CN105825507A - Image extraction-based carbon/carbon composite elastic property prediction method - Google Patents
Image extraction-based carbon/carbon composite elastic property prediction method Download PDFInfo
- Publication number
- CN105825507A CN105825507A CN201610152529.4A CN201610152529A CN105825507A CN 105825507 A CN105825507 A CN 105825507A CN 201610152529 A CN201610152529 A CN 201610152529A CN 105825507 A CN105825507 A CN 105825507A
- Authority
- CN
- China
- Prior art keywords
- carbon
- phase
- tensor
- carbon composite
- pore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 70
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 70
- 239000002131 composite material Substances 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000000605 extraction Methods 0.000 title claims abstract description 7
- 239000011148 porous material Substances 0.000 claims abstract description 47
- 239000000835 fiber Substances 0.000 claims abstract description 30
- 238000004364 calculation method Methods 0.000 claims abstract description 12
- 238000009826 distribution Methods 0.000 claims abstract description 11
- 230000007547 defect Effects 0.000 claims abstract description 6
- 239000007787 solid Substances 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 13
- 238000004422 calculation algorithm Methods 0.000 claims description 7
- 239000002296 pyrolytic carbon Substances 0.000 claims description 4
- 238000005315 distribution function Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 150000001721 carbon Chemical class 0.000 abstract description 9
- 230000003044 adaptive effect Effects 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000011208 reinforced composite material Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/36—Circuit design at the analogue level
- G06F30/367—Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Evolutionary Computation (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Inorganic Fibers (AREA)
- Reinforced Plastic Materials (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明公开了一种基于图像提取的炭/炭复合材料弹性性能预测方法,用于解决现有炭/炭复合材料弹性性能预测方法精度差的技术问题。技术方案是基于炭/炭复合材料PLM(偏光图像)图像,采用图像计算手段获得各微观结构的信息参数,将这些微观结构作为夹杂相依次引入解析力学模型中,使用固体缺陷力学的夹杂理论求解其等效弹性性能,实现对多组分相炭/炭复合材料弹性性能的准确、高效的预测。由于采用偏光图像获得炭/炭复合材料纤维和孔隙等微观结构的信息,所建立的力学模型更加精准,更加接近实际情况。纤维束分布、纤维体积分数、孔隙体积分数以及分布等影响炭/炭复合材料等效弹性模量的重要参数通过计算获得,而不需要假设。
The invention discloses a method for predicting elastic properties of carbon/carbon composite materials based on image extraction, which is used to solve the technical problem of poor accuracy of the existing methods for predicting elastic properties of carbon/carbon composite materials. The technical solution is based on the PLM (polarized light image) image of carbon/carbon composite material, and the information parameters of each microstructure are obtained by means of image calculation, and these microstructures are sequentially introduced into the analytical mechanical model as inclusion phases, and the inclusion theory of solid defect mechanics is used to solve the problem. Its equivalent elastic properties enable accurate and efficient prediction of the elastic properties of multi-component phase carbon/carbon composites. Due to the use of polarized light images to obtain information on the microstructure of carbon/carbon composite materials such as fibers and pores, the established mechanical model is more accurate and closer to the actual situation. Important parameters affecting the equivalent elastic modulus of carbon/carbon composites such as fiber bundle distribution, fiber volume fraction, pore volume fraction, and distribution are obtained by calculation without assumptions.
Description
技术领域technical field
本发明涉及一种炭/炭复合材料弹性性能预测方法,特别涉及一种基于图像提取的炭/炭复合材料弹性性能预测方法。The invention relates to a method for predicting elastic properties of carbon/carbon composite materials, in particular to a method for predicting elastic properties of carbon/carbon composite materials based on image extraction.
背景技术Background technique
炭/炭复合材料由于具有高比强度、高比刚度、良好高温力学性能等优点而越来越多的应用在航天宇航等领域,被认为是未来能够在超高温环境下长时间服役最有发展前景的热结构材料,因此具有重要的国防战略价值。但是由于该材料往往具有各向异性的特点,因此其力学性能预测往往较为复杂。综上,一种能够快速准确的计算该复合材料弹性参数的方法将具有重要的意义。可以在一定程度上减少试验成本、缩短开发周期。Due to the advantages of high specific strength, high specific stiffness, and good high-temperature mechanical properties, carbon/carbon composite materials are more and more used in aerospace and other fields. Prospect of thermal structural materials, so it has important national defense strategic value. However, because the material often has anisotropic characteristics, the prediction of its mechanical properties is often complicated. In summary, a method that can quickly and accurately calculate the elastic parameters of the composite material will be of great significance. It can reduce the test cost and shorten the development cycle to a certain extent.
对于连续碳纤维增强复合材料等效性能的研究主要有实验法、解析法和数值模拟法,实验法是根据ASTM(AmericanSocietyofTestingMaterials)等测试标准中的相关要求对复合材料进行静态测试,从试验结果曲线中得到所需要的参数。在此过程中,需要按照一定的标准制备试样,通常工作量较大。此外对于具有独立弹性参数较多的复合材料而言,通过实验法对其性能进行研究就显得更为困难。The research on the equivalent performance of continuous carbon fiber reinforced composite materials mainly includes experimental method, analytical method and numerical simulation method. Get the required parameters. In this process, samples need to be prepared according to certain standards, usually with a large workload. In addition, for composite materials with many independent elastic parameters, it is more difficult to study their properties through experimental methods.
有限元数值模拟已经被证明是一种有效的分析手段。文献1“申请公布号是104537259A的中国发明专利”公开了一种使用XCT技术对纤维增强复合材料微观结构信息进行提取,并建立有限元模型。但是对于炭/炭复合材料而言,由于孔隙微观结构的存在,这会给模型建立和计算带来较大的难度,往往受到计算机能力限制而不能普遍使用。Finite element numerical simulation has been proved to be an effective analysis method. Document 1 "Chinese Invention Patent Application Publication No. 104537259A" discloses a method of using XCT technology to extract the microstructure information of fiber-reinforced composite materials and establish a finite element model. However, for carbon/carbon composites, due to the existence of pore microstructure, it will bring great difficulty to model establishment and calculation, which is often limited by computer capabilities and cannot be widely used.
除此之外,文献2“TSUKROVI,etal.MechanicsofAdvancedMaterialsandStructures,2005,12(1):43-54”公开了一种采用基于Eshelby张量的固体缺陷力学夹杂理论的方法,预测了炭/炭复合材料的弹性性能,但是由于CVI工艺的特殊性,通常该材料的微观结构复杂,除了纤维相和基体相之外,在基体中还分布着不均匀的孔洞结构,纤维和孔洞结构对材料等效弹性模量的影响较大。基于上述文献中对该材料微观结构的假设很难考虑到这些因素。因此,文献中所述的解析算法在弹性参数预测时会与实验值存在偏差。In addition, document 2 "TSUKROVI, etal. Mechanics of Advanced Materials and Structures, 2005, 12(1): 43-54" discloses a method using the inclusion theory of solid defect mechanics based on the Eshelby tensor to predict the carbon/carbon composite material However, due to the particularity of the CVI process, the microstructure of the material is usually complex. In addition to the fiber phase and the matrix phase, there are also uneven pore structures in the matrix. The fiber and pore structures have an impact on the equivalent elasticity of the material The modulus has a greater influence. It is difficult to take these factors into account based on the assumptions made in the above literature on the microstructure of the material. Therefore, the analytical algorithms described in the literature can deviate from the experimental values when predicting the elastic parameters.
发明内容Contents of the invention
为了克服现有炭/炭复合材料弹性性能预测方法精度差的不足,本发明提供一种基于图像提取的炭/炭复合材料弹性性能预测方法。该方法基于炭/炭复合材料PLM(偏光图像)图像,采用图像计算手段获得各微观结构的信息参数,将这些微观结构作为夹杂相依次引入解析力学模型中,使用固体缺陷力学的夹杂理论求解其等效弹性性能,实现对多组分相炭/炭复合材料弹性性能的准确、高效的预测。In order to overcome the deficiency of poor accuracy of the existing methods for predicting elastic properties of carbon/carbon composite materials, the present invention provides a method for predicting elastic properties of carbon/carbon composite materials based on image extraction. This method is based on the PLM (polarized light image) image of carbon/carbon composite material, and the information parameters of each microstructure are obtained by means of image calculation. Equivalent elastic properties to achieve accurate and efficient prediction of elastic properties of multi-component phase carbon/carbon composites.
本发明解决其技术问题所采用的技术方案:一种基于图像提取的炭/炭复合材料弹性性能预测方法,其特点是包括以下步骤:The technical solution adopted by the present invention to solve its technical problems: a method for predicting elastic properties of carbon/carbon composite materials based on image extraction, which is characterized in that it includes the following steps:
步骤一、将所要分析的炭/炭复合材料进行多组PLM拍摄,获得每张图像的像素信息;Step 1. Take multiple PLM shots of the carbon/carbon composite material to be analyzed to obtain the pixel information of each image;
步骤二、将所拍摄的多组图像分别进行去除噪点、调整对比以及平滑滤波处理,采用自适应阈值算法确定图像的阈值;Step 2, performing denoising, contrast adjustment and smoothing filtering on the multiple groups of images taken, and using an adaptive threshold algorithm to determine the threshold of the image;
步骤三、设每张图像的像素尺寸为长A像素、宽B像素,每个像素的灰度范围是0~255,采用(i,j,k)(i∈(0,B-1),j∈(0,A-1),k∈(0,N-1))来表示第k+1张图像,第j+1行,第i+1列像素。将步骤二调整后图像的像素建立灰度值数组Pixel{data},数组中的poxel[A*B*k+A*j+i]元素表示像素(i,j,k)的灰度值;Step 3. Set the pixel size of each image to be A pixel long and B pixel wide, and the grayscale range of each pixel is 0-255, using (i, j, k) (i∈(0, B-1), j∈(0, A-1), k∈(0, N-1)) to represent the k+1th image, the j+1th row, and the i+1th column pixel. The pixels of the adjusted image in step 2 are used to establish the gray value array Pixel{data}, and the element poxel[A*B*k+A*j+i] in the array represents the gray value of the pixel (i, j, k);
步骤四、根据步骤二计算结果确定的阈值,对炭/炭复合材料纤维区域进行识别并提取,更新像素灰度数组Pixel{data}。在此基础上再次使用步骤二的自适应阈值算法确定孔隙结构的阈值,将孔隙轮廓将进行识别提取。再次更新步骤三中不同组分区域相应的灰度值。Step 4: Identify and extract the carbon/carbon composite material fiber region according to the threshold determined by the calculation result of Step 2, and update the pixel grayscale array Pixel{data}. On this basis, the adaptive threshold algorithm in step 2 is used again to determine the threshold of the pore structure, and the pore outline will be identified and extracted. Update the corresponding gray value of different component regions in step 3 again.
步骤五、根据步骤四的计算结果,分别获得炭/炭复合材料基体相、纤维相及孔隙相的灰度值为GVM、GVF及GVP。根据不同灰度值分别计算纤维相和孔隙相的体积分数为和并统计孔隙相结构的长径比范围λ。Step 5. According to the calculation result of step 4, the gray values of the matrix phase, fiber phase and pore phase of the carbon/carbon composite material are respectively obtained as GVM, GVF and GVP. According to different gray values, the volume fractions of fiber phase and pore phase are calculated as and And count the aspect ratio range λ of the pore phase structure.
步骤六、建立炭/炭复合材料的微观力学模型,其中孔隙相Ωi,热解碳基体和纤维相D-Ω。在该模型的外表面τ上的X位置处作用一外加载荷P,e为该模型外表面τ的单位外法向量。炭/炭复合材料的微观力学模型的应力和应变表达如下Step 6: Establishing a micromechanical model of the carbon/carbon composite material, wherein the pore phase Ω i , the pyrolytic carbon matrix and the fiber phase D-Ω. An external load P acts on the X position on the outer surface τ of the model, and e is the unit external normal vector of the outer surface τ of the model. The stress and strain of the micromechanical model of carbon/carbon composites are expressed as follows
定义基体相和孔隙夹杂相的刚度张量分别为N和N*。其柔度张量分别为M=N-1和M*=N*-1。根据固体缺陷力学的理论The stiffness tensors defining the matrix phase and pore inclusion phase are N and N * , respectively. Their flexibility tensors are respectively M=N -1 and M * =N *-1 . According to the theory of solid defect mechanics
其中,Δεij=CRVE:σ∞,CRVE为夹杂相的柔度贡献张量,由于孔隙夹杂相为均质同性材料,此处的Δεij和σ0均为对称二阶张量,所以CRVE是和应力应变张量具有相同的对称特性的四阶张量。因此有,所以此处的贡献张量为Among them, Δε ij = C RVE : σ ∞ , C RVE is the flexibility contribution tensor of the inclusion phase, since the pore inclusion phase is a homogeneous material, Δε ij and σ 0 here are both symmetrical second-order tensors, so C RVE is a fourth-order tensor having the same symmetric properties as the stress-strain tensor. Therefore there is, So the contribution tensor here is
根据定义关于Eshelby张量Sijkl函数的四阶张量Qiikl和Rijkl,其中,Qijkl=Nijrs(Irskl-Srskl),Rijkl=SijmnMmnkl。所以夹杂相的柔度贡献张量为According to the definition about the fourth-order tensor Q iikl and R ijkl of the Eshelby tensor S ijkl function, wherein, Q ijkl =N ijrs (I rskl -S rskl ), R ijkl =S ijmn M mnkl . So the flexibility contribution tensor of the inclusion phase is
CRVE=vi[(M*-M)-1+Q]-1(i∈[1,N])(5)C RVE =v i [(M * -M) -1 +Q] -1 (i∈[1,N])(5)
步骤七、炭/炭复合材料中孔隙结构具有不同的形状,故使用不同取向和尺寸比例的椭球对其进行近似,孔隙的结构参数为Ar(ai,λ)其中,a1=a2=a=λa3。孔隙的取向分布函数为Step 7. The pore structure in the carbon/carbon composite material has different shapes, so it is approximated by using ellipsoids with different orientations and size ratios. The pore structure parameter is A r (a i , λ) where a 1 =a 2 =a=λa 3 . The orientation distribution function of the pores is
其中,Ψi(α)、Ψi(β)、Ψi(Φ)分别表示该椭球在局部坐标下关于三个坐标轴的投影分布角度。Among them, Ψ i (α), Ψ i (β), and Ψ i (Φ) represent the projection distribution angles of the ellipsoid about the three coordinate axes in local coordinates, respectively.
根据椭球夹杂的Eshelby张量表达Sijkl。写出孔隙的柔度贡献张量因此含孔等效基体的柔度张量的表达式为Express Sijkl in terms of Eshelby tensors entangled in ellipsoids. Write out the flexibility contribution tensor for the pores Therefore, the expression of the flexibility tensor of the equivalent matrix with pores is
其中, in,
步骤八、将炭/炭复合材料的纤维相作为夹杂相带入步骤七所得到的等效基体之中,纤维相的柔度贡献张量为其中,h1和h2根据不同纤维取向分布的Mori-Tanaka的表达式得到。Step 8: Bring the fiber phase of the carbon/carbon composite material into the equivalent matrix obtained in step 7 as an inclusion phase, and the flexibility contribution tensor of the fiber phase is where h1 and h2 are obtained according to the Mori - Tanaka expression for different fiber orientation distributions.
因此整体的柔度贡献张量为Therefore, the overall flexibility contribution tensor is
Meff=MefM+Cf(8)M eff =M efM +C f (8)
故炭/炭复合材料弹性性能参数根据整体柔度矩阵的分量表示。Therefore, the elastic performance parameters of carbon/carbon composites are expressed according to the components of the overall flexibility matrix.
本发明的有益效果是:该方法基于炭/炭复合材料PLM(偏光图像)图像,采用图像计算手段获得各微观结构的信息参数,将这些微观结构作为夹杂相依次引入解析力学模型中,使用固体缺陷力学的夹杂理论求解其等效弹性性能,实现对多组分相炭/炭复合材料弹性性能的准确、高效的预测。由于采用偏光图像获得炭/炭复合材料纤维和孔隙等微观结构的信息,所建立的力学模型更加精准,更加接近实际情况。纤维束分布、纤维体积分数、孔隙体积分数以及分布等影响炭/炭复合材料等效弹性模量的重要参数通过计算获得,而不需要假设。计算炭/炭复合材料等效性能,只需该材料部分结构即可,通过对其所拍摄的偏光图像进行分析获得相应微观结构参数,就可以计算出其刚度性能,简单易行。The beneficial effects of the present invention are: the method is based on the carbon/carbon composite material PLM (polarized light image) image, adopts image calculation means to obtain the information parameters of each microstructure, and introduces these microstructures as inclusion phases into the analytical mechanical model in sequence, using solid The inclusion theory of defect mechanics solves its equivalent elastic properties, and realizes accurate and efficient prediction of elastic properties of multi-component phase carbon/carbon composites. Due to the use of polarized light images to obtain information on the microstructure of carbon/carbon composite materials such as fibers and pores, the established mechanical model is more accurate and closer to the actual situation. Important parameters affecting the equivalent elastic modulus of carbon/carbon composites such as fiber bundle distribution, fiber volume fraction, pore volume fraction, and distribution are obtained by calculation without assumptions. To calculate the equivalent performance of carbon/carbon composite materials, only part of the structure of the material is needed, and the stiffness performance can be calculated by analyzing the polarized light images taken to obtain the corresponding microstructure parameters, which is simple and easy.
下面结合附图和具体实施方式对本发明作详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
附图说明Description of drawings
图1是CVI工艺制备的炭/炭复合材料偏光图像;Figure 1 is the polarized image of the carbon/carbon composite prepared by the CVI process;
图2是预处理后的PLM图像;Fig. 2 is the PLM image after preprocessing;
图3是根据灰度值将纤维结构进行提取后的图像;Fig. 3 is the image after the fiber structure is extracted according to the gray value;
图4根据灰度数不同,将孔隙结构进行提取后的图像;Figure 4 is the image after extracting the pore structure according to the different gray levels;
图5是所建立的微观力学模型原理简图;Fig. 5 is the schematic diagram of the principle of the established micromechanics model;
图6是局部坐标下的孔隙结构和分布示意图。Fig. 6 is a schematic diagram of the pore structure and distribution under local coordinates.
具体实施方式detailed description
参照图1-6。本发明基于图像提取的炭/炭复合材料弹性性能预测方法具体步骤如下:Refer to Figure 1-6. The specific steps of the method for predicting the elastic properties of carbon/carbon composite materials based on image extraction in the present invention are as follows:
步骤1:将所分析的炭/炭复合材料试样进行多组PLM(偏光显微图像)拍摄(如图1所示),并获得每张图像的像素信息;Step 1: Take multiple sets of PLM (polarized light microscopic image) shots of the analyzed carbon/carbon composite material sample (as shown in Figure 1), and obtain the pixel information of each image;
图1是采用CVI工艺制备的单向预制体增强炭/炭复合材料的偏光图像。增强相为T700碳纤维,基体为热解碳基体,碳纤维和基体的弹性参数如下:E11=230Gpa,E22=E33=15Gpa,G12=G13=9Gpa,G23=9.5Gpa,μ12=μ13=0.2,μ23=0.23。基体的弹性参数为:E=32.8Gpa,μ=0.159;并对该复合材料的横观弹性模量进行实验测试,结果为13.5Gpa。Figure 1 is a polarized image of a unidirectional preform reinforced carbon/carbon composite prepared by the CVI process. The reinforcing phase is T700 carbon fiber, and the matrix is pyrolytic carbon matrix. The elastic parameters of carbon fiber and matrix are as follows: E 11 =230Gpa, E 22 =E 33 =15Gpa, G 12 =G 13 =9Gpa, G 23 =9.5Gpa, μ 12 =μ 13 =0.2, μ 23 =0.23. The elastic parameters of the matrix are: E=32.8Gpa, μ=0.159; and the transverse elastic modulus of the composite material is tested experimentally, and the result is 13.5Gpa.
步骤2:将所拍摄的N组照片分别进行去除噪点、调整对比以及平滑滤波处理(如图2所示);采用自适应阈值算法确定图像的阈值;Step 2: Remove noise, adjust contrast, and smooth filter processing (as shown in Figure 2) for the N groups of photographs taken; use an adaptive threshold algorithm to determine the threshold of the image;
步骤3:设每张图像的像素尺寸为长A像素、宽B像素,每个像素的灰度范围是0~255,采用(i,j,k)(i∈(0,B-1),j∈(0,A-1),k∈(0,N-1))来表示第k+1张图像,第j+1行,第i+1列像素。将步骤2调整后图像的像素建立灰度值数组Pixel{data},数组中的poxel[A*B*k+A*j+i]元素表示像素(i,j,k)的灰度值;Step 3: Set the pixel size of each image to be A pixel long and B pixel wide, and the gray scale range of each pixel is 0-255, using (i, j, k) (i∈(0, B-1), j∈(0, A-1), k∈(0, N-1)) to represent the k+1th image, the j+1th row, and the i+1th column pixel. The pixels of the adjusted image in step 2 are used to establish a gray value array Pixel{data}, and the element poxel[A*B*k+A*j+i] in the array represents the gray value of the pixel (i, j, k);
步骤4:根据步骤2中计算结果确定的阈值,对纤维区域进行识别并提取(如图3所示),更新像素灰度数组Pixel{data}。在此基础上再次使用步骤2的自适应阈值算法确定孔隙结构的阈值,将孔隙轮廓将进行识别提取(如图4所示)。再次更新步骤3中不同组分区域相应的灰度值。Step 4: According to the threshold determined by the calculation result in step 2, identify and extract the fiber region (as shown in Figure 3), and update the pixel grayscale array Pixel{data}. On this basis, the adaptive threshold algorithm in step 2 is used again to determine the threshold of the pore structure, and the pore outline will be identified and extracted (as shown in Figure 4). Update the corresponding gray value of different component regions in step 3 again.
步骤5:根据步骤4中的计算结果,分别获得基体相、纤维相及孔隙相的灰度值为GVM、GVF、GVP。根据不同灰度值分别计算纤维相和孔隙相的体积分数为和并统计图中孔隙结构的长径比范围λ∈(0.2,7.5)。Step 5: According to the calculation results in step 4, the gray values of matrix phase, fiber phase and pore phase are respectively obtained as GVM, GVF and GVP. According to different gray values, the volume fractions of fiber phase and pore phase are calculated as and And the aspect ratio range λ∈(0.2, 7.5) of the pore structure in the statistics graph.
步骤6:建立该材料的微观力学模型(如图5所示),其中孔隙相(Ωi),热解碳基体和纤维相(D-Ω)。在该模型的外表面τ上的X位置处作用一外加载荷P,e为该外表面τ的单位外法向量。所以整个模型的应力和应变表达如下Step 6: Establish a micromechanical model of the material (as shown in FIG. 5 ), in which a pore phase (Ω i ), a pyrolytic carbon matrix and a fiber phase (D-Ω) are established. An external load P acts on the X position on the outer surface τ of the model, and e is the unit external normal vector of the outer surface τ. So the stress and strain of the whole model are expressed as follows
定义基体相和孔隙夹杂相的刚度张量分别为N和N*。其柔度张量分别为M=N-1和M*=N*-1。根据固体缺陷力学的理论The stiffness tensors defining the matrix phase and pore inclusion phase are N and N * , respectively. Their flexibility tensors are respectively M=N -1 and M * =N *-1 . According to the theory of solid defect mechanics
其中,Δεij=CRVE:σ∞,CRVE为夹杂相的柔度贡献张量,由于孔隙夹杂相为均质同性材料,此处的Δεij和σ0均为对称二阶张量,所以CRVE是和应力应变张量具有相同的对称特性的四阶张量。因此有,所以此处的贡献张量为。Among them, Δε ij = C RVE : σ ∞ , C RVE is the flexibility contribution tensor of the inclusion phase, since the pore inclusion phase is a homogeneous material, Δε ij and σ 0 here are both symmetrical second-order tensors, so C RVE is a fourth-order tensor having the same symmetric properties as the stress-strain tensor. Therefore there is, So the contribution tensor here is .
根据定义关于Eshelby张量Sijkl函数的四阶张量Qijkl和Rijkl,其中,Qijkl=Nijrs(Irskl-Srskl),Rijkl=SijmnMmnkl。所以夹杂相的柔度贡献张量为According to the definition about the fourth-order tensors Q ijkl and R ijkl of the Eshelby tensor S ijkl function, wherein, Q ijkl =N ijrs (I rskl -S rskl ), R ijkl =S ijmn M mnkl . So the flexibility contribution tensor of the inclusion phase is
CRVE=vi[(M*-M)-1+Q]-1(i∈[1,N])(5)C RVE =v i [(M * -M) -1 +Q] -1 (i∈[1,N])(5)
步骤7:因为在炭/炭复合材料中孔隙结构往往具有不同的形状,在此处使用不同取向和尺寸比例的椭球对其进行近似,孔隙的结构参数为Ar(ai,λ),其中a1=a2=a=λa3。孔隙的取向分布函数为。Step 7: Because the pore structure in carbon/carbon composites often has different shapes, it is approximated here using ellipsoids with different orientations and size ratios, and the structure parameters of the pores are A r (a i , λ), where a 1 =a 2 =a=λa 3 . The orientation distribution function of the pores is .
其中Ψi(α)、Ψi(β)、Ψi(Φ)分别表示该椭球在局部坐标下关于三个坐标轴的投影分布角度(如图6所示)。Among them, Ψ i (α), Ψ i (β), and Ψ i (Φ) respectively represent the projection distribution angles of the ellipsoid about the three coordinate axes in local coordinates (as shown in Figure 6).
根据椭球夹杂的Eshelby张量表达Sijkl。写出孔隙的柔度贡献张量因此含孔等效基体的柔度张量的表达式为Express Sijkl in terms of Eshelby tensors entangled in ellipsoids. Write out the flexibility contribution tensor for the pores Therefore, the expression of the flexibility tensor of the equivalent matrix with pores is
其中, in,
步骤8:将纤维相作为夹杂相带入步骤7所得到的等效基体之中,纤维相的柔度贡献张量为其中h1和h2则根据不同纤维取向分布的Mori-Tanaka的表达式而来。Step 8: Bring the fiber phase as an inclusion phase into the equivalent matrix obtained in step 7, and the flexibility contribution tensor of the fiber phase is Among them, h 1 and h 2 are derived from the Mori-Tanaka expression of different fiber orientation distributions.
因此整体的柔度贡献张量为Therefore, the overall flexibility contribution tensor is
Meff=MefM+cf(8)M eff =M efM +c f (8)
该材料的各项弹性性能参数则根据整体柔度矩阵的分量来进行表示。所以其横观弹性模量为与所测试结果13.5Gpa相差6%,结果吻合较好。The elastic performance parameters of the material are expressed according to the components of the overall flexibility matrix. So its transverse modulus of elasticity is It is 6% different from the tested result of 13.5Gpa, and the result is in good agreement.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610152529.4A CN105825507B (en) | 2016-03-17 | 2016-03-17 | Prediction method of elastic properties of carbon/carbon composites based on image extraction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610152529.4A CN105825507B (en) | 2016-03-17 | 2016-03-17 | Prediction method of elastic properties of carbon/carbon composites based on image extraction |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105825507A true CN105825507A (en) | 2016-08-03 |
CN105825507B CN105825507B (en) | 2019-02-19 |
Family
ID=56523502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610152529.4A Active CN105825507B (en) | 2016-03-17 | 2016-03-17 | Prediction method of elastic properties of carbon/carbon composites based on image extraction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105825507B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107356478A (en) * | 2017-07-07 | 2017-11-17 | 吉林大学 | Long fiber reinforced thermoplastic composites Multiscale Simulation Method |
CN107766640A (en) * | 2017-10-16 | 2018-03-06 | 北京理工大学 | Consider the particulate reinforced composite finite element modeling method at microstructure interface |
CN110264555A (en) * | 2019-05-05 | 2019-09-20 | 宜兴市新立织造有限公司 | One kind counting meso-mechanical model method for building up based on Micro-CT three-dimensional five-directional braiding |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4838085A (en) * | 1986-03-25 | 1989-06-13 | Washington State University Research Foundation, Inc. | Methods and appartaus for non-destructing evaluation of the mechanical properties of composite materials |
EP0719957A1 (en) * | 1994-12-28 | 1996-07-03 | Nippon Oil Co. Ltd. | Carbon material for brake linings or brake discs |
US20040222081A1 (en) * | 2002-12-17 | 2004-11-11 | William Marsh Rice University | Use of microwaves to crosslink carbon nanotubes |
CN102629288A (en) * | 2012-03-01 | 2012-08-08 | 西北工业大学 | Surface crack prediction method of liquid-solid extrusion products based on finite element simulation |
CN103366085A (en) * | 2013-06-08 | 2013-10-23 | 上海交通大学 | Multiscale prediction method for mechanical property of woven composite material |
CN103871059A (en) * | 2014-03-13 | 2014-06-18 | 南京航空航天大学 | Method for computing equivalent elastic parameters of fiber reinforced composite material |
CN103984869A (en) * | 2014-05-22 | 2014-08-13 | 重庆大学 | Method for forecasting thermoelasticity valid attribute and local field of composite material |
CN104537259A (en) * | 2015-01-12 | 2015-04-22 | 北京航空航天大学 | Transverse isotropy fiber material performance prediction method based on micro-mechanical model |
-
2016
- 2016-03-17 CN CN201610152529.4A patent/CN105825507B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4838085A (en) * | 1986-03-25 | 1989-06-13 | Washington State University Research Foundation, Inc. | Methods and appartaus for non-destructing evaluation of the mechanical properties of composite materials |
EP0719957A1 (en) * | 1994-12-28 | 1996-07-03 | Nippon Oil Co. Ltd. | Carbon material for brake linings or brake discs |
US20040222081A1 (en) * | 2002-12-17 | 2004-11-11 | William Marsh Rice University | Use of microwaves to crosslink carbon nanotubes |
CN102629288A (en) * | 2012-03-01 | 2012-08-08 | 西北工业大学 | Surface crack prediction method of liquid-solid extrusion products based on finite element simulation |
CN103366085A (en) * | 2013-06-08 | 2013-10-23 | 上海交通大学 | Multiscale prediction method for mechanical property of woven composite material |
CN103871059A (en) * | 2014-03-13 | 2014-06-18 | 南京航空航天大学 | Method for computing equivalent elastic parameters of fiber reinforced composite material |
CN103984869A (en) * | 2014-05-22 | 2014-08-13 | 重庆大学 | Method for forecasting thermoelasticity valid attribute and local field of composite material |
CN104537259A (en) * | 2015-01-12 | 2015-04-22 | 北京航空航天大学 | Transverse isotropy fiber material performance prediction method based on micro-mechanical model |
Non-Patent Citations (7)
Title |
---|
B. DRACH 等: "Numerical modeling of carbon/carbon composites with nanotextured matrix and 3D pores of irregular shapes", 《INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES》 * |
I. TSUKROV 等: "Micromechanical Modeling of Porous Carbon/Carbon Composites", 《MECHANICS OF ADVANCED MATERIALS AND STRUCTURES》 * |
LI MIAOLING 等: "An Imaging Technique Using Rotational Polarization Microscopy for the Microstructure Analysis of Carbon/Carbon Composites", 《MICROSCOPY RESEARCH AND TECHNIQUE》 * |
YIXIAN LI 等: "Quantitative Characterization of Carbon/Carbon Composites Matrix Texture Based on Image Analysis Using Polarized Light Microscope", 《MICROSCOPY RESEARCH AND TECHNIQUE》 * |
廖英强 等: "轴棒法炭/炭复合材料力学性能预测研究", 《功能材料》 * |
李典森 等: "三维五向圆型编织复合材料细观分析及弹性性能预测", 《航空学报》 * |
陈迪 等: "C/C 编织复合材料性能的细观力学研究", 《炭素技术》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107356478A (en) * | 2017-07-07 | 2017-11-17 | 吉林大学 | Long fiber reinforced thermoplastic composites Multiscale Simulation Method |
CN107356478B (en) * | 2017-07-07 | 2019-10-15 | 吉林大学 | Multiscale Simulation Method for Long Fiber Reinforced Thermoplastic Composites |
CN107766640A (en) * | 2017-10-16 | 2018-03-06 | 北京理工大学 | Consider the particulate reinforced composite finite element modeling method at microstructure interface |
CN107766640B (en) * | 2017-10-16 | 2020-06-30 | 北京理工大学 | Particle-reinforced composite finite element modeling method considering microstructure interface |
CN110264555A (en) * | 2019-05-05 | 2019-09-20 | 宜兴市新立织造有限公司 | One kind counting meso-mechanical model method for building up based on Micro-CT three-dimensional five-directional braiding |
Also Published As
Publication number | Publication date |
---|---|
CN105825507B (en) | 2019-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qi et al. | Numerical evaluation of effective elastic properties of composites reinforced by spatially randomly distributed short fibers with certain aspect ratio | |
Raghavan et al. | Concurrent multi-scale analysis of elastic composites by a multi-level computational model | |
CN103871059B (en) | Method for computing equivalent elastic parameters of fiber reinforced composite material | |
Lengiewicz et al. | Efficient model of evolution of wear in quasi-steady-state sliding contacts | |
Ogierman et al. | A study on fiber orientation influence on the mechanical response of a short fiber composite structure | |
Rahmani et al. | A new approach to inverse identification of mechanical properties of composite materials: Regularized model updating | |
Han et al. | Multiscale computational homogenization of woven composites from microscale to mesoscale using data-driven self-consistent clustering analysis | |
CN108132193B (en) | Method for identifying anisotropic plastic parameters of material based on spherical indentation morphology | |
Pham et al. | Stability of homogeneous states with gradient damage models: size effects and shape effects in the three-dimensional setting | |
CN105825507B (en) | Prediction method of elastic properties of carbon/carbon composites based on image extraction | |
Xu et al. | A new analytical model on predicting the elastic properties of 3D full five-directional braided composites based on a multiunit cell model | |
Tal et al. | Generating a statistically equivalent representative volume element with discrete defects | |
Auenhammer et al. | Robust numerical analysis of fibrous composites from X-ray computed tomography image data enabling low resolutions | |
Ito et al. | Dynamical scaling of fragment distribution in drying paste | |
Zago et al. | DIC to evaluate a model composite system cracking due to CTE mismatch | |
Hong et al. | Numerical analysis of fatigue evolution of laminated composites using cohesive zone model and extended finite element method | |
Chiocca et al. | A closed-form solution for evaluating the Findley critical plane factor | |
Ferrarotti et al. | A novel straightforward dynamic approach for the evaluation of extensional modes within GBT ‘cross-section analysys’ | |
Cornejo et al. | A machine learning based material homogenization technique for in-plane loaded masonry walls | |
Enos et al. | Integrated optimization framework for composite manufacturing: minimizing spring-in effects and improving cure cycles | |
Oskay | Multiscale modeling of the response and life prediction of composite materials | |
Berrehili et al. | The homogenized behavior of unidirectional fiber-reinforced composite materials in the case of debonded fibers | |
Wu et al. | Reconstruction of multi-scale heterogeneous porous media and their flow prediction | |
JP2013036897A (en) | Damage parameter identification method of frp material | |
Korolev et al. | Hybrid machine learning based scale bridging framework for permeability prediction of fibrous structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |