耦合器组成的宽带光纤环镜15第二光纤耦合器13信号输入端p,第二光纤耦合器13信号输出端q连接第四波分复用器11信号输入端n,第四波分复用器11信号输出端o连接第二增益光纤12,第二增益光纤12另一端连接第二波分复用器4信号输入端e,第二波分复用器4信号输出端f连接石墨烯可饱和吸收体5,石墨烯可饱和吸收体5另一端连接第三波分复用器6信号输入端g,第三波分复用器6信号输出端i连接第二反射式可调滤波器14,形成第二路线性腔,第二路线性腔产生的激光由第二光纤耦合器13耦合输出端r输出;第二波分复用器4、石墨烯可饱和吸收体5和第三波分复用器6作为两线性腔同一支路。The first pump source 1 is connected to the pump input end a of the first wavelength division multiplexer 2, the broadband fiber optic loop mirror composed of the first 50:50 fiber coupler 9 the first fiber coupler 7 signal input end j, the first optical fiber The signal output terminal k of the coupler 7 is connected to the signal input terminal b of the first wavelength division multiplexer 2, the signal output terminal c of the first wavelength division multiplexer 2 is connected to the first gain fiber 3, and the other end of the first gain fiber 3 is connected to the second The signal input terminal d of the wavelength division multiplexer 4, the signal output terminal f of the second wavelength division multiplexer 4 is connected to the graphene saturable absorber 5, and the other end of the graphene saturable absorber 5 is connected to the third wavelength division multiplexer 6 The signal input terminal g, the signal output terminal h of the third wavelength division multiplexer 6 is connected to the first reflective tunable filter 8 to form a first linear cavity, and the laser generated by the first optical fiber coupler 7 Coupling output terminal l output; the second pump source 10 is connected to the fourth wavelength division multiplexer 11 pump input terminal m, the second 50:50 broadband fiber optic loop mirror 15 composed of the second fiber coupler 13 signal input Port p, the signal output port q of the second optical fiber coupler 13 is connected to the signal input port n of the fourth wavelength division multiplexer 11, the signal output port o of the fourth wavelength division multiplexer 11 is connected to the second gain fiber 12, and the second gain fiber 12 The other end is connected to the signal input terminal e of the second wavelength division multiplexer 4, the signal output terminal f of the second wavelength division multiplexer 4 is connected to the graphene saturable absorber 5, and the other end of the graphene saturable absorber 5 is connected to the third The signal input terminal g of the wavelength division multiplexer 6, the signal output terminal i of the third wavelength division multiplexer 6 is connected to the second reflective tunable filter 14 to form a second linear cavity, and the laser generated by the second linear cavity is generated by The second optical fiber coupler 13 couples the output terminal r to output; the second wavelength division multiplexer 4, the graphene saturable absorber 5 and the third wavelength division multiplexer 6 serve as the same branch of the two linear cavities.
实施例2Example 2
一种双波长可调谐短脉冲光纤激光器基本原理图如图2所示。图中1、10分别为第一、第二泵浦源,可以分别选用中心波长为1570nm、980nm的半导体激光二极管;2、11分别为第一、第四波分复用器,可以分别选用1570/2000nm、980/1550nm波分复用器;3、12分别为第一、第二增益光纤,可以分别选用掺铥、掺饵单模光纤;4、6分别为第二、第三波分复用器,可选用1550/2000nm波分复用器;5为石墨烯可饱和吸收体,可利用旋转涂膜法将聚甲基丙烯酸甲酯(PMMA)涂在有铜衬底的石墨烯薄层上,随后将之置于过硫酸铵水溶液中消除铜衬底形成聚甲基丙烯酸甲酯/石墨烯堆,用光纤插针将之捕获,在烤箱中干燥后夹在两个跳线头之间,并将跳线头用法兰盘固定制成;7、13分别为第一、第二光纤耦合器,可以分别选用中心波长为2000nm、1550nm的20:80输出光纤耦合器,其中80%用于耦合输出,20%用于循环;8、14分别为第一、第二反射式可调滤波器,可以分别选用中心波长为2000nm、1550nm的可调谐光纤布喇格光栅,反射率为R,其中0.9<R<1;16、17分别为第一、第二环形器,可以分别选用中心波长为2000nm、1550nm的光纤环形器。The basic principle diagram of a dual-wavelength tunable short-pulse fiber laser is shown in Figure 2. 1 and 10 in the figure are the first and second pump sources respectively, and semiconductor laser diodes with center wavelengths of 1570nm and 980nm can be selected respectively; 2 and 11 are the first and fourth wavelength division multiplexers respectively, and 1570 nm can be selected respectively. /2000nm, 980/1550nm wavelength division multiplexer; 3, 12 are the first and second gain fiber, respectively, can choose thulium-doped, erbium-doped single-mode fiber; 4, 6 are the second, third wavelength division multiplexing 1550/2000nm wavelength division multiplexer can be selected for use; 5 is a graphene saturable absorber, and polymethyl methacrylate (PMMA) can be coated on a graphene thin layer with a copper substrate by using a spin coating method Then place it in an aqueous solution of ammonium persulfate to eliminate the copper substrate to form a PMMA/graphene stack, capture it with a fiber optic stud, dry it in an oven, and clamp it between two jumper wires , and fix the jumper head with a flange; 7 and 13 are the first and second fiber couplers respectively, and 20:80 output fiber couplers with center wavelengths of 2000nm and 1550nm can be selected respectively, 80% of which are used for Coupling output, 20% is used for circulation; 8 and 14 are the first and second reflective tunable filters respectively, and tunable fiber Bragg gratings with center wavelengths of 2000nm and 1550nm can be selected respectively, and the reflectivity is R, where 0.9<R<1; 16 and 17 are respectively the first and second circulators, and optical fiber circulators with center wavelengths of 2000nm and 1550nm can be selected respectively.
第一泵浦源1连接第一波分复用器2泵浦输入端a,第一波分复用器2信号输出端c连接第一增益光纤3,第一增益光纤3另一端连接第一环形器16信号输入端s,第一环形器16信号输出端u连接第二波分复用器4信号输入端d,第二波分复用器4信号输出端f连接石墨烯可饱和吸收体5,石墨烯可饱和吸收体5另一端连接第三波分复用器6信号输入端g,第三波分复用器6信号输出端h连接第一光纤耦合器7信号输入端j,第一光纤耦合器7信号输出端k连接第一波分复用器2信号输入端b,形成第一光纤环形谐振腔,其中第一环形器16中间端t连接第一反射式可调滤波器8,第一光纤环形谐振腔产生的激光经第一光纤耦合器7耦合输出端l输出;第二泵浦源10连接第四波分复用器11泵浦输入端m,第四波分复用器11信号输出端o连接第二增益光纤12,第二增益光纤12另一端连接第二环形器17信号输入端v,第二环形器17信号输出端x连接第二波分复用器4信号输入端e,第二波分复用器4信号输出端f连接石墨烯可饱和吸收体5,石墨烯可饱和吸收体5另一端连接第三波分复用器6信号输入端g,第三波分复用器6信号输出端i连接第二光纤耦合器13信号输入端p,第二光纤耦合器13信号输出端q连接第四波分复用器11信号输入端n,形成第二光纤环形谐振腔,其中第二环形器17中间端w连接第二反射式可调滤波器14,第二光纤环形谐振腔产生的激光经第二光纤耦合器13耦合输出端r输出;第二波分复用器4、石墨烯可饱和吸收体5和第三波分复用器6组合作为双环形腔结构的同一支路。The first pump source 1 is connected to the pump input end a of the first wavelength division multiplexer 2, the signal output end c of the first wavelength division multiplexer 2 is connected to the first gain fiber 3, and the other end of the first gain fiber 3 is connected to the first The signal input terminal s of the circulator 16, the signal output terminal u of the first circulator 16 is connected to the signal input terminal d of the second wavelength division multiplexer 4, and the signal output terminal f of the second wavelength division multiplexer 4 is connected to the graphene saturable absorber 5. The other end of the graphene saturable absorber 5 is connected to the signal input port g of the third wavelength division multiplexer 6, and the signal output port h of the third wavelength division multiplexer 6 is connected to the signal input port j of the first optical fiber coupler 7. A fiber coupler 7 signal output end k is connected to the first wavelength division multiplexer 2 signal input end b to form a first optical fiber ring resonator, wherein the middle end t of the first circulator 16 is connected to the first reflective tunable filter 8 , the laser produced by the first optical fiber ring resonator is output through the coupling output port l of the first fiber coupler 7; the second pumping source 10 is connected to the pumping input port m of the fourth wavelength division multiplexer 11, and the fourth wavelength division multiplexing The signal output port o of the device 11 is connected to the second gain fiber 12, the other end of the second gain fiber 12 is connected to the signal input port v of the second circulator 17, and the signal output port x of the second circulator 17 is connected to the signal of the second wavelength division multiplexer 4 The input terminal e, the signal output terminal f of the second wavelength division multiplexer 4 is connected to the graphene saturable absorber 5, and the other end of the graphene saturable absorber 5 is connected to the third wavelength division multiplexer 6 signal input terminal g, the third The signal output port i of the wavelength division multiplexer 6 is connected to the signal input port p of the second fiber optic coupler 13, and the signal output port q of the second fiber optic coupler 13 is connected to the signal input port n of the fourth wavelength division multiplexer 11 to form a second optical fiber A ring resonator, wherein the middle end w of the second circulator 17 is connected to the second reflective tunable filter 14, and the laser light generated by the second fiber ring resonator is output through the coupling output port r of the second fiber coupler 13; the second wavelength division The multiplexer 4, the graphene saturable absorber 5 and the third wavelength division multiplexer 6 are combined as the same branch of the double ring cavity structure.
实施例3Example 3
一种双波长可调谐短脉冲光纤激光器基本原理图如图3所示。图中1、10分别为第一、第二泵浦源,可以分别选用中心波长为1570nm、980nm的半导体激光二极管;2、11分别为第一、第四波分复用器,可以分别选用1570/2000nm、980/1550nm波分复用器;3、12分别为第一、第二增益光纤,可以分别选用掺铥、掺饵单模光纤;4、6分别为第二、第三波分复用器,可选用1550/2000nm波分复用器;5为石墨烯可饱和吸收体,可利用旋转涂膜法将聚甲基丙烯酸甲酯(PMMA)涂在有铜衬底的石墨烯薄层上,随后将之置于过硫酸铵水溶液中消除铜衬底形成聚甲基丙烯酸甲酯/石墨烯堆,用光纤插针将之捕获,在烤箱中干燥后夹在两个跳线头之间,并将跳线头用法兰盘固定制成;7、13分别为第一、第二光纤耦合器,可以分别选用中心波长为2000nm、1550nm的20:80输出光纤耦合器,其中80%用于耦合输出,20%用于循环;8、14分别为第一、第二反射式可调滤波器,可以分别选用中心波长为2000nm、1550nm的可调谐光纤布喇格光栅,反射率为R,其中0.9<R<1;9、15分别为第一、第二50:50光纤耦合器组成的宽带光纤环镜,可以分别选用中心波长为2000nm、1550nm的光纤耦合器用来组成宽带光纤环镜。The basic principle diagram of a dual-wavelength tunable short-pulse fiber laser is shown in Figure 3. 1 and 10 in the figure are the first and second pump sources respectively, and semiconductor laser diodes with center wavelengths of 1570nm and 980nm can be selected respectively; 2 and 11 are the first and fourth wavelength division multiplexers respectively, and 1570 nm can be selected respectively. /2000nm, 980/1550nm wavelength division multiplexer; 3, 12 are the first and second gain fiber, respectively, can choose thulium-doped, erbium-doped single-mode fiber; 4, 6 are the second, third wavelength division multiplexing 1550/2000nm wavelength division multiplexer can be selected for use; 5 is a graphene saturable absorber, and polymethyl methacrylate (PMMA) can be coated on a graphene thin layer with a copper substrate by using a spin coating method Then place it in an aqueous solution of ammonium persulfate to eliminate the copper substrate to form a PMMA/graphene stack, capture it with a fiber optic stud, dry it in an oven, and clamp it between two jumper wires , and fix the jumper head with a flange; 7 and 13 are the first and second fiber couplers respectively, and 20:80 output fiber couplers with center wavelengths of 2000nm and 1550nm can be selected respectively, 80% of which are used for Coupling output, 20% is used for circulation; 8 and 14 are the first and second reflective tunable filters respectively, and tunable fiber Bragg gratings with center wavelengths of 2000nm and 1550nm can be selected respectively, and the reflectivity is R, where 0.9<R<1; 9 and 15 are broadband fiber optic loop mirrors composed of the first and second 50:50 fiber couplers respectively, and fiber couplers with center wavelengths of 2000nm and 1550nm can be selected to form broadband fiber optic loop mirrors.
第一泵浦源1连接第一波分复用器2泵浦输入端a,第一50:50光纤耦合器组成的宽带光纤环镜9连接第一光纤耦合器7信号输入端j,第一光纤耦合器7信号输出端k连接第一波分复用器2信号输入端b,第一波分复用器2信号输出端c连接第一增益光纤3,第一增益光纤3另一端连接第二波分复用器4信号输入端d,第二波分复用器4信号输出端f连接石墨烯可饱和吸收体5,石墨烯可饱和吸收体5另一端连接第三波分复用器6信号输入端g,第三波分复用器6信号输出端h连接第一反射式可调滤波器8,形成第一路线性腔,第一路线性腔产生的激光由第一光纤耦合器7耦合输出端l输出;第二泵浦源10连接第四波分复用器11泵浦输入端m,第二50:50光纤耦合器组成的宽带光纤环镜15连接第二光纤耦合器13信号输入端p,第二光纤耦合器13信号输出端q连接第四波分复用器11信号输入端n,第四波分复用器11信号输出端o连接第二增益光纤12,第二增益光纤12另一端连接第三波分复用器6信号输出端i,第三波分复用器6信号输入端g连接石墨烯可饱和吸收体5,石墨烯可饱和吸收体5另一端连接第二波分复用器4信号输出端f,第二波分复用器4信号输入端e连接第二反射式可调滤波器14,形成第二路线性腔,第二路线性腔产生的激光由第二光纤耦合器13耦合输出端r输出;第二波分复用器4、石墨烯可饱和吸收体5和第三波分复用器6作为两线性腔同一支路。The first pump source 1 is connected to the pump input end a of the first wavelength division multiplexer 2, the broadband fiber loop mirror 9 composed of the first 50:50 fiber coupler is connected to the signal input end j of the first fiber coupler 7, and the first The signal output terminal k of the fiber coupler 7 is connected to the signal input terminal b of the first wavelength division multiplexer 2, the signal output terminal c of the first wavelength division multiplexer 2 is connected to the first gain fiber 3, and the other end of the first gain fiber 3 is connected to the first gain fiber 3 The signal input terminal d of the second wavelength division multiplexer 4, the signal output terminal f of the second wavelength division multiplexer 4 is connected to the graphene saturable absorber 5, and the other end of the graphene saturable absorber 5 is connected to the third wavelength division multiplexer 6 signal input terminal g, the signal output terminal h of the third wavelength division multiplexer 6 is connected to the first reflective tunable filter 8 to form a first route linear cavity, and the laser generated by the first route linear cavity is transmitted by the first fiber coupler 7 Coupling output port l output; the second pump source 10 is connected to the fourth wavelength division multiplexer 11 pumping input port m, and the broadband fiber loop mirror 15 composed of the second 50:50 fiber coupler is connected to the second fiber coupler 13 The signal input port p, the signal output port q of the second optical fiber coupler 13 is connected to the signal input port n of the fourth wavelength division multiplexer 11, the signal output port o of the fourth wavelength division multiplexer 11 is connected to the second gain fiber 12, and the second The other end of the gain fiber 12 is connected to the signal output terminal i of the third wavelength division multiplexer 6, the signal input terminal g of the third wavelength division multiplexer 6 is connected to the graphene saturable absorber 5, and the other end of the graphene saturable absorber 5 is connected to The signal output terminal f of the second wavelength division multiplexer 4, the signal input terminal e of the second wavelength division multiplexer 4 is connected to the second reflective tunable filter 14 to form a second line linear cavity, and the second line linear cavity produces The laser is output by the coupling output port r of the second fiber coupler 13; the second wavelength division multiplexer 4, the graphene saturable absorber 5 and the third wavelength division multiplexer 6 are used as the same branch of the two linear cavities.
以上实施例仅涉及1550/2000nm一种输出工作模式,还可以增加1550/1050nm、1050/2000nm两种工作模式。The above embodiment only involves one output working mode of 1550/2000nm, and two working modes of 1550/1050nm and 1050/2000nm can also be added.
以上这些实施例应理解为仅用于说明本发明而不用于限制本发明的保护范围。在阅读了本发明的记载的内容之后,技术人员可以对本发明作各种改动或修改,这些等效变化和修饰同样落入本发明权利要求所限定的范围。The above embodiments should be understood as only for illustrating the present invention but not for limiting the protection scope of the present invention. After reading the contents of the present invention, skilled persons can make various changes or modifications to the present invention, and these equivalent changes and modifications also fall within the scope defined by the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610296532.3A CN105826801B (en) | 2016-05-06 | 2016-05-06 | A kind of dual-wavelength tunable Ultra-short Fiber Laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610296532.3A CN105826801B (en) | 2016-05-06 | 2016-05-06 | A kind of dual-wavelength tunable Ultra-short Fiber Laser |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105826801A true CN105826801A (en) | 2016-08-03 |
CN105826801B CN105826801B (en) | 2019-05-31 |
Family
ID=56528232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610296532.3A Active CN105826801B (en) | 2016-05-06 | 2016-05-06 | A kind of dual-wavelength tunable Ultra-short Fiber Laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105826801B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107317219A (en) * | 2017-07-07 | 2017-11-03 | 西北大学 | Dual wavelength pulse optical fiber laser based on rhenium disulfide saturable absorber |
CN107800035A (en) * | 2017-11-14 | 2018-03-13 | 北京信息科技大学 | A kind of changeable mode-locked fiber lasers device of wavelength |
CN108195484A (en) * | 2017-12-27 | 2018-06-22 | 北京信息科技大学 | One kind is based on tunable optical fiber laser Research on Automatic Measuring System of Temperature and its test method |
IT201700051935A1 (en) * | 2017-05-12 | 2018-11-12 | Cambridge Entpr Ltd | LASER DEVICE |
CN108873559A (en) * | 2018-09-21 | 2018-11-23 | 宏力光电科技(深圳)有限公司 | A kind of fiber amplifier |
CN109119874A (en) * | 2018-09-29 | 2019-01-01 | 上海理工大学 | A kind of inclined double-colored of all risk insurance synchronizes ultrafast fiber laser system |
CN109698459A (en) * | 2019-02-11 | 2019-04-30 | 上海应用技术大学 | Three colour synchronisation Q adjusting optical fiber lasers |
CN111404013A (en) * | 2020-03-27 | 2020-07-10 | 西北大学 | Experimental device for synchronously realizing dual-wavelength pulse laser output |
CN111404008A (en) * | 2020-03-27 | 2020-07-10 | 西北大学 | A dual-wavelength cylindrical vector light single-frequency Q-switched fiber laser |
CN111668689A (en) * | 2020-05-29 | 2020-09-15 | 华南理工大学 | A dual-wavelength high-speed swept frequency synchronous pulse light source |
CN112146799A (en) * | 2020-09-07 | 2020-12-29 | 桂林电子科技大学 | Optical fiber sensing device for integrated measurement of torsion and humidity |
CN112886372A (en) * | 2021-01-13 | 2021-06-01 | 电子科技大学 | Multi-port output multi-wavelength laser pulse generation system |
CN112886373A (en) * | 2021-01-13 | 2021-06-01 | 电子科技大学 | Dual-waveband high-energy rectangular laser pulse generation system with all-fiber structure |
CN114552356A (en) * | 2022-02-14 | 2022-05-27 | 中国人民解放军93236部队 | Device for converting periodic laser short pulse into random waveform long pulse or pulse cluster |
CN114976846A (en) * | 2022-04-07 | 2022-08-30 | 北京航天控制仪器研究所 | Multi-band switchable pulse laser system with all-fiber structure |
CN115377783A (en) * | 2022-09-15 | 2022-11-22 | 广东大湾区空天信息研究院 | A dual-frequency pulsed laser |
CN116914543A (en) * | 2023-09-12 | 2023-10-20 | 武汉中科锐择光电科技有限公司 | Generating a Broadband Continuously Tunable Laser System |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05145160A (en) * | 1991-11-25 | 1993-06-11 | Sumitomo Metal Mining Co Ltd | Second harmonics generator in solid laser device |
JPH08213689A (en) * | 1995-02-03 | 1996-08-20 | Seitai Hikari Joho Kenkyusho:Kk | Solid-state laser medium and solid-state laser device |
CN2867664Y (en) * | 2006-01-12 | 2007-02-07 | 南开大学 | Resonant cavities that generate high-brightness laser light sources |
CN105161968A (en) * | 2015-09-22 | 2015-12-16 | 电子科技大学 | Graphene-based mid-infrared dual-wavelength co-repetition frequency pulsed fiber laser |
-
2016
- 2016-05-06 CN CN201610296532.3A patent/CN105826801B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05145160A (en) * | 1991-11-25 | 1993-06-11 | Sumitomo Metal Mining Co Ltd | Second harmonics generator in solid laser device |
JPH08213689A (en) * | 1995-02-03 | 1996-08-20 | Seitai Hikari Joho Kenkyusho:Kk | Solid-state laser medium and solid-state laser device |
CN2867664Y (en) * | 2006-01-12 | 2007-02-07 | 南开大学 | Resonant cavities that generate high-brightness laser light sources |
CN105161968A (en) * | 2015-09-22 | 2015-12-16 | 电子科技大学 | Graphene-based mid-infrared dual-wavelength co-repetition frequency pulsed fiber laser |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102478187B1 (en) * | 2017-05-12 | 2022-12-15 | 캠브리지 엔터프라이즈 리미티드 | laser device |
JP7194121B2 (en) | 2017-05-12 | 2022-12-21 | ケンブリッジ エンタープライズ リミテッド | Laser device, optical device and method |
US11936157B2 (en) | 2017-05-12 | 2024-03-19 | Cambridge Enterprise Limited | Laser device |
IT201700051935A1 (en) * | 2017-05-12 | 2018-11-12 | Cambridge Entpr Ltd | LASER DEVICE |
WO2018206980A1 (en) * | 2017-05-12 | 2018-11-15 | Cambridge Enterprise Limited | A laser device |
JP2020520107A (en) * | 2017-05-12 | 2020-07-02 | ケンブリッジ エンタープライズ リミテッド | Laser equipment |
CN110870149A (en) * | 2017-05-12 | 2020-03-06 | 剑桥企业有限公司 | Laser device |
KR20200014783A (en) * | 2017-05-12 | 2020-02-11 | 캠브리지 엔터프라이즈 리미티드 | Laser devices |
CN107317219A (en) * | 2017-07-07 | 2017-11-03 | 西北大学 | Dual wavelength pulse optical fiber laser based on rhenium disulfide saturable absorber |
CN107800035A (en) * | 2017-11-14 | 2018-03-13 | 北京信息科技大学 | A kind of changeable mode-locked fiber lasers device of wavelength |
CN108195484A (en) * | 2017-12-27 | 2018-06-22 | 北京信息科技大学 | One kind is based on tunable optical fiber laser Research on Automatic Measuring System of Temperature and its test method |
CN108873559B (en) * | 2018-09-21 | 2023-12-01 | 宏力光电科技(深圳)有限公司 | Optical fiber amplifier |
CN108873559A (en) * | 2018-09-21 | 2018-11-23 | 宏力光电科技(深圳)有限公司 | A kind of fiber amplifier |
CN109119874A (en) * | 2018-09-29 | 2019-01-01 | 上海理工大学 | A kind of inclined double-colored of all risk insurance synchronizes ultrafast fiber laser system |
CN109698459A (en) * | 2019-02-11 | 2019-04-30 | 上海应用技术大学 | Three colour synchronisation Q adjusting optical fiber lasers |
CN111404008B (en) * | 2020-03-27 | 2021-07-02 | 西北大学 | A dual-wavelength cylindrical vector light single-frequency Q-switched fiber laser |
CN111404013B (en) * | 2020-03-27 | 2021-07-27 | 西北大学 | An experimental device for synchronously realizing dual-wavelength pulsed laser output |
CN111404008A (en) * | 2020-03-27 | 2020-07-10 | 西北大学 | A dual-wavelength cylindrical vector light single-frequency Q-switched fiber laser |
CN111404013A (en) * | 2020-03-27 | 2020-07-10 | 西北大学 | Experimental device for synchronously realizing dual-wavelength pulse laser output |
CN111668689B (en) * | 2020-05-29 | 2024-04-23 | 华南理工大学 | Dual-wavelength high-speed sweep synchronous pulse light source |
CN111668689A (en) * | 2020-05-29 | 2020-09-15 | 华南理工大学 | A dual-wavelength high-speed swept frequency synchronous pulse light source |
CN112146799A (en) * | 2020-09-07 | 2020-12-29 | 桂林电子科技大学 | Optical fiber sensing device for integrated measurement of torsion and humidity |
CN112146799B (en) * | 2020-09-07 | 2022-09-06 | 桂林电子科技大学 | Optical fiber sensing device for integrated measurement of torsion and humidity |
CN112886373A (en) * | 2021-01-13 | 2021-06-01 | 电子科技大学 | Dual-waveband high-energy rectangular laser pulse generation system with all-fiber structure |
CN112886372A (en) * | 2021-01-13 | 2021-06-01 | 电子科技大学 | Multi-port output multi-wavelength laser pulse generation system |
CN112886372B (en) * | 2021-01-13 | 2021-11-09 | 电子科技大学 | Multi-port output multi-wavelength laser pulse generation system |
CN114552356A (en) * | 2022-02-14 | 2022-05-27 | 中国人民解放军93236部队 | Device for converting periodic laser short pulse into random waveform long pulse or pulse cluster |
CN114552356B (en) * | 2022-02-14 | 2024-05-10 | 中国人民解放军93236部队 | Device for converting periodic laser short pulse into random waveform long pulse or pulse cluster |
CN114976846A (en) * | 2022-04-07 | 2022-08-30 | 北京航天控制仪器研究所 | Multi-band switchable pulse laser system with all-fiber structure |
CN115377783A (en) * | 2022-09-15 | 2022-11-22 | 广东大湾区空天信息研究院 | A dual-frequency pulsed laser |
CN115377783B (en) * | 2022-09-15 | 2024-11-12 | 广东大湾区空天信息研究院 | A dual-frequency pulse laser |
CN116914543A (en) * | 2023-09-12 | 2023-10-20 | 武汉中科锐择光电科技有限公司 | Generating a Broadband Continuously Tunable Laser System |
CN116914543B (en) * | 2023-09-12 | 2023-11-28 | 武汉中科锐择光电科技有限公司 | Generating a Broadband Continuously Tunable Laser System |
Also Published As
Publication number | Publication date |
---|---|
CN105826801B (en) | 2019-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105826801A (en) | Dual-wavelength tunable short pulse fiber laser | |
CN103414093B (en) | An all-fiber pulsed laser | |
CN103701021B (en) | A kind of all-fiber pulse laser of resonator cavity crossmodulation | |
CN110048295B (en) | Wavelength Spacing Tunable Single and Dual Wavelength Fiber Laser Based on Sagnac Ring | |
CN104300344A (en) | High-power and tunable pulse fiber laser device | |
CN101510663A (en) | Polarization dual wavelength fiber-optical ultrashort pulse laser | |
CN105428973B (en) | Widely Tunable Single Frequency Fiber Laser Source for Coherent Optical Orthogonal Frequency Division Multiplexing System | |
CN103124044B (en) | Frequency interval adjustable multi-wavelength anti-Stokes four-wave mixing (FWM) fiber laser | |
CN103701022B (en) | A kind of dual resonant cavity all -fiber Mode-locked laser device | |
CN108551075B (en) | All-fiber transverse mode switchable high-order mode Brillouin laser | |
CN114498262B (en) | A multi-wavelength switchable single longitudinal mode thulium-doped fiber laser | |
CN103633546B (en) | Dual-wavelength dissipative soliton mode-locked laser | |
CN107994450A (en) | A kind of laser of all optical fibre structure tunable wave length | |
CN106410576A (en) | Linear polarization output all-fiber pulse dual-cavity lasers | |
CN107317219B (en) | Dual-wavelength pulsed fiber laser based on rhenium disulfide saturable absorber | |
CN107845946A (en) | A kind of all -fiber linear polarization mode-locked laser based on nonlinear optical loop mirror of cascaded pump | |
CN105337148B (en) | For producing all-fiber gas Raman laser instrument of 2 μm laser | |
CN103151685A (en) | Graphene oxide Q-switching Raman fiber laser | |
CN104617472B (en) | Multi-wavelength super-narrow line width Brillouin erbium-doped fiber laser | |
CN208001073U (en) | A kind of laser of all optical fibre structure tunable wave length | |
CN212340435U (en) | High Power Dual Comb Spectrometer System | |
CN201213194Y (en) | Linear cavity multi-wavelength dual output fiber laser | |
CN101270861A (en) | A Power-tunable Near-Gaussian Erbium-doped Superfluorescent Fiber Light Source | |
CN103618202B (en) | A kind of broadband light source system adopting C-band Er-doped fiber to produce C+L wave band | |
CN105896250A (en) | Multi-wavelength multi-core fiber laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |