[go: up one dir, main page]

CN105826801A - Dual-wavelength tunable short pulse fiber laser - Google Patents

Dual-wavelength tunable short pulse fiber laser Download PDF

Info

Publication number
CN105826801A
CN105826801A CN201610296532.3A CN201610296532A CN105826801A CN 105826801 A CN105826801 A CN 105826801A CN 201610296532 A CN201610296532 A CN 201610296532A CN 105826801 A CN105826801 A CN 105826801A
Authority
CN
China
Prior art keywords
wavelength
fiber
branch
division multiplexer
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610296532.3A
Other languages
Chinese (zh)
Other versions
CN105826801B (en
Inventor
王小发
顾小辉
姜秋霞
张俊红
彭晓玲
夏青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201610296532.3A priority Critical patent/CN105826801B/en
Publication of CN105826801A publication Critical patent/CN105826801A/en
Application granted granted Critical
Publication of CN105826801B publication Critical patent/CN105826801B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

本发明请求保护一种波长可调谐短脉冲光纤激光器,本发明主要包括泵浦源(1)(10)、波分复用器(2)(4)(6)(11)、增益光纤(3)(12)、石墨烯可饱和吸收体(5)、光纤耦合器(7)(13)、环形器(16)(17)、反射式可调滤波器(8)(14)、50:50光纤耦合器组成的宽带光纤环镜(9)(15)。本发明采用双环形腔或双线性腔结构,波分复用器(4)(6)和石墨烯可饱和吸收体(5)作为双环形腔或双线性腔结构共同的分支,利用石墨烯可饱和吸收体的波长吸收范围广、吸收平稳、低饱和强度、超快恢复时间等优点,结合反射式可调滤波器可实现光纤激光器稳定输出单波长可调谐、双波长间隔大的同步短脉冲。

The invention claims a wavelength-tunable short-pulse fiber laser. The invention mainly includes a pump source (1) (10), a wavelength division multiplexer (2) (4) (6) (11), and a gain fiber (3) )(12), graphene saturable absorber(5), fiber coupler(7)(13), circulator(16)(17), reflective tunable filter(8)(14), 50:50 A broadband fiber optic loop mirror (9)(15) composed of a fiber coupler. The present invention adopts double annular cavity or bilinear cavity structure, wavelength division multiplexer (4) (6) and graphene saturable absorber (5) as the common branch of double annular cavity or bilinear cavity structure, utilizes graphite The alkene saturable absorber has the advantages of wide wavelength absorption range, stable absorption, low saturation intensity, and ultra-fast recovery time. Combined with reflective tunable filters, it can realize stable output of fiber lasers with single-wavelength tunable and dual-wavelength intervals. pulse.

Description

一种双波长可调谐短脉冲光纤激光器A dual-wavelength tunable short-pulse fiber laser

技术领域technical field

本发明属于激光技术与非线性光学领域,具体为一种双波长可调谐短脉冲光纤激光器。The invention belongs to the field of laser technology and nonlinear optics, in particular to a dual-wavelength tunable short-pulse fiber laser.

背景技术Background technique

随着已有的双波长短脉冲固体激光器存在着操作和技术复杂、体积庞大、效率低下、可靠性差等缺陷,极大地限制了双波长短脉冲激光器使用范围,目前只限于实验室内使用。而双波长短脉冲光纤激光器由于具有损耗小、紧凑性高、光纤程度高、效率高、散热性好、与通讯光纤兼容性好,因而受到人们的广泛关注,在激光加工、通信传感、探测诊断、生物医学、光谱学、军事等众多领域有着广阔的前景。As the existing dual-wavelength short-pulse solid-state lasers have defects such as complex operation and technology, bulky volume, low efficiency, and poor reliability, this greatly limits the scope of use of dual-wavelength short-pulse lasers, and is currently limited to laboratory use. The dual-wavelength short-pulse fiber laser has received widespread attention due to its low loss, high compactness, high fiber degree, high efficiency, good heat dissipation, and good compatibility with communication optical fibers. It is used in laser processing, communication sensing, and detection. Diagnosis, biomedicine, spectroscopy, military and many other fields have broad prospects.

已有的双波长短脉冲光纤激光器的同步方式主要有主动和被动两种方式。主动方式有着重复频率高、线宽窄等优点,但引入的主动调制器件破坏了全光纤结构,且成本较高。被动方式如采用非线性环形镜(NOLM)、非线性偏振旋转技术(NPR)、半导体可饱和吸收镜(SESAM)、以及基于单壁碳纳米管(SWCNT)和石墨烯(Graphene)等技术或器件,被广泛用于短脉冲的产生。其中石墨烯由于零带隙结构使其吸收范围从可见光到远红外光,有与波长无关并且比较平稳的吸收特征,故石墨烯通常看作双波长短脉冲光纤激光器理想的可饱和吸收体。The existing synchronization methods of dual-wavelength short-pulse fiber lasers mainly include active and passive methods. The active method has the advantages of high repetition frequency and narrow line width, but the introduced active modulation device destroys the all-fiber structure and is costly. Passive methods such as the use of nonlinear loop mirror (NOLM), nonlinear polarization rotation technology (NPR), semiconductor saturable absorber mirror (SESAM), and technologies or devices based on single-walled carbon nanotubes (SWCNT) and graphene (Graphene) , are widely used for short pulse generation. Among them, graphene has a wavelength-independent and relatively stable absorption characteristic due to its zero-bandgap structure, which makes its absorption range from visible light to far-infrared light. Therefore, graphene is usually regarded as an ideal saturable absorber for dual-wavelength short-pulse fiber lasers.

已有的双波长短脉冲光纤激光器其单个波长大多不可调谐,限制了其应用范围,而加入反射式可调谐滤波器使双波长皆可调谐的双波长短脉冲可调谐光纤激光器能够扩大其应用范围,更具有实际使用价值。The single wavelength of the existing dual-wavelength short-pulse fiber laser is mostly not tunable, which limits its application range, and the dual-wavelength short-pulse tunable fiber laser with reflective tunable filter can expand its application range. , has more practical value.

发明内容Contents of the invention

本发明所要解决的技术问题是克服目前双波长可调谐短脉冲激光器制作复杂、不稳定、成本高、调谐难度大、光纤化程度低、双波长间隔小等问题,提供一种光纤化程度高、制作简单、成本相对低廉、能稳定输出易调谐且双波长间隔大的同步短脉冲光纤激光器。本发明的技术方案如下:The technical problem to be solved by the present invention is to overcome the problems of current dual-wavelength tunable short-pulse lasers such as complex production, instability, high cost, difficult tuning, low degree of fiberization, and small interval between two wavelengths, and provide a high-degree of fiberization, A synchronous short-pulse fiber laser with simple fabrication, relatively low cost, stable output, easy tuning, and large dual-wavelength interval. Technical scheme of the present invention is as follows:

一种双波长可调谐短脉冲光纤激光器,其包括:用于产生第一波长的可调谐短脉冲光纤激光器第一支路、用于产生第二波长的可调谐短脉冲光纤激光器第二支路、用于分离和结合第一、第二波长,并结合第一支路、第二支路组成的线性腔或环形腔进行调制产生短脉冲的公共支路、用于选择第一波长的第一反射式可调滤波器及用于选择第二波长的第二反射式可调滤波器,所述公共调谐支路包括依次串联连接的第二波分复用器、石墨烯可饱和吸收体及第三波分复用器,所述可调谐短脉冲第一支路通过公共支路与第一反射式可调滤波器相连接,产生可调谐短脉冲光纤激光;所述可调谐短脉冲第二支路通过公共支路与第二反射式可调滤波器相连接。A dual-wavelength tunable short-pulse fiber laser, comprising: a first branch of a tunable short-pulse fiber laser for generating a first wavelength, a second branch of a tunable short-pulse fiber laser for generating a second wavelength, It is used to separate and combine the first and second wavelengths, and combine the first branch and the second branch to form a linear cavity or a ring cavity for modulation to generate a common branch of short pulses, and to select the first reflection of the first wavelength type tunable filter and a second reflective tunable filter for selecting a second wavelength, the common tuning branch includes a second wavelength division multiplexer, a graphene saturable absorber and a third A wavelength division multiplexer, the first branch of the tunable short pulse is connected to the first reflective tunable filter through a common branch to generate a tunable short pulse fiber laser; the second branch of the tunable short pulse It is connected with the second reflective tunable filter through a common branch.

进一步的,所述可调谐短脉冲光纤激光器第一支路与可调谐短脉冲光纤激光器第二支路之间的连接包括以下连接方式:即可调谐短脉冲第一支路与可调谐短脉冲第二支路之间先并联后再与公共调谐支路进行串联连接;或可调谐短脉冲光纤激光器第一支路通过第一环形器、可调谐短脉冲光纤激光器第二支路通过第二环形器分别并联在公共调谐支路的两端;或可调谐短脉冲第一支路通过公共调谐支路与可调谐短脉冲第二支路进行串联连接。Further, the connection between the first branch of the tunable short pulse fiber laser and the second branch of the tunable short pulse fiber laser includes the following connection methods: the first branch of the tunable short pulse and the second branch of the tunable short pulse fiber laser The two branches are first connected in parallel and then connected in series with the common tuning branch; or the first branch of the tunable short-pulse fiber laser passes through the first circulator, and the second branch of the tunable short-pulse fiber laser passes through the second circulator They are respectively connected in parallel at both ends of the common tuning branch; or the first branch of the tunable short pulse is connected in series with the second branch of the tunable short pulse through the common tuning branch.

进一步的,当可调谐短脉冲第一支路与可调谐短脉冲第二支路之间先并联后再与公共调谐支路进行串联连接或可调谐短脉冲第一支路通过公共调谐支路与可调谐短脉冲第二支路进行串联连接时包括用于泵浦第一增益光纤的的第一泵浦源、用于将第一泵浦源激光耦合到线性腔或环形腔当中的第一波分复用器、用于激发出第一波长激光的第一增益光纤、用于输出第一波长激光的第一光纤耦合器、用于反射第一波长激光的第一宽带光纤环镜,可调谐短脉冲第二支路包括用于泵浦第二增益光纤的第二泵浦源、用于将第二泵浦源激光耦合到线性腔或环形腔当中的第四波分复用器、用于激发出的第二波长激光的)第二增益光纤、用于输出第二波长激光的第二光纤耦合器、用于反射第二波长激光的第二宽带光纤环镜,可调谐短脉冲光纤激光器第一支路通过第一环形器、可调谐短脉冲光纤激光器第二支路通过第二环形器分别并联在公共调谐支路的两端时包括除第一宽带光纤环镜、第二宽带光纤环镜之外的上述其他器件。Further, when the first branch of the tunable short pulse and the second branch of the tunable short pulse are first connected in parallel and then connected in series with the public tuning branch, or the first branch of the tunable short pulse is connected to the public tuning branch through the public tuning branch When the second branch of the tunable short pulse is connected in series, it includes the first pumping source for pumping the first gain fiber, and the first wave for coupling the first pumping source laser into the linear cavity or the ring cavity. Division multiplexer, the first gain fiber used to excite the first wavelength laser, the first fiber coupler used to output the first wavelength laser, the first broadband fiber loop mirror used to reflect the first wavelength laser, tunable The short pulse second branch includes a second pump source for pumping the second gain fiber, a fourth wavelength division multiplexer for coupling the second pump source laser into a linear cavity or a ring cavity, and a fourth wavelength division multiplexer for The second gain fiber for the excited second wavelength laser, the second fiber coupler for outputting the second wavelength laser, the second broadband fiber loop mirror for reflecting the second wavelength laser, the tunable short pulse fiber laser One branch passes through the first circulator, and the second branch of the tunable short-pulse fiber laser passes through the second circulator. When the two ends of the common tuning branch are respectively connected in parallel, it includes the first broadband fiber loop mirror and the second broadband fiber loop mirror. other devices than those mentioned above.

进一步的,当可调谐短脉冲第一支路与可调谐短脉冲第二支路之间先并联后再与公共支路进行串联连接时,第一泵浦源连接第一波分复用器泵浦输入端a,第一宽带光纤环镜第一光纤耦合器信号输入端j,第一光纤耦合器信号输出端k连接第一波分复用器信号输入端b,第一波分复用器信号输出端c连接第一增益光纤,第一增益光纤另一端连接第二波分复用器信号输入端d,第二波分复用器信号输出端f连接石墨烯可饱和吸收体,石墨烯可饱和吸收体另一端连接第三波分复用器信号输入端g,第三波分复用器信号输出端h连接第一反射式可调滤波器,形成第一路线性腔,第一路线性腔产生的激光由第一光纤耦合器耦合输出端l输出;第二泵浦源连接第四波分复用器泵浦输入端m,第二宽带光纤环镜第二光纤耦合器信号输入端p,第二光纤耦合器信号输出端q连接第四波分复用器信号输入端n,第四波分复用器信号输出端o连接第二增益光纤,第二增益光纤另一端连接第二波分复用器信号输入端e,第二波分复用器信号输出端f连接石墨烯可饱和吸收体,石墨烯可饱和吸收体另一端连接第三波分复用器信号输入端g,第三波分复用器信号输出端i连接第二反射式可调滤波器,形成第二路线性腔,第二路线性腔产生的激光由第二光纤耦合器耦合输出端r输出。Further, when the first branch of the tunable short pulse and the second branch of the tunable short pulse are first connected in parallel and then connected in series with the common branch, the first pumping source is connected to the first wavelength division multiplexer pump Pu input port a, the first broadband fiber optic loop mirror first fiber coupler signal input port j, the first fiber coupler signal output port k connected to the first wavelength division multiplexer signal input port b, the first wavelength division multiplexer The signal output end c is connected to the first gain fiber, the other end of the first gain fiber is connected to the signal input end d of the second wavelength division multiplexer, and the signal output end f of the second wavelength division multiplexer is connected to the graphene saturable absorber, graphene The other end of the saturable absorber is connected to the signal input port g of the third wavelength division multiplexer, and the signal output port h of the third wavelength division multiplexer is connected to the first reflective tunable filter to form a first line linear cavity, and the first line The laser generated by the linear cavity is output from the coupling output port l of the first fiber coupler; the second pump source is connected to the pump input port m of the fourth wavelength division multiplexer, and the second broadband fiber loop mirror is connected to the signal input port of the second fiber coupler p, the signal output port q of the second optical fiber coupler is connected to the signal input port n of the fourth wavelength division multiplexer, the signal output port o of the fourth wavelength division multiplexer is connected to the second gain fiber, and the other end of the second gain fiber is connected to the second The signal input terminal e of the wavelength division multiplexer, the signal output terminal f of the second wavelength division multiplexer is connected to the graphene saturable absorber, and the other end of the graphene saturable absorber is connected to the third wavelength division multiplexer signal input terminal g, The signal output port i of the third wavelength division multiplexer is connected to the second reflective tunable filter to form a second linear cavity, and the laser light generated by the second linear cavity is output from the coupling output port r of the second optical fiber coupler.

进一步的,所述第一泵浦源和第二泵浦源是半导体激光器、固态激光器、气体激光器、光纤激光器中的任意一种,其输出中心波长分别是793nm、980nm、1570nm中三种之中的任意一种,且二者输出中心波长不一致。Further, the first pumping source and the second pumping source are any one of semiconductor lasers, solid-state lasers, gas lasers, and fiber lasers, and their output center wavelengths are three of 793nm, 980nm, and 1570nm, respectively. Any one of them, and the output center wavelengths of the two are inconsistent.

进一步的,所述第一增益光纤和第二增益光纤是单包层或者双包层稀土掺杂光纤,其中掺杂的稀土元素是镱、饵、铥、钬中的一种或几种。Further, the first gain fiber and the second gain fiber are single-clad or double-clad rare-earth-doped fibers, wherein the doped rare-earth element is one or more of ytterbium, erbium, thulium, and holmium.

进一步的,所述石墨烯可饱和吸收体还可以为氧化石墨烯可饱和吸收体,二者层数是单层、双层、多层。Further, the graphene saturable absorber may also be a graphene oxide saturable absorber, and the number of layers of the two is single layer, double layer, or multilayer.

进一步的,所述第一波分复用器、第二波分复用器、第三波分复用器、第一光纤耦合器、第四波分复用器、第二光纤耦合器中信号可逆向输入,即信号输入端也可以作信号输出端,信号输出端也可以作信号输入端;第二波分复用器和第三波分复用器可以为:1550/2000nm、1550/1050nm、1050/2000nm三种工作波长模式中的任意一种,二者工作波长一致。Further, the signal in the first wavelength division multiplexer, the second wavelength division multiplexer, the third wavelength division multiplexer, the first optical fiber coupler, the fourth wavelength division multiplexer, and the second optical fiber coupler Reversible input, that is, the signal input terminal can also be used as the signal output terminal, and the signal output terminal can also be used as the signal input terminal; the second wavelength division multiplexer and the third wavelength division multiplexer can be: 1550/2000nm, 1550/1050nm , 1050/2000nm any one of the three working wavelength modes, the two working wavelengths are the same.

进一步的,所述第二波分复用器和第三波分复用器可以换成成多路波分复用器,使双波长可调谐短脉冲光纤激光器扩展成多波长可调谐短脉冲光纤激光器。Further, the second wavelength division multiplexer and the third wavelength division multiplexer can be replaced with multiple wavelength division multiplexers, so that the dual-wavelength tunable short-pulse fiber laser can be expanded into a multi-wavelength tunable short-pulse fiber laser.

进一步的,所述第一反射式可调滤波器和第二反射式可调滤波器工作波长分别为1550nm、2000nm、1050nm三种之中的任意一种,二者工作波长不一致,二者反射率都为R,其中0.9<R<1。Further, the operating wavelengths of the first reflective tunable filter and the second reflective tunable filter are any of the three types of 1550nm, 2000nm, and 1050nm respectively, and the operating wavelengths of the two are inconsistent, and the reflectance of the two All are R, where 0.9<R<1.

本发明的优点及有益效果如下:Advantage of the present invention and beneficial effect are as follows:

本发明双波长可调谐短脉冲光纤激光器具有以下优点:The dual-wavelength tunable short-pulse fiber laser of the present invention has the following advantages:

1.该光纤激光器利用掺杂稀土元素的光纤作为增益介质和石墨烯或者氧化石墨烯作为可饱和吸收体,结合双腔设计,全光纤结构,不用空间调制器件,结构相对简单,易于调整,环境稳定性好;1. The fiber laser uses fiber doped with rare earth elements as a gain medium and graphene or graphene oxide as a saturable absorber, combined with a dual-cavity design, an all-fiber structure, and no spatial modulation device. The structure is relatively simple, easy to adjust, and environmentally friendly. Good stability;

2.该光纤激光器采用石墨烯或者氧化石墨烯作为可饱和吸收体,二者具有波长吸收范围广、低饱和强度、超快恢复时间、吸收平稳等优点;2. The fiber laser uses graphene or graphene oxide as a saturable absorber, both of which have the advantages of wide wavelength absorption range, low saturation intensity, ultra-fast recovery time, and stable absorption;

3.该光纤激光器短脉冲输出双波长间隔大,双波长可以分别调节,易实现两种不同波长调谐和短脉冲同步。3. The short pulse output of the fiber laser has a large interval between the dual wavelengths, and the dual wavelengths can be adjusted separately, and it is easy to realize two different wavelength tuning and short pulse synchronization.

附图说明Description of drawings

图1是本发明提供优选实施例1双波长可调谐短脉冲光纤激光器基本原理图;Fig. 1 is a schematic diagram of the basic principle of a dual-wavelength tunable short-pulse fiber laser according to the preferred embodiment 1 provided by the present invention;

图2为实施例2双波长可调谐短脉冲光纤激光器基本原理图;Fig. 2 is a schematic diagram of the basic principle of the dual-wavelength tunable short-pulse fiber laser in Embodiment 2;

图3为实施例3双波长可调谐短脉冲光纤激光器基本原理图;3 is a schematic diagram of the basic principle of the dual-wavelength tunable short-pulse fiber laser in Embodiment 3;

图中:1、第一泵浦源;2、第一波分复用器;3、第一增益光纤;4、第二波分复用器;5、石墨烯可饱和吸收体;6、第三波分复用器;7、第一光纤耦合器;8、第一反射式可调滤波器;9、第一50:50光纤耦合器组成的宽带光纤环镜;10、第二泵浦源;11、第四波分复用器;12、第二增益光纤;13、第二光纤耦合器;14、第二透射式可调滤波器;15、第二50:50光纤耦合器组成的宽带光纤环镜;16、第一环形器;17、第二环形器。In the figure: 1. The first pump source; 2. The first wavelength division multiplexer; 3. The first gain fiber; 4. The second wavelength division multiplexer; 5. Graphene saturable absorber; 6. The first Three-wavelength division multiplexer; 7. The first fiber coupler; 8. The first reflective tunable filter; 9. The broadband fiber loop mirror composed of the first 50:50 fiber coupler; 10. The second pumping source 11. The fourth wavelength division multiplexer; 12. The second gain fiber; 13. The second fiber coupler; 14. The second transmission tunable filter; 15. The broadband composed of the second 50:50 fiber coupler Fiber loop mirror; 16, the first circulator; 17, the second circulator.

具体实施方式detailed description

以下结合附图,对本发明作进一步说明:Below in conjunction with accompanying drawing, the present invention will be further described:

如图1所示,实施例1As shown in Figure 1, Example 1

一种双波长可调谐短脉冲光纤激光器基本原理图如图1所示。图中1、10分别为第一、第二泵浦源,可以分别选用中心波长为1570nm、980nm的半导体激光二极管;2、11分别为第一、第四波分复用器,可以分别选用1570/2000nm、980/1550nm波分复用器;3、12分别为第一、第二增益光纤,可以分别选用掺铥、掺饵单模光纤;4、6分别为第二、第三波分复用器,可选用1550/2000nm波分复用器;5为石墨烯可饱和吸收体,可利用旋转涂膜法将聚甲基丙烯酸甲酯(PMMA)涂在有铜衬底的石墨烯薄层上,随后将之置于过硫酸铵水溶液中消除铜衬底形成聚甲基丙烯酸甲酯/石墨烯堆,用光纤插针将之捕获,在烤箱中干燥后夹在两个跳线头之间,并将跳线头用法兰盘固定制成;7、13分别为第一、第二光纤耦合器,可以分别选用中心波长为2000nm、1550nm的20:80输出光纤耦合器,其中80%用于耦合输出,20%用于循环;8、14分别为第一、第二反射式可调滤波器,可以分别选用中心波长为2000nm、1550nm的可调谐光纤布喇格光栅,反射率为R,其中0.9<R<1;9、15分别为第一、第二50:50光纤耦合器组成的宽带光纤环镜,可以分别选用中心波长为2000nm、1550nm的光纤耦合器用来组成宽带光纤环镜。The basic principle diagram of a dual-wavelength tunable short-pulse fiber laser is shown in Figure 1. 1 and 10 in the figure are the first and second pump sources respectively, and semiconductor laser diodes with center wavelengths of 1570nm and 980nm can be selected respectively; 2 and 11 are the first and fourth wavelength division multiplexers respectively, and 1570 nm can be selected respectively. /2000nm, 980/1550nm wavelength division multiplexer; 3, 12 are the first and second gain fiber, respectively, can choose thulium-doped, erbium-doped single-mode fiber; 4, 6 are the second, third wavelength division multiplexing 1550/2000nm wavelength division multiplexer can be selected for use; 5 is a graphene saturable absorber, and polymethyl methacrylate (PMMA) can be coated on a graphene thin layer with a copper substrate by using a spin coating method Then place it in an aqueous solution of ammonium persulfate to eliminate the copper substrate to form a PMMA/graphene stack, capture it with a fiber optic stud, dry it in an oven, and clamp it between two jumper wires , and fix the jumper head with a flange; 7 and 13 are the first and second fiber couplers respectively, and 20:80 output fiber couplers with center wavelengths of 2000nm and 1550nm can be selected respectively, 80% of which are used for Coupling output, 20% is used for circulation; 8 and 14 are the first and second reflective tunable filters respectively, and tunable fiber Bragg gratings with center wavelengths of 2000nm and 1550nm can be selected respectively, and the reflectivity is R, where 0.9<R<1; 9 and 15 are broadband fiber optic loop mirrors composed of the first and second 50:50 fiber couplers respectively, and fiber couplers with center wavelengths of 2000nm and 1550nm can be selected to form broadband fiber optic loop mirrors.

第一泵浦源1连接第一波分复用器2泵浦输入端a,第一50:50光纤耦合器组成的宽带光纤环镜9第一光纤耦合器7信号输入端j,第一光纤耦合器7信号输出端k连接第一波分复用器2信号输入端b,第一波分复用器2信号输出端c连接第一增益光纤3,第一增益光纤3另一端连接第二波分复用器4信号输入端d,第二波分复用器4信号输出端f连接石墨烯可饱和吸收体5,石墨烯可饱和吸收体5另一端连接第三波分复用器6信号输入端g,第三波分复用器6信号输出端h连接第一反射式可调滤波器8,形成第一路线性腔,第一路线性腔产生的激光由第一光纤耦合器7耦合输出端l输出;第二泵浦源10连接第四波分复用器11泵浦输入端m,第二50:50光纤耦合器组成的宽带光纤环镜15第二光纤耦合器13信号输入端p,第二光纤耦合器13信号输出端q连接第四波分复用器11信号输入端n,第四波分复用器11信号输出端o连接第二增益光纤12,第二增益光纤12另一端连接第二波分复用器4信号输入端e,第二波分复用器4信号输出端f连接石墨烯可饱和吸收体5,石墨烯可饱和吸收体5另一端连接第三波分复用器6信号输入端g,第三波分复用器6信号输出端i连接第二反射式可调滤波器14,形成第二路线性腔,第二路线性腔产生的激光由第二光纤耦合器13耦合输出端r输出;第二波分复用器4、石墨烯可饱和吸收体5和第三波分复用器6作为两线性腔同一支路。The first pump source 1 is connected to the pump input end a of the first wavelength division multiplexer 2, the broadband fiber optic loop mirror composed of the first 50:50 fiber coupler 9 the first fiber coupler 7 signal input end j, the first optical fiber The signal output terminal k of the coupler 7 is connected to the signal input terminal b of the first wavelength division multiplexer 2, the signal output terminal c of the first wavelength division multiplexer 2 is connected to the first gain fiber 3, and the other end of the first gain fiber 3 is connected to the second The signal input terminal d of the wavelength division multiplexer 4, the signal output terminal f of the second wavelength division multiplexer 4 is connected to the graphene saturable absorber 5, and the other end of the graphene saturable absorber 5 is connected to the third wavelength division multiplexer 6 The signal input terminal g, the signal output terminal h of the third wavelength division multiplexer 6 is connected to the first reflective tunable filter 8 to form a first linear cavity, and the laser generated by the first optical fiber coupler 7 Coupling output terminal l output; the second pump source 10 is connected to the fourth wavelength division multiplexer 11 pump input terminal m, the second 50:50 broadband fiber optic loop mirror 15 composed of the second fiber coupler 13 signal input Port p, the signal output port q of the second optical fiber coupler 13 is connected to the signal input port n of the fourth wavelength division multiplexer 11, the signal output port o of the fourth wavelength division multiplexer 11 is connected to the second gain fiber 12, and the second gain fiber 12 The other end is connected to the signal input terminal e of the second wavelength division multiplexer 4, the signal output terminal f of the second wavelength division multiplexer 4 is connected to the graphene saturable absorber 5, and the other end of the graphene saturable absorber 5 is connected to the third The signal input terminal g of the wavelength division multiplexer 6, the signal output terminal i of the third wavelength division multiplexer 6 is connected to the second reflective tunable filter 14 to form a second linear cavity, and the laser generated by the second linear cavity is generated by The second optical fiber coupler 13 couples the output terminal r to output; the second wavelength division multiplexer 4, the graphene saturable absorber 5 and the third wavelength division multiplexer 6 serve as the same branch of the two linear cavities.

实施例2Example 2

一种双波长可调谐短脉冲光纤激光器基本原理图如图2所示。图中1、10分别为第一、第二泵浦源,可以分别选用中心波长为1570nm、980nm的半导体激光二极管;2、11分别为第一、第四波分复用器,可以分别选用1570/2000nm、980/1550nm波分复用器;3、12分别为第一、第二增益光纤,可以分别选用掺铥、掺饵单模光纤;4、6分别为第二、第三波分复用器,可选用1550/2000nm波分复用器;5为石墨烯可饱和吸收体,可利用旋转涂膜法将聚甲基丙烯酸甲酯(PMMA)涂在有铜衬底的石墨烯薄层上,随后将之置于过硫酸铵水溶液中消除铜衬底形成聚甲基丙烯酸甲酯/石墨烯堆,用光纤插针将之捕获,在烤箱中干燥后夹在两个跳线头之间,并将跳线头用法兰盘固定制成;7、13分别为第一、第二光纤耦合器,可以分别选用中心波长为2000nm、1550nm的20:80输出光纤耦合器,其中80%用于耦合输出,20%用于循环;8、14分别为第一、第二反射式可调滤波器,可以分别选用中心波长为2000nm、1550nm的可调谐光纤布喇格光栅,反射率为R,其中0.9<R<1;16、17分别为第一、第二环形器,可以分别选用中心波长为2000nm、1550nm的光纤环形器。The basic principle diagram of a dual-wavelength tunable short-pulse fiber laser is shown in Figure 2. 1 and 10 in the figure are the first and second pump sources respectively, and semiconductor laser diodes with center wavelengths of 1570nm and 980nm can be selected respectively; 2 and 11 are the first and fourth wavelength division multiplexers respectively, and 1570 nm can be selected respectively. /2000nm, 980/1550nm wavelength division multiplexer; 3, 12 are the first and second gain fiber, respectively, can choose thulium-doped, erbium-doped single-mode fiber; 4, 6 are the second, third wavelength division multiplexing 1550/2000nm wavelength division multiplexer can be selected for use; 5 is a graphene saturable absorber, and polymethyl methacrylate (PMMA) can be coated on a graphene thin layer with a copper substrate by using a spin coating method Then place it in an aqueous solution of ammonium persulfate to eliminate the copper substrate to form a PMMA/graphene stack, capture it with a fiber optic stud, dry it in an oven, and clamp it between two jumper wires , and fix the jumper head with a flange; 7 and 13 are the first and second fiber couplers respectively, and 20:80 output fiber couplers with center wavelengths of 2000nm and 1550nm can be selected respectively, 80% of which are used for Coupling output, 20% is used for circulation; 8 and 14 are the first and second reflective tunable filters respectively, and tunable fiber Bragg gratings with center wavelengths of 2000nm and 1550nm can be selected respectively, and the reflectivity is R, where 0.9<R<1; 16 and 17 are respectively the first and second circulators, and optical fiber circulators with center wavelengths of 2000nm and 1550nm can be selected respectively.

第一泵浦源1连接第一波分复用器2泵浦输入端a,第一波分复用器2信号输出端c连接第一增益光纤3,第一增益光纤3另一端连接第一环形器16信号输入端s,第一环形器16信号输出端u连接第二波分复用器4信号输入端d,第二波分复用器4信号输出端f连接石墨烯可饱和吸收体5,石墨烯可饱和吸收体5另一端连接第三波分复用器6信号输入端g,第三波分复用器6信号输出端h连接第一光纤耦合器7信号输入端j,第一光纤耦合器7信号输出端k连接第一波分复用器2信号输入端b,形成第一光纤环形谐振腔,其中第一环形器16中间端t连接第一反射式可调滤波器8,第一光纤环形谐振腔产生的激光经第一光纤耦合器7耦合输出端l输出;第二泵浦源10连接第四波分复用器11泵浦输入端m,第四波分复用器11信号输出端o连接第二增益光纤12,第二增益光纤12另一端连接第二环形器17信号输入端v,第二环形器17信号输出端x连接第二波分复用器4信号输入端e,第二波分复用器4信号输出端f连接石墨烯可饱和吸收体5,石墨烯可饱和吸收体5另一端连接第三波分复用器6信号输入端g,第三波分复用器6信号输出端i连接第二光纤耦合器13信号输入端p,第二光纤耦合器13信号输出端q连接第四波分复用器11信号输入端n,形成第二光纤环形谐振腔,其中第二环形器17中间端w连接第二反射式可调滤波器14,第二光纤环形谐振腔产生的激光经第二光纤耦合器13耦合输出端r输出;第二波分复用器4、石墨烯可饱和吸收体5和第三波分复用器6组合作为双环形腔结构的同一支路。The first pump source 1 is connected to the pump input end a of the first wavelength division multiplexer 2, the signal output end c of the first wavelength division multiplexer 2 is connected to the first gain fiber 3, and the other end of the first gain fiber 3 is connected to the first The signal input terminal s of the circulator 16, the signal output terminal u of the first circulator 16 is connected to the signal input terminal d of the second wavelength division multiplexer 4, and the signal output terminal f of the second wavelength division multiplexer 4 is connected to the graphene saturable absorber 5. The other end of the graphene saturable absorber 5 is connected to the signal input port g of the third wavelength division multiplexer 6, and the signal output port h of the third wavelength division multiplexer 6 is connected to the signal input port j of the first optical fiber coupler 7. A fiber coupler 7 signal output end k is connected to the first wavelength division multiplexer 2 signal input end b to form a first optical fiber ring resonator, wherein the middle end t of the first circulator 16 is connected to the first reflective tunable filter 8 , the laser produced by the first optical fiber ring resonator is output through the coupling output port l of the first fiber coupler 7; the second pumping source 10 is connected to the pumping input port m of the fourth wavelength division multiplexer 11, and the fourth wavelength division multiplexing The signal output port o of the device 11 is connected to the second gain fiber 12, the other end of the second gain fiber 12 is connected to the signal input port v of the second circulator 17, and the signal output port x of the second circulator 17 is connected to the signal of the second wavelength division multiplexer 4 The input terminal e, the signal output terminal f of the second wavelength division multiplexer 4 is connected to the graphene saturable absorber 5, and the other end of the graphene saturable absorber 5 is connected to the third wavelength division multiplexer 6 signal input terminal g, the third The signal output port i of the wavelength division multiplexer 6 is connected to the signal input port p of the second fiber optic coupler 13, and the signal output port q of the second fiber optic coupler 13 is connected to the signal input port n of the fourth wavelength division multiplexer 11 to form a second optical fiber A ring resonator, wherein the middle end w of the second circulator 17 is connected to the second reflective tunable filter 14, and the laser light generated by the second fiber ring resonator is output through the coupling output port r of the second fiber coupler 13; the second wavelength division The multiplexer 4, the graphene saturable absorber 5 and the third wavelength division multiplexer 6 are combined as the same branch of the double ring cavity structure.

实施例3Example 3

一种双波长可调谐短脉冲光纤激光器基本原理图如图3所示。图中1、10分别为第一、第二泵浦源,可以分别选用中心波长为1570nm、980nm的半导体激光二极管;2、11分别为第一、第四波分复用器,可以分别选用1570/2000nm、980/1550nm波分复用器;3、12分别为第一、第二增益光纤,可以分别选用掺铥、掺饵单模光纤;4、6分别为第二、第三波分复用器,可选用1550/2000nm波分复用器;5为石墨烯可饱和吸收体,可利用旋转涂膜法将聚甲基丙烯酸甲酯(PMMA)涂在有铜衬底的石墨烯薄层上,随后将之置于过硫酸铵水溶液中消除铜衬底形成聚甲基丙烯酸甲酯/石墨烯堆,用光纤插针将之捕获,在烤箱中干燥后夹在两个跳线头之间,并将跳线头用法兰盘固定制成;7、13分别为第一、第二光纤耦合器,可以分别选用中心波长为2000nm、1550nm的20:80输出光纤耦合器,其中80%用于耦合输出,20%用于循环;8、14分别为第一、第二反射式可调滤波器,可以分别选用中心波长为2000nm、1550nm的可调谐光纤布喇格光栅,反射率为R,其中0.9<R<1;9、15分别为第一、第二50:50光纤耦合器组成的宽带光纤环镜,可以分别选用中心波长为2000nm、1550nm的光纤耦合器用来组成宽带光纤环镜。The basic principle diagram of a dual-wavelength tunable short-pulse fiber laser is shown in Figure 3. 1 and 10 in the figure are the first and second pump sources respectively, and semiconductor laser diodes with center wavelengths of 1570nm and 980nm can be selected respectively; 2 and 11 are the first and fourth wavelength division multiplexers respectively, and 1570 nm can be selected respectively. /2000nm, 980/1550nm wavelength division multiplexer; 3, 12 are the first and second gain fiber, respectively, can choose thulium-doped, erbium-doped single-mode fiber; 4, 6 are the second, third wavelength division multiplexing 1550/2000nm wavelength division multiplexer can be selected for use; 5 is a graphene saturable absorber, and polymethyl methacrylate (PMMA) can be coated on a graphene thin layer with a copper substrate by using a spin coating method Then place it in an aqueous solution of ammonium persulfate to eliminate the copper substrate to form a PMMA/graphene stack, capture it with a fiber optic stud, dry it in an oven, and clamp it between two jumper wires , and fix the jumper head with a flange; 7 and 13 are the first and second fiber couplers respectively, and 20:80 output fiber couplers with center wavelengths of 2000nm and 1550nm can be selected respectively, 80% of which are used for Coupling output, 20% is used for circulation; 8 and 14 are the first and second reflective tunable filters respectively, and tunable fiber Bragg gratings with center wavelengths of 2000nm and 1550nm can be selected respectively, and the reflectivity is R, where 0.9<R<1; 9 and 15 are broadband fiber optic loop mirrors composed of the first and second 50:50 fiber couplers respectively, and fiber couplers with center wavelengths of 2000nm and 1550nm can be selected to form broadband fiber optic loop mirrors.

第一泵浦源1连接第一波分复用器2泵浦输入端a,第一50:50光纤耦合器组成的宽带光纤环镜9连接第一光纤耦合器7信号输入端j,第一光纤耦合器7信号输出端k连接第一波分复用器2信号输入端b,第一波分复用器2信号输出端c连接第一增益光纤3,第一增益光纤3另一端连接第二波分复用器4信号输入端d,第二波分复用器4信号输出端f连接石墨烯可饱和吸收体5,石墨烯可饱和吸收体5另一端连接第三波分复用器6信号输入端g,第三波分复用器6信号输出端h连接第一反射式可调滤波器8,形成第一路线性腔,第一路线性腔产生的激光由第一光纤耦合器7耦合输出端l输出;第二泵浦源10连接第四波分复用器11泵浦输入端m,第二50:50光纤耦合器组成的宽带光纤环镜15连接第二光纤耦合器13信号输入端p,第二光纤耦合器13信号输出端q连接第四波分复用器11信号输入端n,第四波分复用器11信号输出端o连接第二增益光纤12,第二增益光纤12另一端连接第三波分复用器6信号输出端i,第三波分复用器6信号输入端g连接石墨烯可饱和吸收体5,石墨烯可饱和吸收体5另一端连接第二波分复用器4信号输出端f,第二波分复用器4信号输入端e连接第二反射式可调滤波器14,形成第二路线性腔,第二路线性腔产生的激光由第二光纤耦合器13耦合输出端r输出;第二波分复用器4、石墨烯可饱和吸收体5和第三波分复用器6作为两线性腔同一支路。The first pump source 1 is connected to the pump input end a of the first wavelength division multiplexer 2, the broadband fiber loop mirror 9 composed of the first 50:50 fiber coupler is connected to the signal input end j of the first fiber coupler 7, and the first The signal output terminal k of the fiber coupler 7 is connected to the signal input terminal b of the first wavelength division multiplexer 2, the signal output terminal c of the first wavelength division multiplexer 2 is connected to the first gain fiber 3, and the other end of the first gain fiber 3 is connected to the first gain fiber 3 The signal input terminal d of the second wavelength division multiplexer 4, the signal output terminal f of the second wavelength division multiplexer 4 is connected to the graphene saturable absorber 5, and the other end of the graphene saturable absorber 5 is connected to the third wavelength division multiplexer 6 signal input terminal g, the signal output terminal h of the third wavelength division multiplexer 6 is connected to the first reflective tunable filter 8 to form a first route linear cavity, and the laser generated by the first route linear cavity is transmitted by the first fiber coupler 7 Coupling output port l output; the second pump source 10 is connected to the fourth wavelength division multiplexer 11 pumping input port m, and the broadband fiber loop mirror 15 composed of the second 50:50 fiber coupler is connected to the second fiber coupler 13 The signal input port p, the signal output port q of the second optical fiber coupler 13 is connected to the signal input port n of the fourth wavelength division multiplexer 11, the signal output port o of the fourth wavelength division multiplexer 11 is connected to the second gain fiber 12, and the second The other end of the gain fiber 12 is connected to the signal output terminal i of the third wavelength division multiplexer 6, the signal input terminal g of the third wavelength division multiplexer 6 is connected to the graphene saturable absorber 5, and the other end of the graphene saturable absorber 5 is connected to The signal output terminal f of the second wavelength division multiplexer 4, the signal input terminal e of the second wavelength division multiplexer 4 is connected to the second reflective tunable filter 14 to form a second line linear cavity, and the second line linear cavity produces The laser is output by the coupling output port r of the second fiber coupler 13; the second wavelength division multiplexer 4, the graphene saturable absorber 5 and the third wavelength division multiplexer 6 are used as the same branch of the two linear cavities.

以上实施例仅涉及1550/2000nm一种输出工作模式,还可以增加1550/1050nm、1050/2000nm两种工作模式。The above embodiment only involves one output working mode of 1550/2000nm, and two working modes of 1550/1050nm and 1050/2000nm can also be added.

以上这些实施例应理解为仅用于说明本发明而不用于限制本发明的保护范围。在阅读了本发明的记载的内容之后,技术人员可以对本发明作各种改动或修改,这些等效变化和修饰同样落入本发明权利要求所限定的范围。The above embodiments should be understood as only for illustrating the present invention but not for limiting the protection scope of the present invention. After reading the contents of the present invention, skilled persons can make various changes or modifications to the present invention, and these equivalent changes and modifications also fall within the scope defined by the claims of the present invention.

Claims (10)

1.一种双波长可调谐短脉冲光纤激光器,其特征在于,包括:用于产生第一波长的可调谐短脉冲光纤激光器第一支路、用于产生第二波长的可调谐短脉冲光纤激光器第二支路、用于分离和结合第一、第二波长,并结合第一支路、第二支路组成的线性腔或环形腔进行调制产生短脉冲的公共支路、用于选择第一波长的第一反射式可调滤波器(8)及用于选择第二波长的第二反射式可调滤波器(14),所述公共调谐支路包括依次串联连接的第二波分复用器(4)、石墨烯可饱和吸收体(5)及第三波分复用器(6),所述可调谐短脉冲第一支路通过公共支路与第一反射式可调滤波器(8)相连接,产生可调谐短脉冲光纤激光;所述可调谐短脉冲第二支路通过公共支路与第二反射式可调滤波器(14)相连接。1. A dual-wavelength tunable short-pulse fiber laser, characterized in that it includes: the first branch of the tunable short-pulse fiber laser for generating the first wavelength, the tunable short-pulse fiber laser for generating the second wavelength The second branch is used to separate and combine the first and second wavelengths, and is combined with the first branch and the second branch to form a linear cavity or a ring cavity for modulation to generate short pulses. The common branch is used to select the first A first reflective tunable filter (8) for a wavelength and a second reflective tunable filter (14) for selecting a second wavelength, the common tuning branch includes second wavelength division multiplexers connected in series in sequence device (4), graphene saturable absorber (5) and the third wavelength division multiplexer (6), the first branch of the tunable short pulse passes through the public branch and the first reflective tunable filter ( 8) connected to each other to generate tunable short-pulse fiber laser; the tunable short-pulse second branch is connected to the second reflective tunable filter (14) through a common branch. 2.根据权利要求1所述的双波长可调谐短脉冲光纤激光器,其特征在于,所述可调谐短脉冲光纤激光器第一支路与可调谐短脉冲光纤激光器第二支路之间的连接包括以下连接方式:即可调谐短脉冲第一支路与可调谐短脉冲第二支路之间先并联后再与公共调谐支路进行串联连接;或可调谐短脉冲光纤激光器第一支路通过第一环形器(16)、可调谐短脉冲光纤激光器第二支路通过第二环形器(17)分别并联在公共调谐支路的两端;或可调谐短脉冲第一支路通过公共调谐支路与可调谐短脉冲第二支路进行串联连接。2. The dual-wavelength tunable short-pulse fiber laser according to claim 1, wherein the connection between the first branch of the tunable short-pulse fiber laser and the second branch of the tunable short-pulse fiber laser comprises The following connection methods: the first branch of the tunable short pulse and the second branch of the tunable short pulse are first connected in parallel and then connected in series with the public tuning branch; or the first branch of the tunable short pulse fiber laser passes through the second branch A circulator (16), and the second branch of the tunable short-pulse fiber laser are respectively connected in parallel at both ends of the common tuning branch through the second circulator (17); or the first branch of the tunable short pulse is passed through the common tuning branch It is connected in series with the second branch of the tunable short pulse. 3.根据权利要求2所述的双波长可调谐短脉冲光纤激光器,其特征在于,当可调谐短脉冲第一支路与可调谐短脉冲第二支路之间先并联后再与公共调谐支路进行串联连接或可调谐短脉冲第一支路通过公共调谐支路与可调谐短脉冲第二支路进行串联连接时包括用于泵浦第一增益光纤的的第一泵浦源(1)、用于将第一泵浦源激光耦合到线性腔或环形腔当中的第一波分复用器(2)、用于激发出第一波长激光的第一增益光纤(3)、用于输出第一波长激光的第一光纤耦合器(7)、用于反射第一波长激光的第一宽带光纤环镜(9),可调谐短脉冲第二支路包括用于泵浦第二增益光纤的第二泵浦源(10)、用于将第二泵浦源激光耦合到线性腔或环形腔当中的第四波分复用器(11)、用于激发出的第二波长激光的第二增益光纤(12)、用于输出第二波长激光的第二光纤耦合器(13)、用于反射第二波长激光的第二宽带光纤环镜(15),可调谐短脉冲光纤激光器第一支路通过第一环形器(16)、可调谐短脉冲光纤激光器第二支路通过第二环形器(17)分别并联在公共调谐支路的两端时包括除第一宽带光纤环镜(9)、第二宽带光纤环镜(15)之外的上述其他器件。3. The dual-wavelength tunable short pulse fiber laser according to claim 2, characterized in that, when the first branch of the tunable short pulse and the second branch of the tunable short pulse are first connected in parallel and then connected with the public tuning branch The first pump source (1) for pumping the first gain fiber is included when the first branch of the tunable short pulse is connected in series with the second branch of the tunable short pulse through the common tuning branch. , the first wavelength division multiplexer (2) used to couple the first pump source laser to the linear cavity or the ring cavity, the first gain fiber (3) used to excite the first wavelength laser, and the output The first fiber coupler (7) for the first wavelength laser, the first broadband fiber loop mirror (9) for reflecting the first wavelength laser, the tunable short pulse second branch includes the second gain fiber for pumping The second pump source (10), the fourth wavelength division multiplexer (11) for coupling the second pump source laser into the linear cavity or the ring cavity, the second wavelength division multiplexer (11) for the excited second wavelength laser Gain fiber (12), a second fiber coupler (13) for outputting laser light with a second wavelength, a second broadband fiber loop mirror (15) for reflecting laser light with a second wavelength, and the first tunable short-pulse fiber laser The first circulator (16) and the second branch of the tunable short-pulse fiber laser pass through the second circulator (17) respectively in parallel at both ends of the common tuning branch, including the first broadband fiber loop mirror (9) . The above-mentioned other devices except the second broadband fiber optic loop mirror (15). 4.根据权利要求3所述的双波长可调谐短脉冲光纤激光器,其特征在于,当可调谐短脉冲第一支路与可调谐短脉冲第二支路之间先并联后再与公共支路进行串联连接时,第一泵浦源(1)连接第一波分复用器(2)泵浦输入端a,第一宽带光纤环镜(9)第一光纤耦合器(7)信号输入端j,第一光纤耦合器(7)信号输出端k连接第一波分复用器(2)信号输入端b,第一波分复用器(2)信号输出端c连接第一增益光纤(3),第一增益光纤(3)另一端连接第二波分复用器(4)信号输入端d,第二波分复用器(4)信号输出端f连接石墨烯可饱和吸收体(5),石墨烯可饱和吸收体(5)另一端连接第三波分复用器(6)信号输入端g,第三波分复用器(6)信号输出端h连接第一反射式可调滤波器(8),形成第一路线性腔,第一路线性腔产生的激光由第一光纤耦合器(7)耦合输出端l输出;第二泵浦源(10)连接第四波分复用器(10)泵浦输入端m,第二宽带光纤环镜(15)第二光纤耦合器(13)信号输入端p,第二光纤耦合器(13)信号输出端q连接第四波分复用器(11)信号输入端n,第四波分复用器(11)信号输出端o连接第二增益光纤(12),第二增益光纤(12)另一端连接第二波分复用器(4)信号输入端e,第二波分复用器(4)信号输出端f连接石墨烯可饱和吸收体(5),石墨烯可饱和吸收体(5)另一端连接第三波分复用器(6)信号输入端g,第三波分复用器(6)信号输出端i连接第二反射式可调滤波器(14),形成第二路线性腔,第二路线性腔产生的激光由第二光纤耦合器(13)耦合输出端r输出。4. The dual-wavelength tunable short pulse fiber laser according to claim 3, characterized in that, when the first branch of the tunable short pulse and the second branch of the tunable short pulse are first connected in parallel and then connected to the common branch When connecting in series, the first pump source (1) is connected to the pump input end a of the first wavelength division multiplexer (2), and the first broadband fiber optic loop mirror (9) to the signal input end of the first fiber coupler (7) j, the first fiber coupler (7) signal output k is connected to the first wavelength division multiplexer (2) signal input b, and the first wavelength division multiplexer (2) signal output c is connected to the first gain fiber ( 3), the other end of the first gain fiber (3) is connected to the second wavelength division multiplexer (4) signal input port d, and the second wavelength division multiplexer (4) signal output port f is connected to the graphene saturable absorber ( 5), the other end of the graphene saturable absorber (5) is connected to the third wavelength division multiplexer (6) signal input terminal g, and the third wavelength division multiplexer (6) signal output terminal h is connected to the first reflection type can Adjust the filter (8) to form a first-line linear cavity, and the laser produced by the first-line linear cavity is output by the coupling output port 1 of the first fiber coupler (7); the second pumping source (10) is connected to the fourth wavelength division The multiplexer (10) pumping input port m, the second broadband fiber optic loop mirror (15) the second fiber coupler (13) signal input port p, the second fiber coupler (13) signal output port q connected to the fourth wave The signal input terminal n of the division multiplexer (11), the signal output terminal o of the fourth wavelength division multiplexer (11) is connected to the second gain fiber (12), and the other end of the second gain fiber (12) is connected to the second wavelength division multiplexer The user (4) signal input terminal e, the second wavelength division multiplexer (4) signal output terminal f is connected to the graphene saturable absorber (5), and the other end of the graphene saturable absorber (5) is connected to the third wave The signal input terminal g of the division multiplexer (6), the signal output terminal i of the third wavelength division multiplexer (6) is connected to the second reflective tunable filter (14), forming a second route linear cavity, and the second route linear cavity The laser light generated by the cavity is output through the coupling output port r of the second fiber coupler (13). 5.根据权利要求3或4所述的双波长可调谐短脉冲光纤激光器,其特征在于,所述第一泵浦源(1)和第二泵浦源(10)是半导体激光器、固态激光器、气体激光器、光纤激光器中的任意一种,其输出中心波长分别是793nm、980nm、1570nm中三种之中的任意一种,且二者输出中心波长不一致。5. The dual-wavelength tunable short-pulse fiber laser according to claim 3 or 4, characterized in that, the first pumping source (1) and the second pumping source (10) are semiconductor lasers, solid-state lasers, Any of the gas lasers and fiber lasers, the output center wavelengths are any one of the three types of 793nm, 980nm, and 1570nm, and the output center wavelengths of the two are inconsistent. 6.根据权利要求3或4所述的双波长可调谐短脉冲光纤激光器,其特征在于,所述第一增益光纤(3)和第二增益光纤(12)是单包层或者双包层稀土掺杂光纤,其中掺杂的稀土元素是镱、饵、铥、钬中的一种或几种。6. The dual-wavelength tunable short-pulse fiber laser according to claim 3 or 4, characterized in that, the first gain fiber (3) and the second gain fiber (12) are single-clad or double-clad rare earth Doped optical fiber, wherein the doped rare earth element is one or more of ytterbium, bait, thulium, and holmium. 7.根据权利要求3或4所述的双波长可调谐短脉冲光纤激光器,其特征在于,所述石墨烯可饱和吸收体(5)还可以为氧化石墨烯可饱和吸收体,二者层数是单层、双层、多层。7. according to claim 3 or 4 described dual-wavelength tunable short-pulse fiber lasers, it is characterized in that, described graphene saturable absorber (5) can also be graphene oxide saturable absorber, both layers It is single layer, double layer, multilayer. 8.根据权利要求3或4所述的双波长可调谐短脉冲光纤激光器,其特征在于,所述第一波分复用器(2)、第二波分复用器(4)、第三波分复用器(6)、第一光纤耦合器(7)、第四波分复用器(11)、第二光纤耦合器(13)中信号可逆向输入,即信号输入端也可以作信号输出端,信号输出端也可以作信号输入端;第二波分复用器(4)和第三波分复用器(6)可以为:1550/2000nm、1550/1050nm、1050/2000nm三种工作波长模式中的任意一种,二者工作波长一致。8. The dual-wavelength tunable short-pulse fiber laser according to claim 3 or 4, characterized in that, the first wavelength division multiplexer (2), the second wavelength division multiplexer (4), the third Signals in the wavelength division multiplexer (6), the first optical fiber coupler (7), the fourth wavelength division multiplexer (11), and the second optical fiber coupler (13) can be reversely input, that is, the signal input end can also be used as The signal output terminal, the signal output terminal can also be used as the signal input terminal; the second wavelength division multiplexer (4) and the third wavelength division multiplexer (6) can be: 1550/2000nm, 1550/1050nm, 1050/2000nm three Any one of the two working wavelength modes, the two working wavelengths are the same. 9.根据权利要求3或4所述的双波长可调谐短脉冲光纤激光器,其特征在于,所述第二波分复用器(4)和第三波分复用器(6)可以换成成多路波分复用器,使双波长可调谐短脉冲光纤激光器扩展成多波长可调谐短脉冲光纤激光器。9. The dual-wavelength tunable short-pulse fiber laser according to claim 3 or 4, characterized in that, the second wavelength division multiplexer (4) and the third wavelength division multiplexer (6) can be replaced by A multi-channel wavelength division multiplexer is used to expand the dual-wavelength tunable short-pulse fiber laser into a multi-wavelength tunable short-pulse fiber laser. 10.根据权利要求1或2或3或4所述的双波长可调谐短脉冲光纤激光器,其特征在于,所述第一反射式可调滤波器(8)和第二反射式可调滤波器(14)工作波长分别为1550nm、2000nm、1050nm三种之中的任意一种,二者工作波长不一致,二者反射率都为R,其中0.9<R<1。10. The dual-wavelength tunable short-pulse fiber laser according to claim 1 or 2 or 3 or 4, characterized in that, the first reflective tunable filter (8) and the second reflective tunable filter (14) The working wavelength is any one of 1550nm, 2000nm, and 1050nm respectively, and the two working wavelengths are inconsistent, and the reflectivity of both is R, where 0.9<R<1.
CN201610296532.3A 2016-05-06 2016-05-06 A kind of dual-wavelength tunable Ultra-short Fiber Laser Active CN105826801B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610296532.3A CN105826801B (en) 2016-05-06 2016-05-06 A kind of dual-wavelength tunable Ultra-short Fiber Laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610296532.3A CN105826801B (en) 2016-05-06 2016-05-06 A kind of dual-wavelength tunable Ultra-short Fiber Laser

Publications (2)

Publication Number Publication Date
CN105826801A true CN105826801A (en) 2016-08-03
CN105826801B CN105826801B (en) 2019-05-31

Family

ID=56528232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610296532.3A Active CN105826801B (en) 2016-05-06 2016-05-06 A kind of dual-wavelength tunable Ultra-short Fiber Laser

Country Status (1)

Country Link
CN (1) CN105826801B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317219A (en) * 2017-07-07 2017-11-03 西北大学 Dual wavelength pulse optical fiber laser based on rhenium disulfide saturable absorber
CN107800035A (en) * 2017-11-14 2018-03-13 北京信息科技大学 A kind of changeable mode-locked fiber lasers device of wavelength
CN108195484A (en) * 2017-12-27 2018-06-22 北京信息科技大学 One kind is based on tunable optical fiber laser Research on Automatic Measuring System of Temperature and its test method
IT201700051935A1 (en) * 2017-05-12 2018-11-12 Cambridge Entpr Ltd LASER DEVICE
CN108873559A (en) * 2018-09-21 2018-11-23 宏力光电科技(深圳)有限公司 A kind of fiber amplifier
CN109119874A (en) * 2018-09-29 2019-01-01 上海理工大学 A kind of inclined double-colored of all risk insurance synchronizes ultrafast fiber laser system
CN109698459A (en) * 2019-02-11 2019-04-30 上海应用技术大学 Three colour synchronisation Q adjusting optical fiber lasers
CN111404013A (en) * 2020-03-27 2020-07-10 西北大学 Experimental device for synchronously realizing dual-wavelength pulse laser output
CN111404008A (en) * 2020-03-27 2020-07-10 西北大学 A dual-wavelength cylindrical vector light single-frequency Q-switched fiber laser
CN111668689A (en) * 2020-05-29 2020-09-15 华南理工大学 A dual-wavelength high-speed swept frequency synchronous pulse light source
CN112146799A (en) * 2020-09-07 2020-12-29 桂林电子科技大学 Optical fiber sensing device for integrated measurement of torsion and humidity
CN112886372A (en) * 2021-01-13 2021-06-01 电子科技大学 Multi-port output multi-wavelength laser pulse generation system
CN112886373A (en) * 2021-01-13 2021-06-01 电子科技大学 Dual-waveband high-energy rectangular laser pulse generation system with all-fiber structure
CN114552356A (en) * 2022-02-14 2022-05-27 中国人民解放军93236部队 Device for converting periodic laser short pulse into random waveform long pulse or pulse cluster
CN114976846A (en) * 2022-04-07 2022-08-30 北京航天控制仪器研究所 Multi-band switchable pulse laser system with all-fiber structure
CN115377783A (en) * 2022-09-15 2022-11-22 广东大湾区空天信息研究院 A dual-frequency pulsed laser
CN116914543A (en) * 2023-09-12 2023-10-20 武汉中科锐择光电科技有限公司 Generating a Broadband Continuously Tunable Laser System

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145160A (en) * 1991-11-25 1993-06-11 Sumitomo Metal Mining Co Ltd Second harmonics generator in solid laser device
JPH08213689A (en) * 1995-02-03 1996-08-20 Seitai Hikari Joho Kenkyusho:Kk Solid-state laser medium and solid-state laser device
CN2867664Y (en) * 2006-01-12 2007-02-07 南开大学 Resonant cavities that generate high-brightness laser light sources
CN105161968A (en) * 2015-09-22 2015-12-16 电子科技大学 Graphene-based mid-infrared dual-wavelength co-repetition frequency pulsed fiber laser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145160A (en) * 1991-11-25 1993-06-11 Sumitomo Metal Mining Co Ltd Second harmonics generator in solid laser device
JPH08213689A (en) * 1995-02-03 1996-08-20 Seitai Hikari Joho Kenkyusho:Kk Solid-state laser medium and solid-state laser device
CN2867664Y (en) * 2006-01-12 2007-02-07 南开大学 Resonant cavities that generate high-brightness laser light sources
CN105161968A (en) * 2015-09-22 2015-12-16 电子科技大学 Graphene-based mid-infrared dual-wavelength co-repetition frequency pulsed fiber laser

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102478187B1 (en) * 2017-05-12 2022-12-15 캠브리지 엔터프라이즈 리미티드 laser device
JP7194121B2 (en) 2017-05-12 2022-12-21 ケンブリッジ エンタープライズ リミテッド Laser device, optical device and method
US11936157B2 (en) 2017-05-12 2024-03-19 Cambridge Enterprise Limited Laser device
IT201700051935A1 (en) * 2017-05-12 2018-11-12 Cambridge Entpr Ltd LASER DEVICE
WO2018206980A1 (en) * 2017-05-12 2018-11-15 Cambridge Enterprise Limited A laser device
JP2020520107A (en) * 2017-05-12 2020-07-02 ケンブリッジ エンタープライズ リミテッド Laser equipment
CN110870149A (en) * 2017-05-12 2020-03-06 剑桥企业有限公司 Laser device
KR20200014783A (en) * 2017-05-12 2020-02-11 캠브리지 엔터프라이즈 리미티드 Laser devices
CN107317219A (en) * 2017-07-07 2017-11-03 西北大学 Dual wavelength pulse optical fiber laser based on rhenium disulfide saturable absorber
CN107800035A (en) * 2017-11-14 2018-03-13 北京信息科技大学 A kind of changeable mode-locked fiber lasers device of wavelength
CN108195484A (en) * 2017-12-27 2018-06-22 北京信息科技大学 One kind is based on tunable optical fiber laser Research on Automatic Measuring System of Temperature and its test method
CN108873559B (en) * 2018-09-21 2023-12-01 宏力光电科技(深圳)有限公司 Optical fiber amplifier
CN108873559A (en) * 2018-09-21 2018-11-23 宏力光电科技(深圳)有限公司 A kind of fiber amplifier
CN109119874A (en) * 2018-09-29 2019-01-01 上海理工大学 A kind of inclined double-colored of all risk insurance synchronizes ultrafast fiber laser system
CN109698459A (en) * 2019-02-11 2019-04-30 上海应用技术大学 Three colour synchronisation Q adjusting optical fiber lasers
CN111404008B (en) * 2020-03-27 2021-07-02 西北大学 A dual-wavelength cylindrical vector light single-frequency Q-switched fiber laser
CN111404013B (en) * 2020-03-27 2021-07-27 西北大学 An experimental device for synchronously realizing dual-wavelength pulsed laser output
CN111404008A (en) * 2020-03-27 2020-07-10 西北大学 A dual-wavelength cylindrical vector light single-frequency Q-switched fiber laser
CN111404013A (en) * 2020-03-27 2020-07-10 西北大学 Experimental device for synchronously realizing dual-wavelength pulse laser output
CN111668689B (en) * 2020-05-29 2024-04-23 华南理工大学 Dual-wavelength high-speed sweep synchronous pulse light source
CN111668689A (en) * 2020-05-29 2020-09-15 华南理工大学 A dual-wavelength high-speed swept frequency synchronous pulse light source
CN112146799A (en) * 2020-09-07 2020-12-29 桂林电子科技大学 Optical fiber sensing device for integrated measurement of torsion and humidity
CN112146799B (en) * 2020-09-07 2022-09-06 桂林电子科技大学 Optical fiber sensing device for integrated measurement of torsion and humidity
CN112886373A (en) * 2021-01-13 2021-06-01 电子科技大学 Dual-waveband high-energy rectangular laser pulse generation system with all-fiber structure
CN112886372A (en) * 2021-01-13 2021-06-01 电子科技大学 Multi-port output multi-wavelength laser pulse generation system
CN112886372B (en) * 2021-01-13 2021-11-09 电子科技大学 Multi-port output multi-wavelength laser pulse generation system
CN114552356A (en) * 2022-02-14 2022-05-27 中国人民解放军93236部队 Device for converting periodic laser short pulse into random waveform long pulse or pulse cluster
CN114552356B (en) * 2022-02-14 2024-05-10 中国人民解放军93236部队 Device for converting periodic laser short pulse into random waveform long pulse or pulse cluster
CN114976846A (en) * 2022-04-07 2022-08-30 北京航天控制仪器研究所 Multi-band switchable pulse laser system with all-fiber structure
CN115377783A (en) * 2022-09-15 2022-11-22 广东大湾区空天信息研究院 A dual-frequency pulsed laser
CN115377783B (en) * 2022-09-15 2024-11-12 广东大湾区空天信息研究院 A dual-frequency pulse laser
CN116914543A (en) * 2023-09-12 2023-10-20 武汉中科锐择光电科技有限公司 Generating a Broadband Continuously Tunable Laser System
CN116914543B (en) * 2023-09-12 2023-11-28 武汉中科锐择光电科技有限公司 Generating a Broadband Continuously Tunable Laser System

Also Published As

Publication number Publication date
CN105826801B (en) 2019-05-31

Similar Documents

Publication Publication Date Title
CN105826801A (en) Dual-wavelength tunable short pulse fiber laser
CN103414093B (en) An all-fiber pulsed laser
CN103701021B (en) A kind of all-fiber pulse laser of resonator cavity crossmodulation
CN110048295B (en) Wavelength Spacing Tunable Single and Dual Wavelength Fiber Laser Based on Sagnac Ring
CN104300344A (en) High-power and tunable pulse fiber laser device
CN101510663A (en) Polarization dual wavelength fiber-optical ultrashort pulse laser
CN105428973B (en) Widely Tunable Single Frequency Fiber Laser Source for Coherent Optical Orthogonal Frequency Division Multiplexing System
CN103124044B (en) Frequency interval adjustable multi-wavelength anti-Stokes four-wave mixing (FWM) fiber laser
CN103701022B (en) A kind of dual resonant cavity all -fiber Mode-locked laser device
CN108551075B (en) All-fiber transverse mode switchable high-order mode Brillouin laser
CN114498262B (en) A multi-wavelength switchable single longitudinal mode thulium-doped fiber laser
CN103633546B (en) Dual-wavelength dissipative soliton mode-locked laser
CN107994450A (en) A kind of laser of all optical fibre structure tunable wave length
CN106410576A (en) Linear polarization output all-fiber pulse dual-cavity lasers
CN107317219B (en) Dual-wavelength pulsed fiber laser based on rhenium disulfide saturable absorber
CN107845946A (en) A kind of all -fiber linear polarization mode-locked laser based on nonlinear optical loop mirror of cascaded pump
CN105337148B (en) For producing all-fiber gas Raman laser instrument of 2 μm laser
CN103151685A (en) Graphene oxide Q-switching Raman fiber laser
CN104617472B (en) Multi-wavelength super-narrow line width Brillouin erbium-doped fiber laser
CN208001073U (en) A kind of laser of all optical fibre structure tunable wave length
CN212340435U (en) High Power Dual Comb Spectrometer System
CN201213194Y (en) Linear cavity multi-wavelength dual output fiber laser
CN101270861A (en) A Power-tunable Near-Gaussian Erbium-doped Superfluorescent Fiber Light Source
CN103618202B (en) A kind of broadband light source system adopting C-band Er-doped fiber to produce C+L wave band
CN105896250A (en) Multi-wavelength multi-core fiber laser

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant