CN105820990B - A method for in vivo evolution of target proteins using iterative homologous recombination - Google Patents
A method for in vivo evolution of target proteins using iterative homologous recombination Download PDFInfo
- Publication number
- CN105820990B CN105820990B CN201610079480.4A CN201610079480A CN105820990B CN 105820990 B CN105820990 B CN 105820990B CN 201610079480 A CN201610079480 A CN 201610079480A CN 105820990 B CN105820990 B CN 105820990B
- Authority
- CN
- China
- Prior art keywords
- mutation
- coli
- library
- target protein
- dxs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 108090000623 proteins and genes Proteins 0.000 title abstract description 57
- 238000000034 method Methods 0.000 title abstract description 32
- 102000004169 proteins and genes Human genes 0.000 title abstract description 23
- 238000002744 homologous recombination Methods 0.000 title abstract description 17
- 230000006801 homologous recombination Effects 0.000 title abstract description 17
- 238000001727 in vivo Methods 0.000 title abstract description 10
- 101150056470 dxs gene Proteins 0.000 claims description 12
- 241000588724 Escherichia coli Species 0.000 abstract description 52
- 230000035772 mutation Effects 0.000 abstract description 47
- 206010064571 Gene mutation Diseases 0.000 abstract description 15
- 108091027568 Single-stranded nucleotide Proteins 0.000 abstract description 10
- 102000004190 Enzymes Human genes 0.000 abstract description 8
- 108090000790 Enzymes Proteins 0.000 abstract description 8
- 238000000338 in vitro Methods 0.000 abstract description 8
- 102000007260 Deoxyribonuclease I Human genes 0.000 abstract description 7
- 108010008532 Deoxyribonuclease I Proteins 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 7
- 238000012216 screening Methods 0.000 abstract description 7
- 230000003197 catalytic effect Effects 0.000 abstract description 4
- 239000012634 fragment Substances 0.000 abstract description 4
- 238000011065 in-situ storage Methods 0.000 abstract description 3
- 241000193830 Bacillus <bacterium> Species 0.000 abstract description 2
- 239000002207 metabolite Substances 0.000 abstract description 2
- 108700005443 Microbial Genes Proteins 0.000 abstract 1
- 238000013537 high throughput screening Methods 0.000 abstract 1
- 230000000813 microbial effect Effects 0.000 abstract 1
- UPYKUZBSLRQECL-UKMVMLAPSA-N Lycopene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1C(=C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=C)CCCC2(C)C UPYKUZBSLRQECL-UKMVMLAPSA-N 0.000 description 21
- JEVVKJMRZMXFBT-XWDZUXABSA-N Lycophyll Natural products OC/C(=C/CC/C(=C\C=C\C(=C/C=C/C(=C\C=C\C=C(/C=C/C=C(\C=C\C=C(/CC/C=C(/CO)\C)\C)/C)\C)/C)\C)/C)/C JEVVKJMRZMXFBT-XWDZUXABSA-N 0.000 description 21
- OAIJSZIZWZSQBC-GYZMGTAESA-N lycopene Chemical compound CC(C)=CCC\C(C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C=C(/C)CCC=C(C)C OAIJSZIZWZSQBC-GYZMGTAESA-N 0.000 description 21
- 229960004999 lycopene Drugs 0.000 description 21
- 235000012661 lycopene Nutrition 0.000 description 21
- 239000001751 lycopene Substances 0.000 description 21
- ZCIHMQAPACOQHT-ZGMPDRQDSA-N trans-isorenieratene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/c1c(C)ccc(C)c1C)C=CC=C(/C)C=Cc2c(C)ccc(C)c2C ZCIHMQAPACOQHT-ZGMPDRQDSA-N 0.000 description 21
- 239000002773 nucleotide Substances 0.000 description 17
- 125000003729 nucleotide group Chemical group 0.000 description 17
- 230000009466 transformation Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 125000003275 alpha amino acid group Chemical group 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000002609 medium Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 239000008223 sterile water Substances 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 239000013599 cloning vector Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 108010060155 deoxyxylulose-5-phosphate synthase Proteins 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 108060002716 Exonuclease Proteins 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 230000035508 accumulation Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 102000013165 exonuclease Human genes 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 239000002962 chemical mutagen Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 230000037353 metabolic pathway Effects 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- AJPADPZSRRUGHI-RFZPGFLSSA-N 1-deoxy-D-xylulose 5-phosphate Chemical compound CC(=O)[C@@H](O)[C@H](O)COP(O)(O)=O AJPADPZSRRUGHI-RFZPGFLSSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 230000009946 DNA mutation Effects 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 108010034634 Repressor Proteins Proteins 0.000 description 1
- 102000009661 Repressor Proteins Human genes 0.000 description 1
- 101100061456 Streptomyces griseus crtB gene Proteins 0.000 description 1
- 101100114901 Streptomyces griseus crtI gene Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000007846 asymmetric PCR Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 101150081158 crtB gene Proteins 0.000 description 1
- 101150000046 crtE gene Proteins 0.000 description 1
- 101150011633 crtI gene Proteins 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010362 genome editing Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000036438 mutation frequency Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002818 protein evolution Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1022—Transferases (2.) transferring aldehyde or ketonic groups (2.2)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/24—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
- C07K14/245—Escherichia (G)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y202/00—Transferases transferring aldehyde or ketonic groups (2.2)
- C12Y202/01—Transketolases and transaldolases (2.2.1)
- C12Y202/01007—1-Deoxy-D-xylulose-5-phosphate synthase (2.2.1.7)
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明涉及一种利用迭代同源重组体内进化目标蛋白质的方法。其特征在于:首先在体外通过两步PCR制备得到带突变的单链核苷酸并用DNase I酶切,回收80‑100nt片段构成目标蛋白质的单链核苷酸突变库;以此单链突变库转化大肠杆菌,通过λ‑Red同源重组技术建立含有目标蛋白质突变体的大肠杆菌菌群;再次将上述单链突变库转化含有目标蛋白质突变体的大肠杆菌菌群,形成更大库容量的大肠杆菌菌群;再次转化大肠杆菌的操作循环2‑6次,构建含有目标基因突变的大肠杆菌突变库;最后通过高效筛选或高通量筛选获得目标蛋白质突变体。这一技术可应用于微生物基因原位进化,提高酶催化活性,并应用于提高微生物代谢产物的产率。
The present invention relates to a method for in vivo evolution of a target protein using iterative homologous recombination. It is characterized in that: firstly, the single-stranded nucleotide with mutation is prepared by two-step PCR in vitro and digested with DNase I, and the 80-100nt fragment is recovered to form the single-stranded nucleotide mutation library of the target protein; thus, the single-stranded mutation library Transform Escherichia coli, and establish an E. coli colony containing the target protein mutant through λ-Red homologous recombination technology; transform the above single-chain mutant library into the E. coli colony containing the target protein mutant again to form a larger library capacity of E. coli Bacillus flora; retransforming E. coli for 2-6 cycles to construct an E. coli mutation library containing target gene mutations; finally, obtain target protein mutants through high-efficiency screening or high-throughput screening. This technology can be applied to the in situ evolution of microbial genes, to improve the catalytic activity of enzymes, and to increase the yield of microbial metabolites.
Description
发明领域field of invention
本发明涉及一种利用迭代同源重组体内进化目标蛋白质的新方法,属于生物技术领域。The invention relates to a new method for evolving a target protein in vivo by iterative homologous recombination, which belongs to the field of biotechnology.
背景技术Background technique
定向进化技术是一种在实验室中模拟达尔文进化,进化出在自然界并不存在的或是具有更优性质的蛋白质,并可以通过改变酶的催化效率改变代谢流,扩展或构建新的代谢途径,弱化或消除不必要或有害的代谢途径,从而达到提高某种代谢产物产率或降解有害物质的目的。定向进化技术主要有两个步骤:首先利用现代分子生物学方法构建基因的突变文库,然后耦合筛选方法对文库进行筛选。突变文库的构建可以提供足够的多样性以供筛选,是定向进化的关键步骤。按照DNA突变发生的场所,构建突变文库的技术可以分为体外突变和体内突变。Directed evolution technology is a simulation of Darwinian evolution in the laboratory to evolve proteins that do not exist in nature or have better properties, and can change the metabolic flow by changing the catalytic efficiency of enzymes, expand or build new metabolic pathways , weaken or eliminate unnecessary or harmful metabolic pathways, so as to achieve the purpose of increasing the yield of certain metabolites or degrading harmful substances. Directed evolution technology mainly has two steps: firstly, modern molecular biological methods are used to construct a gene mutation library, and then coupled screening method is used to screen the library. The construction of mutant library can provide enough diversity for screening, which is a key step in directed evolution. According to the place where the DNA mutation occurs, the techniques for constructing a mutation library can be divided into in vitro mutation and in vivo mutation.
体外突变手段通过易错PCR、饱和点突变或DNA重排等标准实验技术在感兴趣的基因上引入多样性。体外突变手段可以有效得控制突变率和突变谱,而体内突变手段可以耦合突变和筛选,并且可以绕开转化效率瓶颈,避免费时费力的建库,克隆,操作步骤。In vitro mutagenesis approaches introduce diversity at the gene of interest through standard experimental techniques such as error-prone PCR, saturation point mutagenesis, or DNA rearrangement. The in vitro mutation method can effectively control the mutation rate and mutation spectrum, while the in vivo mutation method can couple mutation and screening, and can bypass the transformation efficiency bottleneck, avoiding time-consuming and laborious library construction, cloning, and operation steps.
最常用的体内突变手段包括化学诱变剂,碱基类似物,紫外线和超突变菌株。化学诱变剂产生的突变谱很窄,而且可能对人有致癌作用。紫外线辐射产生的突变谱很广,而且几乎没有序列偏好性。然而紫外线对细胞的杀伤作用限制了它的作用。最广泛应用的体内突变方法是使用超突变菌株比如XL1-Red。此菌株通过删除和修饰DNA复制和修复相关基因来提高突变概率,然而其突变频率无法控制,基因不稳定,生长缓慢使得分离突变子较为困难。The most commonly used means of in vivo mutation include chemical mutagens, base analogs, ultraviolet light and hypermutated strains. Chemical mutagens produce a narrow spectrum of mutations and may be carcinogenic in humans. UV radiation produces a broad spectrum of mutations with little sequence preference. However, the killing effect of ultraviolet light on cells limits its effect. The most widely used method of in vivo mutagenesis is the use of hypermutated strains such as XL1-Red. This strain improves the probability of mutation by deleting and modifying genes related to DNA replication and repair. However, its mutation frequency cannot be controlled, the gene is unstable, and its growth is slow, making it difficult to isolate mutants.
George Church实验室发明了MAGE(多重自动基因组改造技术)。它同时针对基因组的不同区域设计一系列的单链寡核苷酸,利用λ-Red同源重组系统将这些寡核苷酸整合到基因组上,实现单个细胞基因组多个位点的改造或细胞群体间基因组改造的多样性。利用该技术定向改造大肠杆菌中番茄红素合成过程中的20个基因的RBS区域,设计不同的简并引物,使它们定向进化到认为可以提高表达量的经典的SD序列(TAAGGAGGT),最终筛选得到高产菌株。MAGE技术利用体外合成的90nt单链寡核苷酸达到高效同源重组的目的,且针对的改造目标都是调节基因,并没有实现对蛋白质的结构基因进行定向进化。The George Church laboratory invented MAGE (Multiple Automated Genome Engineering). It simultaneously designs a series of single-stranded oligonucleotides for different regions of the genome, and uses the λ-Red homologous recombination system to integrate these oligonucleotides into the genome to realize the transformation of multiple sites in the genome of a single cell or a cell population Diversity in genome modification. Use this technology to directional transform the RBS regions of 20 genes in the lycopene synthesis process in E. coli, design different degenerate primers, and make them directional evolve to the classic SD sequence (TAAGGAGGT) that can increase the expression level, and finally screen High-yielding strains were obtained. MAGE technology uses 90nt single-stranded oligonucleotides synthesized in vitro to achieve the purpose of efficient homologous recombination, and the transformation targets are all regulatory genes, and it does not realize the directed evolution of protein structural genes.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种利用迭代同源重组体内进化目标蛋白质的新方法。为此,本发明采用以下技术方案:The technical problem to be solved by the present invention is to provide a new method for evolving target protein in vivo by iterative homologous recombination. For this reason, the present invention adopts following technical scheme:
构建一个80-100nt的单链核苷酸目标基因突变库,通过λ-Red同源重组技术,利用所述突变库对大肠杆菌基因组上的蛋白质基因进行原位迭代重组,构建较大库容量的含有目标基因突变的大肠杆菌突变库,以较高的突变率达到进化酶分子结构提高酶催化效率的目的。Construct an 80-100nt single-stranded nucleotide target gene mutation library, and use the mutation library to perform in situ iterative recombination of protein genes on the E. The Escherichia coli mutation library containing the target gene mutation achieves the purpose of evolving the molecular structure of the enzyme and improving the catalytic efficiency of the enzyme with a higher mutation rate.
进一步地,所述方法为在体外构建目标蛋白质基因的TA克隆载体,以此载体为模板,用error-prone PCR制备得到带碱基突变的双链核苷酸;以此双链为模板,单引物PCR制备得到带突变的单链核苷酸;用DNase I把以上单链酶切并回收80-100nt片段构成目标蛋白质的单链核苷酸目标基因突变库。Further, the method is to construct a TA cloning vector of the target protein gene in vitro, use the vector as a template, and use error-prone PCR to prepare double-stranded nucleotides with base mutations; The single-stranded nucleotides with mutations are prepared by primer PCR; the above single-stranded enzymes are digested with DNase I and the 80-100nt fragments are recovered to form the single-stranded nucleotide target gene mutation library of the target protein.
进一步地,所述迭代的步骤为:Further, the iterative steps are:
以得到的单链核苷酸目标基因突变库转化大肠杆菌,通过λ-Red同源重组技术建立含有目标蛋白质突变体的大肠杆菌菌群,得到初始的含有目标基因突变的大肠杆菌突变库;Transform E. coli with the obtained single-stranded nucleotide target gene mutation library, establish an E. coli colony containing target protein mutants through λ-Red homologous recombination technology, and obtain the initial E. coli mutation library containing target gene mutations;
将上述单链核苷酸目标基因突变库转化初始的含有目标基因突变的大肠杆菌突变库,得到新的含有目标基因突变的大肠杆菌突变库,形成更大库容量的大肠杆菌菌群,构建成含有目标基因突变的大肠杆菌突变库;或者:The above-mentioned single-stranded nucleotide target gene mutation library is transformed into the initial E. coli mutation library containing the target gene mutation to obtain a new E. coli mutation library containing the target gene mutation, forming a larger library capacity of E. coli flora, and constructing E. coli mutant library containing the mutation of the gene of interest; or:
再用上述单链核苷酸目标基因突变库转化新形成的含有目标基因突变的大肠杆菌突变库,得到更新后的含有目标基因突变的大肠杆菌突变库,以此不断增加含有目标基因突变的大肠杆菌突变库的库容量,构建含有目标基因突变的大肠杆菌突变库。Then use the above-mentioned single-stranded nucleotide target gene mutation library to transform the newly formed E. coli mutation library containing the target gene mutation to obtain an updated E. coli mutation library containing the target gene mutation, thereby continuously increasing the E. coli mutation library containing the target gene mutation. The library capacity of the bacillus mutant library is used to construct the E. coli mutant library containing the target gene mutation.
单链核苷酸的获取方式包括但不限于T7逆转录法,核酸外切酶法,变性高效液相色谱法,磁珠捕获法,不对称PCR,两步PCR法等。Methods for obtaining single-stranded nucleotides include but are not limited to T7 reverse transcription method, exonuclease method, denaturing high performance liquid chromatography, magnetic bead capture method, asymmetric PCR, two-step PCR method, etc.
80-100nt的单链核苷酸是通过降解长单链核苷酸的方式得到,它的获取方式包括但不限于DNase I酶切,超声波破碎法等。80-100nt single-stranded nucleotides are obtained by degrading long single-stranded nucleotides, and its acquisition methods include but are not limited to DNase I digestion, sonication, etc.
单链核苷酸可以通过转化或转染的方式进入细胞内。转化或转染的方式包括但不限于磷酸钙法,氯化钙法,脂质体转染,电穿孔法,光穿孔法等。转化介质包括但不限于水,氯化钙,脂质体等。Single-stranded nucleotides can enter cells through transformation or transfection. Transformation or transfection methods include but not limited to calcium phosphate method, calcium chloride method, lipofection, electroporation, photoporation, etc. Transformation media include, but are not limited to, water, calcium chloride, liposomes, and the like.
在转化或转染之前,大肠杆菌细胞在30℃培养至一定浓度,并于42℃进行诱导。在细胞基因组上的λ-Red同源重组系统在pL启动子控制下,并受到cI857阻遏蛋白的调控。在30℃时pL启动子受阻遏不表达,42℃时诱导表达λ-Red同源重组所需的三个蛋白。经过15min诱导之后的细胞放于4℃保存,防止诱导的蛋白降解。Before transformation or transfection, E. coli cells were grown to a certain concentration at 30°C and induced at 42°C. The λ-Red homologous recombination system on the cell genome is under the control of the pL promoter and is regulated by the cI857 repressor protein. At 30°C, the pL promoter is repressed and does not express, and at 42°C, the expression of the three proteins required for homologous recombination of λ-Red is induced. After 15 minutes of induction, the cells were stored at 4°C to prevent the degradation of induced proteins.
培养基需要置换成转化介质,去除其中的离子。此过程可以采用的方式包括但不限于离心法,膜过滤法等。The medium needs to be replaced with transformation medium to remove ions. The methods that can be used in this process include but are not limited to centrifugation, membrane filtration and so on.
本发明为了在大肠杆菌基因组上实现较高的突变率并对一个或多个蛋白质基因进行突变,通过迭代λ-Red同源重组的策略,达到对蛋白质进化的目的。此方法可以对基因组上单一基因进行进化,也可以同时对多个基因进行修饰,并耦合筛选,寻找出多个突变蛋白协同作用所达到的最佳效果。In order to achieve a higher mutation rate on the Escherichia coli genome and mutate one or more protein genes, the present invention achieves the purpose of protein evolution through iterative λ-Red homologous recombination strategy. This method can evolve a single gene on the genome, or modify multiple genes at the same time, and couple screening to find out the best effect achieved by the synergistic effect of multiple mutant proteins.
本发明所提供的利用迭代同源重组进化目标蛋白质的新方法是有效获得所需蛋白质突变的方法,比以往的方法更加简便、高效。The new method of evolving target protein by iterative homologous recombination provided by the present invention is a method for effectively obtaining desired protein mutation, which is simpler and more efficient than previous methods.
本发明所提供的一种利用迭代同源重组体内进化目标蛋白质的新方法,通过突变大肠杆菌基因组上1-脱氧-D-木酮糖-5-磷酸合成酶(DXS)基因,提高大肠杆菌产番茄红素的水平。通过筛选得到5个1-脱氧-D-木酮糖-5-磷酸合成酶的突变体,其基因序列选自序列表第SEQ ID NO.5、NO.7、NO.9、NO.11、NO.13序列中的一种,分别提高了相应大肠杆菌合成番茄红素水平50%-300%。The present invention provides a new method for in vivo evolution of target proteins by iterative homologous recombination, through mutation of the 1-deoxy-D-xylulose-5-phosphate synthase (DXS) gene on the E. Lycopene levels. 5 mutants of 1-deoxy-D-xylulose-5-phosphate synthetase were obtained by screening, the gene sequences of which were selected from the sequence table SEQ ID NO.5, NO.7, NO.9, NO.11, NO . One of the 13 sequences respectively increases the level of lycopene synthesized by corresponding Escherichia coli by 50%-300%.
本发明所提供的一种利用迭代同源重组体内进化目标蛋白质的新方法,通过突变大肠杆菌基因组上σs因子(Rpos)基因,提高大肠杆菌产番茄红素的水平。通过筛选得到2个σs因子突变体,其序列选自序列表第SEQ ID NO.19、NO.21序列中的一种,分别提高了相应大肠杆菌合成番茄红素水平80%和205%。The present invention provides a new method for in vivo evolution of a target protein by iterative homologous recombination, through mutation of the σ s factor (Rpos) gene on the Escherichia coli genome, the level of lycopene produced by the Escherichia coli is increased. Two σ s factor mutants were obtained through screening, and their sequences were selected from one of the sequences of SEQ ID NO.19 and NO.21 in the sequence table, which respectively increased the levels of lycopene synthesized by corresponding Escherichia coli by 80% and 205%.
附图说明Description of drawings
图1:本发明流程示意图。其中,Gene:基因;Error-Prone PCR:易错PCR;SinglePrimer PCR:单链PCR;DNase I Digestion:DNase I酶切;cycles of Recombination:多次重组;Genome:基因组;E.coli:大肠杆菌。Fig. 1: schematic flow chart of the present invention. Among them, Gene: gene; Error-Prone PCR: error-prone PCR; SinglePrimer PCR: single-stranded PCR; DNase I Digestion: DNase I digestion; cycles of Recombination: multiple recombination; Genome: genome; E.coli: Escherichia coli.
图2:野生型及含DXS突变体的大肠杆菌菌株产番茄红素能力对比图;其中,Lycopene Production:番茄红素产量。Figure 2: Comparison chart of lycopene production capacity of wild-type and E. coli strains containing DXS mutants; among them, Lycopene Production: lycopene production.
图3:野生型及含Rpos突变体的大肠杆菌菌株产番茄红素能力对比图;其中,Lycopene Production:番茄红素产量。Figure 3: Comparison chart of lycopene production capacity of wild-type and E. coli strains containing Rpos mutants; wherein, Lycopene Production: lycopene production.
具体实施方式Detailed ways
本发明通过迭代同源重组的策略对大肠杆菌基因组上的结构基因进行突变,达到对功能蛋白原位进化的目的,以下把这种策略应用到两个直接在大肠杆菌基因组上进化蛋白质的例子中,证实了本发明为有效地获得所需蛋白质突变体的方法。本发明的操作流程如图1所示,两个例子分别为突变大肠杆菌基因组上1-脱氧-D-木酮糖-5-磷酸合成酶(DXS)基因和突变大肠杆菌基因组上σs因子(Rpos)基因提高大肠杆菌中产番茄红素的水平。The present invention mutates the structural genes on the Escherichia coli genome through the strategy of iterative homologous recombination to achieve the purpose of in situ evolution of functional proteins. The following applies this strategy to two examples of directly evolving proteins on the Escherichia coli genome , confirming that the present invention is a method for efficiently obtaining desired protein mutants. The operation process of the present invention is as shown in Figure 1, and two examples are respectively 1-deoxy-D-xylulose-5-phosphate synthase (DXS) gene on the mutant Escherichia coli genome and the σ s factor on the mutant Escherichia coli genome ( Rpos) gene increases the level of lycopene produced in Escherichia coli.
实施例1,大肠杆菌基因组上突变1-脱氧-D-木酮糖-5-磷酸合成酶(DXS)基因Example 1, Escherichia coli genome mutation 1-deoxy-D-xylulose-5-phosphate synthase (DXS) gene
1-脱氧-D-木酮糖-5-磷酸合成酶(DXS)是大肠杆菌异戊二烯合成途径中一个关键酶,以3-磷酸-甘油醛和丙酮酸为底物合成1-脱氧-D-木酮糖-5-磷酸,提高其催化效率可以增强异戊二烯代谢流,并最终提高番茄红素的产量。1-deoxy-D-xylulose-5-phosphate synthase (DXS) is a key enzyme in the isoprene synthesis pathway of Escherichia coli, which uses 3-phosphate-glyceraldehyde and pyruvate as substrates to synthesize 1-deoxy- D-xylulose-5-phosphate, improving its catalytic efficiency can enhance isoprene metabolic flux and ultimately increase lycopene production.
在大肠杆菌EcNR2(Harris H.Wang等.(2009)Nature.460:894-890)中引入外源基因crtE,crtB,crtI,使得该大肠杆菌可以产番茄红素。由于番茄红素具有可见的红色,可以根据菌落红色的深浅,高通量的筛选番茄红素产量提高的菌株。In Escherichia coli EcNR2 (Harris H. Wang et al. (2009) Nature. 460:894-890), exogenous genes crtE, crtB, crtI were introduced, so that the Escherichia coli could produce lycopene. Since lycopene has a visible red color, strains with increased lycopene production can be screened in high throughput according to the shade of red color of the colonies.
体外制备80-100nt dxs基因单链突变库:In vitro preparation of 80-100nt dxs gene single-stranded mutation library:
1、从大肠杆菌基因组上PCR得到dxs基因并与T载体连接,构建dxs基因的TA克隆载体。1. The dxs gene was obtained by PCR from the Escherichia coli genome and connected with a T vector to construct a TA cloning vector of the dxs gene.
2、用上引物dxs-for(SEQ ID NO.1)和5’端磷酸化的下引物dxs-rev(SEQ IDNO.2)两个引物以dxs基因的TA克隆载体为模板,在添加Mn2+的条件下,94℃45s,54℃50s,72℃2min循环30次做易错PCR,割胶纯化回收得到的双链核苷酸;2. Using the upper primer dxs-for (SEQ ID NO.1) and the lower primer dxs-rev (SEQ ID NO.2) phosphorylated at the 5' end, use the TA cloning vector of the dxs gene as a template, and add Mn 2 Under the condition of + , 94°C for 45s, 54°C for 50s, and 72°C for 2min were cycled 30 times to do error-prone PCR, and the double-stranded nucleotides obtained were purified and recovered by tapping rubber;
3、以上述含有突变的双链核苷酸为模板,在PCR体系中只添加上引物dxs-for(SEQID NO.1),94℃30s,53℃30s,72℃4min循环15次,制备得到dxs单链核苷酸;3. Using the above-mentioned double-stranded nucleotide containing mutation as a template, add only primer dxs-for (SEQID NO.1) to the PCR system, cycle 15 times at 94°C for 30s, 53°C for 30s, and 72°C for 4min to prepare dxs single-stranded nucleotide;
4、用Lambda EXO外切酶处理上述得到的PCR产物,把其中的dxs双链酶切成单链核苷酸;4. Treat the PCR product obtained above with Lambda EXO exonuclease, and cut the dxs double-strand enzyme into single-stranded nucleotides;
5、乙醇沉淀上述得到的酶切产物,得到dxs单链核苷酸;5. Ethanol precipitation of the enzyme-cut products obtained above to obtain dxs single-stranded nucleotides;
6、用DNase I酶切上述得到的单链核苷酸,并切胶回收80-100nt的单链核苷酸片段,构成单链突变库。6. Digest the single-stranded nucleotides obtained above with DNase I, and cut the gel to recover 80-100nt single-stranded nucleotide fragments to form a single-stranded mutation library.
迭代同源重组进化目标蛋白质:Iterative Homologous Recombination Evolution Target Protein:
1、在50mL LB培养基的摇瓶中接入从平板上挑取的大肠杆菌单菌落,并加入25μL卡那霉素,30℃下摇床过夜培养;1. Insert a single colony of Escherichia coli picked from the plate into a shake flask of 50mL LB medium, add 25μL of kanamycin, and culture overnight on a shaker at 30°C;
2、转接1%的菌液至2mL LB培养基的试管中,置于30℃下摇床培养2.5-3h至OD达到0.7左右;2. Transfer 1% of the bacterial solution to a test tube of 2mL LB medium, and place it in a shaking table at 30°C for 2.5-3h until the OD reaches about 0.7;
3、将试管置于42℃水浴中振荡培养15min,诱导λ-Red重组蛋白充分表达;将试管置于冰上5min;3. Place the test tube in a 42°C water bath and shake for 15 minutes to induce the full expression of λ-Red recombinant protein; place the test tube on ice for 5 minutes;
4、取1mL菌液移入1.5mL预冷离心管中,4℃下以13000r/min离心30s,弃去上清液,加入预冷的无菌水1ml重悬洗涤,弃去上清液,并用预冷的无菌水1ml重悬洗涤2次;4. Transfer 1mL of bacterial liquid into a 1.5mL pre-cooled centrifuge tube, centrifuge at 13000r/min for 30s at 4°C, discard the supernatant, add 1ml of pre-cooled sterile water to resuspend and wash, discard the supernatant, and use Pre-cooled sterile water 1ml to resuspend and wash twice;
5、去除上清液,并用100μL预冷无菌水重悬菌体,加入80-100nt dxs单链突变库;5. Remove the supernatant, resuspend the bacteria with 100 μL pre-cooled sterile water, and add the 80-100nt dxs single-stranded mutation library;
6、将上述混合物转移到2mm电转杯中,在电容25μF,电压2.5kV,电阻200Ω条件下进行电击;6. Transfer the above mixture to a 2mm electric cup, and perform electric shock under the conditions of a capacitance of 25μF, a voltage of 2.5kV, and a resistance of 200Ω;
7、迅速将准备好的1ml SOC培养基加入到电击杯中,轻轻吹打使细胞悬浮。将电击杯中的混合液转移到装有1ml培养基的试管中,放入30℃摇床培养,使细胞复苏;7. Quickly add the prepared 1ml SOC medium into the electric shock cup, and gently blow to suspend the cells. Transfer the mixture in the electric shock cup to a test tube containing 1ml of culture medium, and place it in a shaker at 30°C to revive the cells;
8、当细胞复苏到OD达到0.7左右时,重复上述步骤,进行第二轮转化。该转化过程一共进行4轮;8. When the cells recover to an OD of about 0.7, repeat the above steps for the second round of transformation. The conversion process was carried out for 4 rounds in total;
9、最后一轮电转后,复苏12h并涂板。在平板上筛选出红色较深的菌落。野生大肠杆菌菌株(野生型DXS基因序列SEQ ID NO.3;氨基酸序列SEQ ID NO.4)及含DXS突变体的大肠杆菌菌株(DXS-M1,DXS-M2,DXS-M3,DXS-M4,DXS-M5,DXS突变位点总结如表1所示)产番茄红素能力对比如图2所示。9. After the last round of electroporation, recover for 12 hours and paint the plate. Colonies with darker red color were screened out on the plate. Wild E. coli strain (wild-type DXS gene sequence SEQ ID NO.3; amino acid sequence SEQ ID NO.4) and E. coli strains containing DXS mutants (DXS-M1, DXS-M2, DXS-M3, DXS-M4, DXS-M5, the summary of DXS mutation sites are shown in Table 1) The comparison of lycopene production ability is shown in Figure 2.
表1 DXS突变位点总结Table 1 Summary of DXS mutation sites
从图中可以看出,各株含有DXS突变体的大肠杆菌菌株的番茄红素积累量相对于野生型菌株都得到了提高,幅度在50%-300%。It can be seen from the figure that the lycopene accumulation of each E. coli strain containing the DXS mutant has been increased relative to the wild-type strain, and the range is 50%-300%.
实施例2,大肠杆菌基因组上突变σs因子(Rpos)基因Embodiment 2, mutation σ s factor (Rpos) gene on Escherichia coli genome
σs因子(Rpos)在大肠杆菌细胞中发挥着至关重要的作用,可以应答不同环境压力。因为番茄红素的大量积累对大肠杆菌有毒性,突变σs因子可以使大肠杆菌更好地适应压力。The σ s factor (Rpos) plays a crucial role in Escherichia coli cells and can respond to different environmental stresses. Because large accumulations of lycopene are toxic to E. coli, mutation of the σ s factor can make E. coli better adapt to stress.
体外制备80-100nt rpos基因单链突变库:In vitro preparation of 80-100nt rpos gene single-stranded mutation library:
1、从大肠杆菌基因组上PCR得到Rpos基因并与T载体连接,构建Rpos基因的TA克隆载体。1. Obtain the Rpos gene from the Escherichia coli genome by PCR and connect it with the T vector to construct the TA cloning vector of the Rpos gene.
2、用上引物rpos-for(SEQ ID NO.15)和5’端磷酸化的下引物rpos-rev(SEQ IDNO.16)两个引物以rpos基因的TA克隆载体为模板,在添加Mn2+的条件下,94℃45s,54℃50s,72℃2min循环30次做易错PCR,割胶纯化回收得到的双链核苷酸;2. Using the upper primer rpos-for (SEQ ID NO.15) and the lower primer rpos-rev (SEQ ID NO.16) phosphorylated at the 5' end, use the TA cloning vector of the rpos gene as a template, and add Mn 2 Under the condition of + , 94°C for 45s, 54°C for 50s, and 72°C for 2min were cycled 30 times to do error-prone PCR, and the double-stranded nucleotides obtained were purified and recovered by tapping rubber;
3、以上述含有突变的双链核苷酸为模板,在PCR体系中只添加上引物rpos-for(SEQ ID NO.15),94℃30s,53℃30s,72℃4min循环15次,制备得到rpos单链核苷酸;3. Using the above-mentioned double-stranded nucleotide containing mutation as a template, add only primer rpos-for (SEQ ID NO.15) to the PCR system, cycle 15 times at 94°C for 30s, 53°C for 30s, and 72°C for 4min to prepare Get rpos single-stranded nucleotides;
4、用Lambda EXO外切酶处理上述得到的PCR产物,把其中的rpos双链酶切成单链核苷酸;4. Treat the PCR product obtained above with Lambda EXO exonuclease, and cut the rpos double-strand enzyme into single-stranded nucleotides;
5、乙醇沉淀上述得到的酶切产物,得到rpos单链核苷酸;5. Precipitate the enzyme-cut product obtained above with ethanol to obtain rpos single-stranded nucleotides;
6、用DNase I酶切上述得到的单链核苷酸,并切胶回收80-100nt的单链核苷酸片段,构成单链突变库。6. Digest the single-stranded nucleotides obtained above with DNase I, and cut the gel to recover 80-100nt single-stranded nucleotide fragments to form a single-stranded mutation library.
迭代同源重组进化目标蛋白质:Iterative Homologous Recombination Evolution Target Protein:
1、在50mL LB培养基的摇瓶中接入从平板上挑取的大肠杆菌单菌落,并加入25μL卡那霉素,30℃下摇床过夜培养;1. Insert a single colony of Escherichia coli picked from the plate into a shake flask of 50mL LB medium, add 25μL of kanamycin, and culture overnight on a shaker at 30°C;
2、转接1%的菌液至2mL LB培养基的试管中,置于30℃下摇床培养2.5-3h至OD达到0.7左右;2. Transfer 1% of the bacterial solution to a test tube of 2mL LB medium, and place it in a shaking table at 30°C for 2.5-3h until the OD reaches about 0.7;
3、将试管置于42℃水浴中振荡培养15min,诱导λ-Red重组蛋白充分表达;将试管置于冰上5min;3. Place the test tube in a 42°C water bath and shake for 15 minutes to induce the full expression of λ-Red recombinant protein; place the test tube on ice for 5 minutes;
4、取1mL菌液移入1.5mL预冷离心管中,4℃下以13000r/min离心30s,弃去上清液,加入预冷的无菌水1ml重悬洗涤,弃去上清液,并用预冷的无菌水1ml重悬洗涤2次;4. Transfer 1mL of bacterial liquid into a 1.5mL pre-cooled centrifuge tube, centrifuge at 13000r/min for 30s at 4°C, discard the supernatant, add 1ml of pre-cooled sterile water to resuspend and wash, discard the supernatant, and use Pre-cooled sterile water 1ml to resuspend and wash twice;
5、去除上清液,并用100μL预冷无菌水重悬菌体,加入80-100nt dxs单链突变库;5. Remove the supernatant, resuspend the bacteria with 100 μL pre-cooled sterile water, and add the 80-100nt dxs single-stranded mutation library;
6、将上述混合物转移到2mm电转杯中,在电容25μF,电压2.5kV,电阻200Ω条件下进行电击;6. Transfer the above mixture to a 2mm electric cup, and perform electric shock under the conditions of a capacitance of 25μF, a voltage of 2.5kV, and a resistance of 200Ω;
7、迅速将准备好的1ml SOC培养基加入到电击杯中,轻轻吹打使细胞悬浮。将电击杯中的混合液转移到装有1ml培养基的试管中,放入30℃摇床培养,使细胞复苏;7. Quickly add the prepared 1ml SOC medium into the electric shock cup, and gently blow to suspend the cells. Transfer the mixture in the electric shock cup to a test tube containing 1ml of culture medium, and place it in a shaker at 30°C to revive the cells;
8、当细胞复苏到OD达到0.7左右时,重复上述步骤,进行第二轮转化。该转化过程一共进行6轮;8. When the cells recover to an OD of about 0.7, repeat the above steps for the second round of transformation. The transformation process was carried out 6 rounds in total;
9、最后一轮电转后,复苏12h并涂板。在平板上筛选出红色较深的菌落。野生大肠杆菌菌株(野生型Rpos的基因序列SEQ ID NO.17;氨基酸序列SEQ ID NO.18)及含Rpos突变体的大肠杆菌菌株(Rpos-M1,Rpos-M2,Rpos突变位点总结如表2所示)产番茄红素能力对比如图2所示。9. After the last round of electroporation, recover for 12 hours and paint the plate. Colonies with darker red color were screened out on the plate. Wild Escherichia coli strain (gene sequence SEQ ID NO.17 of wild-type Rpos; amino acid sequence SEQ ID NO.18) and Escherichia coli strain containing Rpos mutant (Rpos-M1, Rpos-M2, Rpos mutation sites are summarized in the table 2) The comparison of lycopene producing capacity is shown in Figure 2.
表2 Rpos突变位点总结Table 2 Summary of Rpos mutation sites
从图中可以看出,各株含有Rpos突变体的大肠杆菌菌株的番茄红素积累量相对于野生型菌株都得到了提高,幅度分别为80%-205%。It can be seen from the figure that the lycopene accumulation of each Escherichia coli strain containing the Rpos mutant has been increased relative to the wild-type strain, and the ranges are 80%-205%, respectively.
序列:sequence:
SEQ ID NO.1上引物dxs-forPrimer dxs-for on SEQ ID NO.1
5’-GAGTTTTGATATTGCCAAATACCCGACCCTGGC-3’5'-GAGTTTTGATATTGCCAAATACCCGACCCTGGC-3'
SEQ ID NO.2 5’端磷酸化的下引物dxs-revThe lower primer dxs-rev phosphorylated at the 5' end of SEQ ID NO.2
5’-TTATGCCAGCCAGGCCTTGATTTTG-3’(5’端磷酸化)5'-TTATGCCAGCCAGGCCTTGATTTTG-3' (phosphorylated at the 5' end)
SEQ ID NO.3 DXS基因序列SEQ ID NO.3 DXS gene sequence
atgagttttgatattgccaaatacccgaccctggcactggtcgactccacccaggagttacgactgttgccgaaagagagtttaccgaaactctgcgacgaactgcgccgctatttactcgacagcgtgagccgttccagcgggcacttcgcctccgggctgggcacggtcgaactgaccgtggcgctgcactatgtctacaacaccccgtttgaccaattgatttgggatgtggggcatcaggcttatccgcataaaattttgaccggacgccgcgacaaaatcggcaccatccgtcagaaaggcggtctgcacccgttcccgtggcgcggcgaaagcgaatatgacgtattaagcgtcgggcattcatcaacctccatcagtgccggaattggtattgcggttgctgccgaaaaagaaggcaaaaatcgccgcaccgtctgtgtcattggcgatggcgcgattaccgcaggcatggcgtttgaagcgatgaatcacgcgggcgatatccgtcctgatatgctggtgattctcaacgacaatgaaatgtcgatttccgaaaatgtcggcgcgctcaacaaccatctggcacagctgctttccggtaagctttactcttcactgcgcgaaggcgggaaaaaagttttctctggcgtgccgccaattaaagagctgctcaaacgcaccgaagaacatattaaaggcatggtagtgcctggcacgttgtttgaagagctgggctttaactacatcggcccggtggacggtcacgatgtgctggggcttatcaccacgctaaagaacatgcgcgacctgaaaggcccgcagttcctgcatatcatgaccaaaaaaggtcgtggttatgaaccggcagaaaaagacccgatcactttccacgccgtgcctaaatttgatccctccagcggttgtttgccgaaaagtagcggcggtttgccgagctattcaaaaatctttggcgactggttgtgcgaaacggcagcgaaagacaacaagctgatggcgattactccggcgatgcgtgaaggttccggcatggtcgagttttcacgtaaattcccggatcgctacttcgacgtggcaattgccgagcaacacgcggtgacctttgctgcgggtctggcgattggtgggtacaaacccattgtcgcgatttactccactttcctgcaacgcgcctatgatcaggtgctgcatgacgtggcgattcaaaagcttccggtcctgttcgccatcgaccgcgcgggcattgttggtgctgacggtcaaacccatcagggtgcttttgatctctcttacctgcgctgcataccggaaatggtcattatgaccccgagcgatgaaaacgaatgtcgccagatgctctataccggctatcactataacgatggcccgtcagcggtgcgctacccgcgtggcaacgcggtcggcgtggaactgacgccgctggaaaaactaccaattggcaaaggcattgtgaagcgtcgtggcgagaaactggcgatccttaactttggtacgctgatgccagaagcggcgaaagtcgccgaatcgctgaacgccacgctggtcgatatgcgttttgtgaaaccgcttgatgaagcgttaattctggaaatggccgccagccatgaagcgctggtcaccgtagaagaaaacgccattatgggcggcgcaggcagcggcgtgaacgaagtgctgatggcccatcgtaaaccagtacccgtgctgaacattggcctgccggacttctttattccgcaaggaactcaggaagaaatgcgcgccgaactcggcctcgatgccgctggtatggaagccaaaatcaaggcctggctggcataaatgagttttgatattgccaaatacccgaccctggcactggtcgactccacccaggagttacgactgttgccgaaagagagtttaccgaaactctgcgacgaactgcgccgctatttactcgacagcgtgagccgttccagcgggcacttcgcctccgggctgggcacggtcgaactgaccgtggcgctgcactatgtctacaacaccccgtttgaccaattgatttgggatgtggggcatcaggcttatccgcataaaattttgaccggacgccgcgacaaaatcggcaccatccgtcagaaaggcggtctgcacccgttcccgtggcgcggcgaaagcgaatatgacgtattaagcgtcgggcattcatcaacctccatcagtgccggaattggtattgcggttgctgccgaaaaagaaggcaaaaatcgccgcaccgtctgtgtcattggcgatggcgcgattaccgcaggcatggcgtttgaagcgatgaatcacgcgggcgatatccgtcctgatatgctggtgattctcaacgacaatgaaatgtcgatttccgaaaatgtcggcgcgctcaacaaccatctggcacagctgctttccggtaagctttactcttcactgcgcgaaggcgggaaaaaagttttctctggcgtgccgccaattaaagagctgctcaaacgcaccgaagaacatattaaaggcatggtagtgcctggcacgttgtttgaagagctgggctttaactacatcggcccggtggacggtcacgatgtgctggggcttatcaccacgctaaagaacatgcgcgacctgaaaggcccgcagttcctgcatatcatgaccaaaaaaggtcgtggttatgaaccggcagaaaaagacccgatcactttccacgccgtgcctaaatttgatccctccagcggttgtttgccgaaaagtagcggcggtttgccgagctattcaaaaatctttggcgactggttgtgcgaaacggcag cgaaagacaacaagctgatggcgattactccggcgatgcgtgaaggttccggcatggtcgagttttcacgtaaattcccggatcgctacttcgacgtggcaattgccgagcaacacgcggtgacctttgctgcgggtctggcgattggtgggtacaaacccattgtcgcgatttactccactttcctgcaacgcgcctatgatcaggtgctgcatgacgtggcgattcaaaagcttccggtcctgttcgccatcgaccgcgcgggcattgttggtgctgacggtcaaacccatcagggtgcttttgatctctcttacctgcgctgcataccggaaatggtcattatgaccccgagcgatgaaaacgaatgtcgccagatgctctataccggctatcactataacgatggcccgtcagcggtgcgctacccgcgtggcaacgcggtcggcgtggaactgacgccgctggaaaaactaccaattggcaaaggcattgtgaagcgtcgtggcgagaaactggcgatccttaactttggtacgctgatgccagaagcggcgaaagtcgccgaatcgctgaacgccacgctggtcgatatgcgttttgtgaaaccgcttgatgaagcgttaattctggaaatggccgccagccatgaagcgctggtcaccgtagaagaaaacgccattatgggcggcgcaggcagcggcgtgaacgaagtgctgatggcccatcgtaaaccagtacccgtgctgaacattggcctgccggacttctttattccgcaaggaactcaggaagaaatgcgcgccgaactcggcctcgatgccgctggtatggaagccaaaatcaaggcctggctggcataa
SEQ ID NO.4 DXS氨基酸序列SEQ ID NO.4 DXS amino acid sequence
msfdiakyptlalvdstqelrllpkeslpklcdelrrylldsvsrssghfasglgtveltvalhyvyntpfdqliwdvghqayphkiltgrrdkigtirqkgglhpfpwrgeseydvlsvghsstsisagigiavaaekegknrrtvcvigdgaitagmafeamnhagdirpdmlvilndnemsisenvgalnnhlaqllsgklysslreggkkvfsgvppikellkrteehikgmvvpgtlfeelgfnyigpvdghdvlglittlknmrdlkgpqflhimtkkgrgyepaekdpitfhavpkfdpssgclpkssgglpsyskifgdwlcetaakdnklmaitpamregsgmvefsrkfpdryfdvaiaeqhavtfaaglaiggykpivaiystflqraydqvlhdvaiqklpvlfaidragivgadgqthqgafdlsylrcipemvimtpsdenecrqmlytgyhyndgpsavryprgnavgveltpleklpigkgivkrrgeklailnfgtlmpeaakvaeslnatlvdmrfvkpldealilemaashealvtveenaimggagsgvnevlmahrkpvpvlniglpdffipqgtqeemraelgldaagmeakikawlamsfdiakyptlalvdstqelrllpkeslpklcdelrrylldsvsrssghfasglgtveltvalhyvyntpfdqliwdvghqayphkiltgrrdkigtirqkgglhpfpwrgeseydvlsvghsstsisagigiavaaekegknrrtvcvigdgaitagmafeamnhagdirpdmlvilndnemsisenvgalnnhlaqllsgklysslreggkkvfsgvppikellkrteehikgmvvpgtlfeelgfnyigpvdghdvlglittlknmrdlkgpqflhimtkkgrgyepaekdpitfhavpkfdpssgclpkssgglpsyskifgdwlcetaakdnklmaitpamregsgmvefsrkfpdryfdvaiaeqhavtfaaglaiggykpivaiystflqraydqvlhdvaiqklpvlfaidragivgadgqthqgafdlsylrcipemvimtpsdenecrqmlytgyhyndgpsavryprgnavgveltpleklpigkgivkrrgeklailnfgtlmpeaakvaeslnatlvdmrfvkpldealilemaashealvtveenaimggagsgvnevlmahrkpvpvlniglpdffipqgtqeemraelgldaagmeakikawla
SEQ ID NO.5 DXS-M1基因序列SEQ ID NO.5 DXS-M1 gene sequence
atgagttttgatattgccaaatacccgaccctggcactggtcgactccacccaggagttacgactgttgccgaaagagagtttaccgaaactctgcgacgaactgcgccgctatttactcgacagcgtgagccgttccagcgggcacttcgcctccgggctgggcacggtcgaactgaccgtggcgctgcactatgtctacaacaccccgtttgaccaattgatttgggatgtggggcatcaggcttatccgcataaaattttgaccggacgccgcgacaaaatcggcaccatccgtcagaaaggcggtctgcacccgttcccgtggcgcggcgaaagcgaatatgacgtattaagcgtcgggcattcatcaacctccatcagtgccggaattggtattgcggttgctgccgaaaaagaaggcaaaaatcgccgcaccgtctgtgtcattggcgatggcgcgattaccgcaggcatggcgtttgaagcgatgaatcacgcgggcgatatccgtcctgatatgctggtgattctcaacgacaatgaaatgtcgatttccgaaaatgtcggcgcgctcaacaaccatctggcacagctgctttccggtaagctttactcttcactgcgcgaaggcgggaaaaaagttttctctggcgtgccgccaattaaagagctgcccaaacgcaccgaagaacatattaaaggcatggtagtgcctggcacgttgtttgaagagctgggctttaactacatcggcccggtggacggtcacgatgtgctggggcttatcaccacgctaaagaacatgcgcgacctgaaaggcccgcagttcctgcatatcatgaccaaaaaaggtcgtggttatgaaccggcagaaaaagacccgatcactttccacgccgtgcctaaatttgatccctccagcggttgtttgccgaaaagtagcggcggtttgccgagctattcaaaaatctttggcgactggttgtgcgaaacggcagcgaaagacaacaagctgatggcgattactccggcgatgcgtgaaggttccggcatggtcgagttttcacgtaaattcccggatcgctacttcgacgtggcaattgccgagcaacacgcggtgacctttgctgcgggtctggcgattggtgggtacaaacccattgtcgcgatttactccactttcctgcaacgcgcctatgatcaggtgctgcatgacgtggcgattcaaaagcttccggtcctgttcgccatcgaccgcgcgggcattgttggtgctgacggtcaaacccatcagggtgcttttgatctctcttacctgcgctgcataccggaaatggtcattatgaccccgagcgatgaaaacgaatgtcgccagatgctctataccggctatcactataacgatggcccgtcagcggtgcgctacccgcgtggcaacgcggtcggcgtggaactgacgccgctggaaaaactaccaattggcaaaggcattgtgaagcgtcgtggcgagaaactggcgatccttaactttggtacgctgatgccagaagcggcgaaagtcgccgaatcgctgaacgccacgctggtcgatatgcgttttgtgaaaccgcttgatgaagcgttaattctggaaatggccgccagccatgaagcgctggtcaccgtagaagaaaacgccattatgggcggcgcaggcagcggcgtgaacgaagtgctgatggcccatcgtaaaccagtacccgtgctgaacattggcctgccggacttctttattccgcaaggaactcaggaagaaatgcgcgccgaactcggcctcgatgccgctggtatggaagccaaaatcaaggcctggctggcataaatgagttttgatattgccaaatacccgaccctggcactggtcgactccacccaggagttacgactgttgccgaaagagagtttaccgaaactctgcgacgaactgcgccgctatttactcgacagcgtgagccgttccagcgggcacttcgcctccgggctgggcacggtcgaactgaccgtggcgctgcactatgtctacaacaccccgtttgaccaattgatttgggatgtggggcatcaggcttatccgcataaaattttgaccggacgccgcgacaaaatcggcaccatccgtcagaaaggcggtctgcacccgttcccgtggcgcggcgaaagcgaatatgacgtattaagcgtcgggcattcatcaacctccatcagtgccggaattggtattgcggttgctgccgaaaaagaaggcaaaaatcgccgcaccgtctgtgtcattggcgatggcgcgattaccgcaggcatggcgtttgaagcgatgaatcacgcgggcgatatccgtcctgatatgctggtgattctcaacgacaatgaaatgtcgatttccgaaaatgtcggcgcgctcaacaaccatctggcacagctgctttccggtaagctttactcttcactgcgcgaaggcgggaaaaaagttttctctggcgtgccgccaattaaagagctgcccaaacgcaccgaagaacatattaaaggcatggtagtgcctggcacgttgtttgaagagctgggctttaactacatcggcccggtggacggtcacgatgtgctggggcttatcaccacgctaaagaacatgcgcgacctgaaaggcccgcagttcctgcatatcatgaccaaaaaaggtcgtggttatgaaccggcagaaaaagacccgatcactttccacgccgtgcctaaatttgatccctccagcggttgtttgccgaaaagtagcggcggtttgccgagctattcaaaaatctttggcgactggttgtgcgaaacggcag cgaaagacaacaagctgatggcgattactccggcgatgcgtgaaggttccggcatggtcgagttttcacgtaaattcccggatcgctacttcgacgtggcaattgccgagcaacacgcggtgacctttgctgcgggtctggcgattggtgggtacaaacccattgtcgcgatttactccactttcctgcaacgcgcctatgatcaggtgctgcatgacgtggcgattcaaaagcttccggtcctgttcgccatcgaccgcgcgggcattgttggtgctgacggtcaaacccatcagggtgcttttgatctctcttacctgcgctgcataccggaaatggtcattatgaccccgagcgatgaaaacgaatgtcgccagatgctctataccggctatcactataacgatggcccgtcagcggtgcgctacccgcgtggcaacgcggtcggcgtggaactgacgccgctggaaaaactaccaattggcaaaggcattgtgaagcgtcgtggcgagaaactggcgatccttaactttggtacgctgatgccagaagcggcgaaagtcgccgaatcgctgaacgccacgctggtcgatatgcgttttgtgaaaccgcttgatgaagcgttaattctggaaatggccgccagccatgaagcgctggtcaccgtagaagaaaacgccattatgggcggcgcaggcagcggcgtgaacgaagtgctgatggcccatcgtaaaccagtacccgtgctgaacattggcctgccggacttctttattccgcaaggaactcaggaagaaatgcgcgccgaactcggcctcgatgccgctggtatggaagccaaaatcaaggcctggctggcataa
SEQ ID NO.6 DXS-M1氨基酸序列SEQ ID NO.6 DXS-M1 amino acid sequence
msfdiakyptlalvdstqelrllpkeslpklcdelrrylldsvsrssghfasglgtveltvalhyvyntpfdqliwdvghqayphkiltgrrdkigtirqkgglhpfpwrgeseydvlsvghsstsisagigiavaaekegknrrtvcvigdgaitagmafeamnhagdirpdmlvilndnemsisenvgalnnhlaqllsgklysslreggkkvfsgvppikelpkrteehikgmvvpgtlfeelgfnyigpvdghdvlglittlknmrdlkgpqflhimtkkgrgyepaekdpitfhavpkfdpssgclpkssgglpsyskifgdwlcetaakdnklmaitpamregsgmvefsrkfpdryfdvaiaeqhavtfaaglaiggykpivaiystflqraydqvlhdvaiqklpvlfaidragivgadgqthqgafdlsylrcipemvimtpsdenecrqmlytgyhyndgpsavryprgnavgveltpleklpigkgivkrrgeklailnfgtlmpeaakvaeslnatlvdmrfvkpldealilemaashealvtveenaimggagsgvnevlmahrkpvpvlniglpdffipqgtqeemraelgldaagmeakikawlamsfdiakyptlalvdstqelrllpkeslpklcdelrrylldsvsrssghfasglgtveltvalhyvyntpfdqliwdvghqayphkiltgrrdkigtirqkgglhpfpwrgeseydvlsvghsstsisagigiavaaekegknrrtvcvigdgaitagmafeamnhagdirpdmlvilndnemsisenvgalnnhlaqllsgklysslreggkkvfsgvppikelpkrteehikgmvvpgtlfeelgfnyigpvdghdvlglittlknmrdlkgpqflhimtkkgrgyepaekdpitfhavpkfdpssgclpkssgglpsyskifgdwlcetaakdnklmaitpamregsgmvefsrkfpdryfdvaiaeqhavtfaaglaiggykpivaiystflqraydqvlhdvaiqklpvlfaidragivgadgqthqgafdlsylrcipemvimtpsdenecrqmlytgyhyndgpsavryprgnavgveltpleklpigkgivkrrgeklailnfgtlmpeaakvaeslnatlvdmrfvkpldealilemaashealvtveenaimggagsgvnevlmahrkpvpvlniglpdffipqgtqeemraelgldaagmeakikawla
SEQ ID NO.7 DXS-M2基因序列SEQ ID NO.7 DXS-M2 gene sequence
atgagttttgatattgccaaatacccgaccctggcactggtcgactccacccaggagttacgactgttgccgaaagagagtttaccgaaactctgcgacgaactgcgccgctatttactcgacagcgtgagccgttccagcgggcacttcgcctccgggctgggcacggtcgaactgaccgtggcgctgcactatgtctacaacaccccgtttgaccaattgatttgggatgtggggcatcaggcttatccgcataaaattttgaccggacgccgcgacaaaatcggcaccatccgtcagaaaggcggtctgcacccgttcccgtggcgcggcgaaagcgaatatgacgtattaagcgtcgggcattcatcaacctccatcagtgccggaattggtattgcggttgctgccgaaaaagaaggcaaaaatcgccgcaccgtctgtgtcattggcgatggcgcgattaccgcaggcatggcgtttgaagcgatgaatcacgcgggcgatatccgtcctgatatgctggtgattctcaacgacaatgaaatgtcgatttccgaaaatgtcggcgcgctcaacaaccatctggcacagctgctttccggtaagccttactcttcactgcgcgaaggcgggaaaaaagttttctctggcgtgccgccaattaaagagctgctcaaacgcaccgacgaacatattaaaggcatggtagtgcctggcacgttgtttgaagagctgggctttaactacatcggcccggtggacggtcacgatgtgctggggcttatcaccacgctaaagaacatgcgcgacctgaaaggcccgcagttcctgcatatcatgaccaaaaaaggtcgtggttatgaaccggcagaaaaagacccgatcactttccacgccgtgcctaaatttgatccctccagcggttgtttgccgaaaagtagcggcggtttgccgagctattcaaaaatctttggcgactggttgtgcgaaacggcagcgaaagacaacaagctgatggcgattactccggcgatgcgtgaaggttccggcatggtcgagttttcacgtaaattcccggatcgctacttcgacgtggcaattgccgagcaacacgcggtgacctttgctgcgggtctggcgattggtgggtacaaacccattgtcgcgatttactccactttcctgcaacgcgcctatgatcaggtgctgcatgacgtggcgattcaaaagcttccggtcctgttcgccatcgaccgcgcgggcattgttggtgctgacggtcaaacccatcagggtgcttttgatctctcttacctgcgctgcataccggaaatggtcattatgaccccgagcgatgaaaacgaatgtcgccagatgctctataccggctatcactataacgatggcccgtcagcggtgcgctacccgcgtggcaacgcggtcggcgtggaactgacgccgctggaaaaactaccaattggcaaaggcattgtgaagcgtcgtggcgagaaactggcgatccttaactttggtacgctgatgccagaagcggcgaaagtcgccgaatcgctgaacgccacgctggtcgatatgcgttttgtgaaaccgcttgatgaagcgttaattctggaaatggccgccagccatgaagcgctggtcaccgtagaagaaaacgccattatgggcggcgcaggcagcggcgtgaacgaagtgctgatggcccatcgtaaaccagtacccgtgctgaacattggcctgccggacttctttattccgcaaggaactcaggaagaaatgcgcgccgaactcggcctcgatgccgctggtatggaagccaaaatcaaggcctggctggcataaatgagttttgatattgccaaatacccgaccctggcactggtcgactccacccaggagttacgactgttgccgaaagagagtttaccgaaactctgcgacgaactgcgccgctatttactcgacagcgtgagccgttccagcgggcacttcgcctccgggctgggcacggtcgaactgaccgtggcgctgcactatgtctacaacaccccgtttgaccaattgatttgggatgtggggcatcaggcttatccgcataaaattttgaccggacgccgcgacaaaatcggcaccatccgtcagaaaggcggtctgcacccgttcccgtggcgcggcgaaagcgaatatgacgtattaagcgtcgggcattcatcaacctccatcagtgccggaattggtattgcggttgctgccgaaaaagaaggcaaaaatcgccgcaccgtctgtgtcattggcgatggcgcgattaccgcaggcatggcgtttgaagcgatgaatcacgcgggcgatatccgtcctgatatgctggtgattctcaacgacaatgaaatgtcgatttccgaaaatgtcggcgcgctcaacaaccatctggcacagctgctttccggtaagccttactcttcactgcgcgaaggcgggaaaaaagttttctctggcgtgccgccaattaaagagctgctcaaacgcaccgacgaacatattaaaggcatggtagtgcctggcacgttgtttgaagagctgggctttaactacatcggcccggtggacggtcacgatgtgctggggcttatcaccacgctaaagaacatgcgcgacctgaaaggcccgcagttcctgcatatcatgaccaaaaaaggtcgtggttatgaaccggcagaaaaagacccgatcactttccacgccgtgcctaaatttgatccctccagcggttgtttgccgaaaagtagcggcggtttgccgagctattcaaaaatctttggcgactggttgtgcgaaacggcag cgaaagacaacaagctgatggcgattactccggcgatgcgtgaaggttccggcatggtcgagttttcacgtaaattcccggatcgctacttcgacgtggcaattgccgagcaacacgcggtgacctttgctgcgggtctggcgattggtgggtacaaacccattgtcgcgatttactccactttcctgcaacgcgcctatgatcaggtgctgcatgacgtggcgattcaaaagcttccggtcctgttcgccatcgaccgcgcgggcattgttggtgctgacggtcaaacccatcagggtgcttttgatctctcttacctgcgctgcataccggaaatggtcattatgaccccgagcgatgaaaacgaatgtcgccagatgctctataccggctatcactataacgatggcccgtcagcggtgcgctacccgcgtggcaacgcggtcggcgtggaactgacgccgctggaaaaactaccaattggcaaaggcattgtgaagcgtcgtggcgagaaactggcgatccttaactttggtacgctgatgccagaagcggcgaaagtcgccgaatcgctgaacgccacgctggtcgatatgcgttttgtgaaaccgcttgatgaagcgttaattctggaaatggccgccagccatgaagcgctggtcaccgtagaagaaaacgccattatgggcggcgcaggcagcggcgtgaacgaagtgctgatggcccatcgtaaaccagtacccgtgctgaacattggcctgccggacttctttattccgcaaggaactcaggaagaaatgcgcgccgaactcggcctcgatgccgctggtatggaagccaaaatcaaggcctggctggcataa
SEQ ID NO.8 DXS-M2氨基酸序列SEQ ID NO.8 DXS-M2 amino acid sequence
msfdiakyptlalvdstqelrllpkeslpklcdelrrylldsvsrssghfasglgtveltvalhyvyntpfdqliwdvghqayphkiltgrrdkigtirqkgglhpfpwrgeseydvlsvghsstsisagigiavaaekegknrrtvcvigdgaitagmafeamnhagdirpdmlvilndnemsisenvgalnnhlaqllsgkpysslreggkkvfsgvppikellkrtdehikgmvvpgtlfeelgfnyigpvdghdvlglittlknmrdlkgpqflhimtkkgrgyepaekdpitfhavpkfdpssgclpkssgglpsyskifgdwlcetaakdnklmaitpamregsgmvefsrkfpdryfdvaiaeqhavtfaaglaiggykpivaiystflqraydqvlhdvaiqklpvlfaidragivgadgqthqgafdlsylrcipemvimtpsdenecrqmlytgyhyndgpsavryprgnavgveltpleklpigkgivkrrgeklailnfgtlmpeaakvaeslnatlvdmrfvkpldealilemaashealvtveenaimggagsgvnevlmahrkpvpvlniglpdffipqgtqeemraelgldaagmeakikawlamsfdiakyptlalvdstqelrllpkeslpklcdelrrylldsvsrssghfasglgtveltvalhyvyntpfdqliwdvghqayphkiltgrrdkigtirqkgglhpfpwrgeseydvlsvghsstsisagigiavaaekegknrrtvcvigdgaitagmafeamnhagdirpdmlvilndnemsisenvgalnnhlaqllsgkpysslreggkkvfsgvppikellkrtdehikgmvvpgtlfeelgfnyigpvdghdvlglittlknmrdlkgpqflhimtkkgrgyepaekdpitfhavpkfdpssgclpkssgglpsyskifgdwlcetaakdnklmaitpamregsgmvefsrkfpdryfdvaiaeqhavtfaaglaiggykpivaiystflqraydqvlhdvaiqklpvlfaidragivgadgqthqgafdlsylrcipemvimtpsdenecrqmlytgyhyndgpsavryprgnavgveltpleklpigkgivkrrgeklailnfgtlmpeaakvaeslnatlvdmrfvkpldealilemaashealvtveenaimggagsgvnevlmahrkpvpvlniglpdffipqgtqeemraelgldaagmeakikawla
SEQ ID NO.9 DXS-M3基因序列SEQ ID NO.9 DXS-M3 gene sequence
atgagttttgatattgccaaatacccgaccctggcactggtcgactccacccaggagttacgactgtcgccgaaagagagtttaccgaaactctgcgacgaactgcgccgctatttactcgacagcgtgagccgttccagcgggcacttcgcctccgggctgggcacggtcgaactgaccgtggcgctgcactatgtctacaacaccccgtttgaccaattgatttgggatgtggggcatcaggcttatccgcataaaattttgaccggacgccgcgacaaaatcggcaccatccgtcagaaaggcggtctgcacccgttcccgtggcgcggcgaaagcgaatatgacgtattaagcgtcgggcattcatcaacctccatcagtgccggaactggtattgcggttgctgccgaaaaagaaggcaaaaatcgccgcaccgtctgtgtcattggcgatggcgcgattaccgcaggcatggcgtttgaagcgatgaatcacgcgggcgatatccgtcctgatatgctggtgattctcaacgacaatgaaatgtcgatttccgaaaatgtcggcgcgctcaacaaccatctggcacagctgctttccggtaagctttactcttcactgcgcgaaggcgggaaaaaagttttctctggcgcgccgccaattaaagagctgctcaaacgcaccgaagaacatattaaaggcatggtagtgcctggcacgttgtttgaagagctgggctttaactacatcggcccggtggacggtcacgatgtgctggggcttatcaccacgctaaagaacatgcgcgacctgaaaggcccgcagttcctgcatatcatgaccaaaaaaggtcgtggttatgaaccggcagaaaaagacccgatcactttccacgccgtgcctaaatttgatccctccagcggttgtttgccgaaaagtagcggcggtttgccgagctattcaaaaatctttggcgactggttgtgcgaaacggcagcgaaagacaacaagctgatggcgattactccggcgatgcgtgaaggttccggcatggtcgagttttcacgtaaattcccggatcgctacttcgacgtggcaattgccgagcaacacgcggtgacctttgctgcgggtctggcgattggtgggtacaaacccattgtcgcgatttactccactttcctgcaacgcgcctatgatcaggtgctgcatgacgtggcgattcaaaagcttccggtcctgttcgccatcgaccgcgcgggcattgttggtgctgacggtcaaacccatcagggtgcttttgatctctcttacctgcgctgcataccggaaatggtcattatgaccccgagcgatgaaaacgaatgtcgccagatgctctataccggctatcactataacgatggcccgtcagcggtgcgctacccgcgtggcaacgcggtcggcgtggaactgacgccgctggaaaaactaccaattggcaaaggcattgtgaagcgtcgtggcgagaaactggcgatccttaactttggtacgctgatgccagaagcggcgaaagtcgccgaatcgctgaacgccacgctggtcgatatgcgttttgtgaaaccgcttgatgaagcgttaattctggaaatggccgccagccatgaagcgctggtcaccgtagaagaaaacgccattatgggcggcgcaggcagcggcgtgaacgaagtgctgatggcccatcgtaaaccagtacccgtgctgaacattggcctgccggacttctttattccgcaaggaactcaggaagaaatgcgcgccgaactcggcctcgatgccgctggtatggaagccaaaatcaaggcctggctggcataaatgagttttgatattgccaaatacccgaccctggcactggtcgactccacccaggagttacgactgtcgccgaaagagagtttaccgaaactctgcgacgaactgcgccgctatttactcgacagcgtgagccgttccagcgggcacttcgcctccgggctgggcacggtcgaactgaccgtggcgctgcactatgtctacaacaccccgtttgaccaattgatttgggatgtggggcatcaggcttatccgcataaaattttgaccggacgccgcgacaaaatcggcaccatccgtcagaaaggcggtctgcacccgttcccgtggcgcggcgaaagcgaatatgacgtattaagcgtcgggcattcatcaacctccatcagtgccggaactggtattgcggttgctgccgaaaaagaaggcaaaaatcgccgcaccgtctgtgtcattggcgatggcgcgattaccgcaggcatggcgtttgaagcgatgaatcacgcgggcgatatccgtcctgatatgctggtgattctcaacgacaatgaaatgtcgatttccgaaaatgtcggcgcgctcaacaaccatctggcacagctgctttccggtaagctttactcttcactgcgcgaaggcgggaaaaaagttttctctggcgcgccgccaattaaagagctgctcaaacgcaccgaagaacatattaaaggcatggtagtgcctggcacgttgtttgaagagctgggctttaactacatcggcccggtggacggtcacgatgtgctggggcttatcaccacgctaaagaacatgcgcgacctgaaaggcccgcagttcctgcatatcatgaccaaaaaaggtcgtggttatgaaccggcagaaaaagacccgatcactttccacgccgtgcctaaatttgatccctccagcggttgtttgccgaaaagtagcggcggtttgccgagctattcaaaaatctttggcgactggttgtgcgaaacggcag cgaaagacaacaagctgatggcgattactccggcgatgcgtgaaggttccggcatggtcgagttttcacgtaaattcccggatcgctacttcgacgtggcaattgccgagcaacacgcggtgacctttgctgcgggtctggcgattggtgggtacaaacccattgtcgcgatttactccactttcctgcaacgcgcctatgatcaggtgctgcatgacgtggcgattcaaaagcttccggtcctgttcgccatcgaccgcgcgggcattgttggtgctgacggtcaaacccatcagggtgcttttgatctctcttacctgcgctgcataccggaaatggtcattatgaccccgagcgatgaaaacgaatgtcgccagatgctctataccggctatcactataacgatggcccgtcagcggtgcgctacccgcgtggcaacgcggtcggcgtggaactgacgccgctggaaaaactaccaattggcaaaggcattgtgaagcgtcgtggcgagaaactggcgatccttaactttggtacgctgatgccagaagcggcgaaagtcgccgaatcgctgaacgccacgctggtcgatatgcgttttgtgaaaccgcttgatgaagcgttaattctggaaatggccgccagccatgaagcgctggtcaccgtagaagaaaacgccattatgggcggcgcaggcagcggcgtgaacgaagtgctgatggcccatcgtaaaccagtacccgtgctgaacattggcctgccggacttctttattccgcaaggaactcaggaagaaatgcgcgccgaactcggcctcgatgccgctggtatggaagccaaaatcaaggcctggctggcataa
SEQ ID NO.10 DXS-M3氨基酸序列SEQ ID NO.10 DXS-M3 amino acid sequence
msfdiakyptlalvdstqelrlspkeslpklcdelrrylldsvsrssghfasglgtveltvalhyvyntpfdqliwdvghqayphkiltgrrdkigtirqkgglhpfpwrgeseydvlsvghsstsisagtgiavaaekegknrrtvcvigdgaitagmafeamnhagdirpdmlvilndnemsisenvgalnnhlaqllsgklysslreggkkvfsgappikellkrteehikgmvvpgtlfeelgfnyigpvdghdvlglittlknmrdlkgpqflhimtkkgrgyepaekdpitfhavpkfdpssgclpkssgglpsyskifgdwlcetaakdnklmaitpamregsgmvefsrkfpdryfdvaiaeqhavtfaaglaiggykpivaiystflqraydqvlhdvaiqklpvlfaidragivgadgqthqgafdlsylrcipemvimtpsdenecrqmlytgyhyndgpsavryprgnavgveltpleklpigkgivkrrgeklailnfgtlmpeaakvaeslnatlvdmrfvkpldealilemaashealvtveenaimggagsgvnevlmahrkpvpvlniglpdffipqgtqeemraelgldaagmeakikawlamsfdiakyptlalvdstqelrlspkeslpklcdelrrylldsvsrssghfasglgtveltvalhyvyntpfdqliwdvghqayphkiltgrrdkigtirqkgglhpfpwrgeseydvlsvghsstsisagtgiavaaekegknrrtvcvigdgaitagmafeamnhagdirpdmlvilndnemsisenvgalnnhlaqllsgklysslreggkkvfsgappikellkrteehikgmvvpgtlfeelgfnyigpvdghdvlglittlknmrdlkgpqflhimtkkgrgyepaekdpitfhavpkfdpssgclpkssgglpsyskifgdwlcetaakdnklmaitpamregsgmvefsrkfpdryfdvaiaeqhavtfaaglaiggykpivaiystflqraydqvlhdvaiqklpvlfaidragivgadgqthqgafdlsylrcipemvimtpsdenecrqmlytgyhyndgpsavryprgnavgveltpleklpigkgivkrrgeklailnfgtlmpeaakvaeslnatlvdmrfvkpldealilemaashealvtveenaimggagsgvnevlmahrkpvpvlniglpdffipqgtqeemraelgldaagmeakikawla
SEQ ID NO.11 DXS-M4基因序列SEQ ID NO.11 DXS-M4 gene sequence
atgagttttgatattgccaaatacccgaccctggcactggtcgactccacccaggagttacgactgttgccgaaagagagtttaccgaaactctgcgacgaactgcgccgctatttactcgacagcgtgagccgttccagcgggcacttcgcctccgggctgggcacggtcgaactgaccgtggcgctgcactatgtctacaacaccccgtttgaccaattgatttgggatgtggggcatcaggcttatccgcataaaattttgaccggacgccgcgacaaaatcggcaccatccgtcagaaaggcggtctgcacccgttcccgtggcgcggcgaaagcgaatatgacgtattaagcgtcgggcattcatcaacctccatcagtgccggaattggtattgcggttgctgccgaaaaagaaggcaaaaatcgccgcaccgtctgtgtcattggcgatggcgcgattaccgcaggcatggcgtttgaagcgacgaatcacgcgggcgatatccgtcctgatatgctggtgattctcaacgacaatgagatgtcgatttccgaaaatgtcggcgcgctcaacaaccatctggcacagctgctttccggtaagctttactcttcactgcgcgaaggcgggaaaaaagttttctctggcgtgccgccaaataaagagctgctcaaacgcaccgaagaacatattaaaggcatggtagtgcctggcacgttgtttgaagagctgggctttaactacatcggcccggtggacggtcacgatgtgctggggcttatcaccacgctaaagaacatgcgcgacctgaaaggcccgcagttcctgcatatcatgaccaaaaaaggtcgtggttatgaaccggcagaaaaagacccgatcactttccacgccgtgcctaaatttgatccctccagcggttgtttgccgaaaagtagcggcggtttgccgagctattcaaaaatctttggcgactggttgtgcgaaacggcagcgaaagacaacaagctgatggcgattactccggcgatgcgtgaaggttccggcatggtcgagttttcacgtaaattcccggatcgctacttcgacgtggcaattgccgagcaacacgcggtgacctttgctgcgggtctggcgattggtgggtacaaacccattgtcgcgatttactccactttcctgcaacgcgcctatgatcaggtgctgcatgacgtggcgattcaaaagcttccggtcctgttcgccatcgaccgcgcgggcattgttggtgctgacggtcaaacccatcagggtgcttttgatctctcttacctgcgctgcataccggaaatggtcattatgaccccgagcgatgaaaacgaatgtcgccagatgctctataccggctatcactataacgatggcccgtcagcggtgcgctacccgcgtggcaacgcggtcggcgtggaactgacgccgctggaaaaactaccaattggcaaaggcattgtgaagcgtcgtggcgagaaactggcgatccttaactttggtacgctgatgccagaagcggcgaaagtcgccgaatcgctgaacgccacgctggtcgatatgcgttttgtgaaaccgcttgatgaagcgttaattctggaaatggccgccagccatgaagcgctggtcaccgtagaagaaaacgccattatgggcggcgcaggcagcggcgtgaacgaagtgctgatggcccatcgtaaaccagtacccgtgctgaacattggcctgccggacttctttattccgcaaggaactcaggaagaaatgcgcgccgaactcggcctcgatgccgctggtatggaagccaaaatcaaggcctggctggcataaatgagttttgatattgccaaatacccgaccctggcactggtcgactccacccaggagttacgactgttgccgaaagagagtttaccgaaactctgcgacgaactgcgccgctatttactcgacagcgtgagccgttccagcgggcacttcgcctccgggctgggcacggtcgaactgaccgtggcgctgcactatgtctacaacaccccgtttgaccaattgatttgggatgtggggcatcaggcttatccgcataaaattttgaccggacgccgcgacaaaatcggcaccatccgtcagaaaggcggtctgcacccgttcccgtggcgcggcgaaagcgaatatgacgtattaagcgtcgggcattcatcaacctccatcagtgccggaattggtattgcggttgctgccgaaaaagaaggcaaaaatcgccgcaccgtctgtgtcattggcgatggcgcgattaccgcaggcatggcgtttgaagcgacgaatcacgcgggcgatatccgtcctgatatgctggtgattctcaacgacaatgagatgtcgatttccgaaaatgtcggcgcgctcaacaaccatctggcacagctgctttccggtaagctttactcttcactgcgcgaaggcgggaaaaaagttttctctggcgtgccgccaaataaagagctgctcaaacgcaccgaagaacatattaaaggcatggtagtgcctggcacgttgtttgaagagctgggctttaactacatcggcccggtggacggtcacgatgtgctggggcttatcaccacgctaaagaacatgcgcgacctgaaaggcccgcagttcctgcatatcatgaccaaaaaaggtcgtggttatgaaccggcagaaaaagacccgatcactttccacgccgtgcctaaatttgatccctccagcggttgtttgccgaaaagtagcggcggtttgccgagctattcaaaaatctttggcgactggttgtgcgaaacggcag cgaaagacaacaagctgatggcgattactccggcgatgcgtgaaggttccggcatggtcgagttttcacgtaaattcccggatcgctacttcgacgtggcaattgccgagcaacacgcggtgacctttgctgcgggtctggcgattggtgggtacaaacccattgtcgcgatttactccactttcctgcaacgcgcctatgatcaggtgctgcatgacgtggcgattcaaaagcttccggtcctgttcgccatcgaccgcgcgggcattgttggtgctgacggtcaaacccatcagggtgcttttgatctctcttacctgcgctgcataccggaaatggtcattatgaccccgagcgatgaaaacgaatgtcgccagatgctctataccggctatcactataacgatggcccgtcagcggtgcgctacccgcgtggcaacgcggtcggcgtggaactgacgccgctggaaaaactaccaattggcaaaggcattgtgaagcgtcgtggcgagaaactggcgatccttaactttggtacgctgatgccagaagcggcgaaagtcgccgaatcgctgaacgccacgctggtcgatatgcgttttgtgaaaccgcttgatgaagcgttaattctggaaatggccgccagccatgaagcgctggtcaccgtagaagaaaacgccattatgggcggcgcaggcagcggcgtgaacgaagtgctgatggcccatcgtaaaccagtacccgtgctgaacattggcctgccggacttctttattccgcaaggaactcaggaagaaatgcgcgccgaactcggcctcgatgccgctggtatggaagccaaaatcaaggcctggctggcataa
SEQ ID NO.12 DXS-M4氨基酸序列SEQ ID NO.12 DXS-M4 amino acid sequence
msfdiakyptlalvdstqelrllpkeslpklcdelrrylldsvsrssghfasglgtveltvalhyvyntpfdqliwdvghqayphkiltgrrdkigtirqkgglhpfpwrgeseydvlsvghsstsisagigiavaaekegknrrtvcvigdgaitagmafeatnhagdirpdmlvilndnemsisenvgalnnhlaqllsgklysslreggkkvfsgvppnkellkrteehikgmvvpgtlfeelgfnyigpvdghdvlglittlknmrdlkgpqflhimtkkgrgyepaekdpitfhavpkfdpssgclpkssgglpsyskifgdwlcetaakdnklmaitpamregsgmvefsrkfpdryfdvaiaeqhavtfaaglaiggykpivaiystflqraydqvlhdvaiqklpvlfaidragivgadgqthqgafdlsylrcipemvimtpsdenecrqmlytgyhyndgpsavryprgnavgveltpleklpigkgivkrrgeklailnfgtlmpeaakvaeslnatlvdmrfvkpldealilemaashealvtveenaimggagsgvnevlmahrkpvpvlniglpdffipqgtqeemraelgldaagmeakikawlamsfdiakyptlalvdstqelrllpkeslpklcdelrrylldsvsrssghfasglgtveltvalhyvyntpfdqliwdvghqayphkiltgrrdkigtirqkgglhpfpwrgeseydvlsvghsstsisagigiavaaekegknrrtvcvigdgaitagmafeatnhagdirpdmlvilndnemsisenvgalnnhlaqllsgklysslreggkkvfsgvppnkellkrteehikgmvvpgtlfeelgfnyigpvdghdvlglittlknmrdlkgpqflhimtkkgrgyepaekdpitfhavpkfdpssgclpkssgglpsyskifgdwlcetaakdnklmaitpamregsgmvefsrkfpdryfdvaiaeqhavtfaaglaiggykpivaiystflqraydqvlhdvaiqklpvlfaidragivgadgqthqgafdlsylrcipemvimtpsdenecrqmlytgyhyndgpsavryprgnavgveltpleklpigkgivkrrgeklailnfgtlmpeaakvaeslnatlvdmrfvkpldealilemaashealvtveenaimggagsgvnevlmahrkpvpvlniglpdffipqgtqeemraelgldaagmeakikawla
SEQ ID NO.13 DXS-M5基因序列SEQ ID NO.13 DXS-M5 gene sequence
atgagttttgatattgccaaatacccgaccctggcactggtcgactccacccaggagttacgactgttgccgaaagagagtttaccgaaactctgcgacgaactgcgccgctatttactcgacagcgtgagccgttccagcgggcacttcgcctccgggctgggcacggtcgaactgaccgtggcgctgcactatgtctacaacaccccgtttgaccaattgatttgggatgtggggcatcaggcttatccgcataaaattttgaccggacgccgcgacaaaatcagcaccatccgtcagaaaggcggtctgcacccgttcccgtggcgcggcgaaagcgaatatgacgtattaagcgtcgggcattcatcaacctccatcagtgccggaattggtattgcggttgctgccgaaaaagaaggcaaaaatcgccgcaccgtctgtgtcattggcgatggcgcgattaccgcaggcatggcgtttgaagcgatgaatcacgcgggcgatatccgtcctgatatgctggtgattctcaacgacaatgaaatgtcgatttccgaaaatgtcggcgcgctcaacaaccatctggcacagctgctttccggtaagctttactcttcactgcgcgagggcgggaaaaaagttttctctggcgtgccgccaattaaagagctgctcaaacgcaccgaagaacatattaaaggcacggtagtgcctggcacgttgtttgaagagctgggctttaactacatcggcccggtggacggtcacgatgtgctggggcttatcaccacgctaaagaacatgcgcgacctgaaaggcccgcagttcctgcatatcatgaccaaaaaaggtcgtggttatgaaccggcagaaaaagacccgatcactttccacgccgtgcctaaatttgatccctccagcggttgtttgccgaaaagtagcggcggtttgccgagctattcaaaaatctttggcgactggttgtgcgaaacggcagcgaaagacaacaagctgatggcgattactccggcgatgcgtgaaggttccggcatggtcgagttttcacgtaaattcccggatcgctacttcgacgtggcaattgccgagcaacacgcggtgacctttgctgcgggtctggcgattggtgggtacaaacccattgtcgcgatttactccactttcctgcaacgcgcctatgatcaggtgctgcatgacgtggcgattcaaaagcttccggtcctgttcgccatcgaccgcgcgggcattgttggtgctgacggtcaaacccatcagggtgcttttgatctctcttacctgcgctgcataccggaaatggtcattatgaccccgagcgatgaaaacgaatgtcgccagatgctctataccggctatcactataacgatggcccgtcagcggtgcgctacccgcgtggcaacgcggtcggcgtggaactgacgccgctggaaaaactaccaattggcaaaggcattgtgaagcgtcgtggcgagaaactggcgatccttaactttggtacgctgatgccagaagcggcgaaagtcgccgaatcgctgaacgccacgctggtcgatatgcgttttgtgaaaccgcttgatgaagcgttaattctggaaatggccgccagccatgaagcgctggtcaccgtagaagaaaacgccattatgggcggcgcaggcagcggcgtgaacgaagtgctgatggcccatcgtaaaccagtacccgtgctgaacattggcctgccggacttctttattccgcaaggaactcaggaagaaatgcgcgccgaactcggcctcgatgccgctggtatggaagccaaaatcaaggcctggctggcataaatgagttttgatattgccaaatacccgaccctggcactggtcgactccacccaggagttacgactgttgccgaaagagagtttaccgaaactctgcgacgaactgcgccgctatttactcgacagcgtgagccgttccagcgggcacttcgcctccgggctgggcacggtcgaactgaccgtggcgctgcactatgtctacaacaccccgtttgaccaattgatttgggatgtggggcatcaggcttatccgcataaaattttgaccggacgccgcgacaaaatcagcaccatccgtcagaaaggcggtctgcacccgttcccgtggcgcggcgaaagcgaatatgacgtattaagcgtcgggcattcatcaacctccatcagtgccggaattggtattgcggttgctgccgaaaaagaaggcaaaaatcgccgcaccgtctgtgtcattggcgatggcgcgattaccgcaggcatggcgtttgaagcgatgaatcacgcgggcgatatccgtcctgatatgctggtgattctcaacgacaatgaaatgtcgatttccgaaaatgtcggcgcgctcaacaaccatctggcacagctgctttccggtaagctttactcttcactgcgcgagggcgggaaaaaagttttctctggcgtgccgccaattaaagagctgctcaaacgcaccgaagaacatattaaaggcacggtagtgcctggcacgttgtttgaagagctgggctttaactacatcggcccggtggacggtcacgatgtgctggggcttatcaccacgctaaagaacatgcgcgacctgaaaggcccgcagttcctgcatatcatgaccaaaaaaggtcgtggttatgaaccggcagaaaaagacccgatcactttccacgccgtgcctaaatttgatccctccagcggttgtttgccgaaaagtagcggcggtttgccgagctattcaaaaatctttggcgactggttgtgcgaaacggcag cgaaagacaacaagctgatggcgattactccggcgatgcgtgaaggttccggcatggtcgagttttcacgtaaattcccggatcgctacttcgacgtggcaattgccgagcaacacgcggtgacctttgctgcgggtctggcgattggtgggtacaaacccattgtcgcgatttactccactttcctgcaacgcgcctatgatcaggtgctgcatgacgtggcgattcaaaagcttccggtcctgttcgccatcgaccgcgcgggcattgttggtgctgacggtcaaacccatcagggtgcttttgatctctcttacctgcgctgcataccggaaatggtcattatgaccccgagcgatgaaaacgaatgtcgccagatgctctataccggctatcactataacgatggcccgtcagcggtgcgctacccgcgtggcaacgcggtcggcgtggaactgacgccgctggaaaaactaccaattggcaaaggcattgtgaagcgtcgtggcgagaaactggcgatccttaactttggtacgctgatgccagaagcggcgaaagtcgccgaatcgctgaacgccacgctggtcgatatgcgttttgtgaaaccgcttgatgaagcgttaattctggaaatggccgccagccatgaagcgctggtcaccgtagaagaaaacgccattatgggcggcgcaggcagcggcgtgaacgaagtgctgatggcccatcgtaaaccagtacccgtgctgaacattggcctgccggacttctttattccgcaaggaactcaggaagaaatgcgcgccgaactcggcctcgatgccgctggtatggaagccaaaatcaaggcctggctggcataa
SEQ ID NO.14 DXS-M5氨基酸序列SEQ ID NO.14 DXS-M5 amino acid sequence
msfdiakyptlalvdstqelrllpkeslpklcdelrrylldsvsrssghfasglgtveltvalhyvyntpfdqliwdvghqayphkiltgrrdkistirqkgglhpfpwrgeseydvlsvghsstsisagigiavaaekegknrrtvcvigdgaitagmafeamnhagdirpdmlvilndnemsisenvgalnnhlaqllsgklysslreggkkvfsgvppikellkrteehikgtvvpgtlfeelgfnyigpvdghdvlglittlknmrdlkgpqflhimtkkgrgyepaekdpitfhavpkfdpssgclpkssgglpsyskifgdwlcetaakdnklmaitpamregsgmvefsrkfpdryfdvaiaeqhavtfaaglaiggykpivaiystflqraydqvlhdvaiqklpvlfaidragivgadgqthqgafdlsylrcipemvimtpsdenecrqmlytgyhyndgpsavryprgnavgveltpleklpigkgivkrrgeklailnfgtlmpeaakvaeslnatlvdmrfvkpldealilemaashealvtveenaimggagsgvnevlmahrkpvpvlniglpdffipqgtqeemraelgldaagmeakikawlamsfdiakyptlalvdstqelrllpkeslpklcdelrrylldsvsrssghfasglgtveltvalhyvyntpfdqliwdvghqayphkiltgrrdkistirqkgglhpfpwrgeseydvlsvghsstsisagigiavaaekegknrrtvcvigdgaitagmafeamnhagdirpdmlvilndnemsisenvgalnnhlaqllsgklysslreggkkvfsgvppikellkrteehikgtvvpgtlfeelgfnyigpvdghdvlglittlknmrdlkgpqflhimtkkgrgyepaekdpitfhavpkfdpssgclpkssgglpsyskifgdwlcetaakdnklmaitpamregsgmvefsrkfpdryfdvaiaeqhavtfaaglaiggykpivaiystflqraydqvlhdvaiqklpvlfaidragivgadgqthqgafdlsylrcipemvimtpsdenecrqmlytgyhyndgpsavryprgnavgveltpleklpigkgivkrrgeklailnfgtlmpeaakvaeslnatlvdmrfvkpldealilemaashealvtveenaimggagsgvnevlmahrkpvpvlniglpdffipqgtqeemraelgldaagmeakikawla
SEQ ID NO.15上引物rpos-forPrimer rpos-for on SEQ ID NO.15
5’-gagtcagaatacgctgaaagttcatgatttaaatg-3’5'-gagtcagaatacgctgaaagttcatgatttaaatg-3'
SEQ ID NO.16 5’端磷酸化的下引物rpos-revThe lower primer rpos-rev phosphorylated at the 5' end of SEQ ID NO.16
5’-tactcgcggaacagcgcttcgatattcagc-3’5'-tactcgcggaacagcgcttcgatattcagc-3'
SEQ ID NO.17 Rpos基因序列SEQ ID NO.17 Rpos gene sequence
AtgagtcagaatacgctgaaagttcatgatttaaatgaagatgcggaatttgatgagaacggagttgaggtttttgacgaaaaggccttagtagaacaggaacccagtgataacgatttggccgaagaggaactgttatcgcagggagccacacagcgtgtgttggacgcgactcagctttaccttggtgagattggttattcaccactgttaacggccgaagaagaagtttattttgcgcgtcgcgcactgcgtggagatgtcgcctctcgccgccggatgatcgagagtaacttgcgtctggtggtaaaaattgcccgccgttatggcaatcgtggtctggcgttgctggaccttatcgaagagggcaacctggggctgatccgcgcggtagagaagtttgacccggaacgtggtttccgcttctcaacatacgcaacctggtggattcgccagacgattgaacgggcgattatgaaccaaacccgtactattcgtttgccgattcacatcgtaaaggagctgaacgtttacctgcgaaccgcacgtgagttgtcccataagctggaccatgaaccaagtgcggaagagatcgcagagcaactggataagccagttgatgacgtcagccgtatgcttcgtcttaacgagcgcattacctcggtagacaccccgctgggtggtgattccgaaaaagcgttgctggacatcctggccgatgaaaaagagaacggtccggaagataccacgcaagatgacgatatgaagcagagcatcgtcaaatggctgttcgagctgaacgccaaacagcgtgaagtgctggcacgtcgattcggtttgctggggtacgaagcggcaacactggaagatgtaggtcgtgaaattggcctcacccgtgaacgtgttcgccagattcaggttgaaggcctgcgccgtttgcgcgaaatcctgcaaacgcaggggctgaatatcgaagcgctgttccgcgagtaaAtgagtcagaatacgctgaaagttcatgatttaaatgaagatgcggaatttgatgagaacggagttgaggtttttgacgaaaaggccttagtagaacaggaacccagtgataacgatttggccgaagaggaactgttatcgcagggagccacacagcgtgtgttggacgcgactcagctttaccttggtgagattggttattcaccactgttaacggccgaagaagaagtttattttgcgcgtcgcgcactgcgtggagatgtcgcctctcgccgccggatgatcgagagtaacttgcgtctggtggtaaaaattgcccgccgttatggcaatcgtggtctggcgttgctggaccttatcgaagagggcaacctggggctgatccgcgcggtagagaagtttgacccggaacgtggtttccgcttctcaacatacgcaacctggtggattcgccagacgattgaacgggcgattatgaaccaaacccgtactattcgtttgccgattcacatcgtaaaggagctgaacgtttacctgcgaaccgcacgtgagttgtcccataagctggaccatgaaccaagtgcggaagagatcgcagagcaactggataagccagttgatgacgtcagccgtatgcttcgtcttaacgagcgcattacctcggtagacaccccgctgggtggtgattccgaaaaagcgttgctggacatcctggccgatgaaaaagagaacggtccggaagataccacgcaagatgacgatatgaagcagagcatcgtcaaatggctgttcgagctgaacgccaaacagcgtgaagtgctggcacgtcgattcggtttgctggggtacgaagcggcaacactggaagatgtaggtcgtgaaattggcctcacccgtgaacgtgttcgccagattcaggttgaaggcctgcgccgtttgcgcgaaatcctgcaaacgcaggggctgaatatcgaagcgctgttccgcgagtaa
SEQ ID NO.18 Rpos氨基酸序列SEQ ID NO.18 Rpos amino acid sequence
msqntlkvhdlnedaefdengvevfdekalveqepsdndlaeeellsqgatqrvldatqlylgeigysplltaeeevyfarralrgdvasrrrmiesnlrlvvkiarrygnrglalldlieegnlgliravekfdpergfrfstyatwwirqtieraimnqtrtirlpihivkelnvylrtarelshkldhepsaeeiaeqldkpvddvsrmlrlneritsvdtplggdsekalldiladekengpedttqdddmkqsivkwlfelnakqrevlarrfgllgyeaatledvgreigltrervrqiqveglrrlreilqtqglniealfremsqntlkvhdlnedaefdengvevfdekalveqepsdndlaeeellsqgatqrvldatqlylgeigysplltaeeevyfarralrgdvasrrrmiesnlrlvvkiarrygnrglalldlieegnlgliravekfdpergfrfstyatwwirqtieraimnqtrtirlpihivkelnvylrtarelshkldhepsaeeiaeqldkpvddvsrmlrlneritsvdtplggdsekalldiladekengpedttqdddmkqsivkwlfelnakqrevlarrfgllgyeaatledvgreigltrervrqiqveglrrlreilqtqglniealfre
SEQ ID NO.19 Rpos-M1基因序列SEQ ID NO.19 Rpos-M1 gene sequence
AtgagtcagaatacgctgaaagttcatgatttaaatgaagatgcggaatttgatgagaacggagttgaggtttttgacgaaaaggccttagtagaacaggaacccagtgataacgatttggccgaagaggaactgttatcgcagggagccacacagcgtgtgttggacgcgactcagctttaccttggtgagattggttattcaccactgttaacggccgaagaagaagtttattttgcgcgtcgcgcactgcgtggagatgtcgcctctcgccgccggatgatcgagagtaacttgcgtctggtggtaaaaattgcccgccgttatggcaatcgtggtctggcgttgctggaccttatcgaagagggcaacctggggctgatccgcgcggtagagaagtttgacccggaacgtggtttccgcttctcaacatacgcaacctggtggattcgccagacgattgaacgggcgattatggaccaaacccgtactattcgtttgccgattcacatcgtaaaggagctgaacgtttacctgcgaaccgcacgtgggttgtcccataagctggaccatgaaccaagtgcggaagagatcgcagagcaactggataagccagttgatgacgtcagccgtatgcttcgtcttaacgagcgcattacctcggtagacaccccgctgggtggtgattccgaaaaagcgttgctggacatcctggccgatgaaaaagagaacggtccggaagataccacgcaagaggacgatatgaagcagagcatcgtcaaatggctgttcgagctgaacgccaaacagcgtgaagtgctggcacgtcgattcggtttgctggggtacgaagcggcaacactggaagatgtaggtcgtgaaattggcctcacccgtgaacgtgttcgccagattcaggttgaaggcctgcgccgtttgcgcgaaatcctgcaaacgcaggggctgaatatcgaagcgctgttccgcgagtaaAtgagtcagaatacgctgaaagttcatgatttaaatgaagatgcggaatttgatgagaacggagttgaggtttttgacgaaaaggccttagtagaacaggaacccagtgataacgatttggccgaagaggaactgttatcgcagggagccacacagcgtgtgttggacgcgactcagctttaccttggtgagattggttattcaccactgttaacggccgaagaagaagtttattttgcgcgtcgcgcactgcgtggagatgtcgcctctcgccgccggatgatcgagagtaacttgcgtctggtggtaaaaattgcccgccgttatggcaatcgtggtctggcgttgctggaccttatcgaagagggcaacctggggctgatccgcgcggtagagaagtttgacccggaacgtggtttccgcttctcaacatacgcaacctggtggattcgccagacgattgaacgggcgattatggaccaaacccgtactattcgtttgccgattcacatcgtaaaggagctgaacgtttacctgcgaaccgcacgtgggttgtcccataagctggaccatgaaccaagtgcggaagagatcgcagagcaactggataagccagttgatgacgtcagccgtatgcttcgtcttaacgagcgcattacctcggtagacaccccgctgggtggtgattccgaaaaagcgttgctggacatcctggccgatgaaaaagagaacggtccggaagataccacgcaagaggacgatatgaagcagagcatcgtcaaatggctgttcgagctgaacgccaaacagcgtgaagtgctggcacgtcgattcggtttgctggggtacgaagcggcaacactggaagatgtaggtcgtgaaattggcctcacccgtgaacgtgttcgccagattcaggttgaaggcctgcgccgtttgcgcgaaatcctgcaaacgcaggggctgaatatcgaagcgctgttccgcgagtaa
SEQ ID NO.20 Rpos-M1氨基酸序列SEQ ID NO.20 Rpos-M1 amino acid sequence
msqntlkvhdlnedaefdengvevfdekalveqepsdndlaeeellsqgatqrvldatqlylgeigysplltaeeevyfarralrgdvasrrrmiesnlrlvvkiarrygnrglalldlieegnlgliravekfdpergfrfstyatwwirqtieraimdqtrtirlpihivkelnvylrtarglshkldhepsaeeiaeqldkpvddvsrmlrlneritsvdtplggdsekalldiladekengpedttqeddmkqsivkwlfelnakqrevlarrfgllgyeaatledvgreigltrervrqiqveglrrlreilqtqglniealfremsqntlkvhdlnedaefdengvevfdekalveqepsdndlaeeellsqgatqrvldatqlylgeigysplltaeeevyfarralrgdvasrrrmiesnlrlvvkiarrygnrglalldlieegnlgliravekfdpergfrfstyatwwirqtieraimdqtrtirlpihivkelnvylrtarglshkldhepsaeeiaeqldkpvddvsrmlrlneritsvdtplggdsekalldiladekengpedttqeddmkqsivkwlfelnakqrevlarrfgllgyeaatledvgreigltrervrqiqveglrrlreilqtqglniealfre
SEQ ID NO.21 Rpos-M2基因序列SEQ ID NO.21 Rpos-M2 gene sequence
atgagtcagaatacgctgaaagttcatgatttaaatgaagatgcggaatttgatgagaacggagttgaggtttttgacgaaaaggccttagtagaacaggaacccagtgataacgatttggccgaagaggaactgttatcgcagggagccacactgcgtgtgttggacgcgactcagctttaccttggtgagattggttattcaccactgttaacggccgaagaagaagtttattctgcgcgtcgcgcactgcgtggagatgtcgcctctcgccgccggatgatcgagagtaacttgcgtctggtggtaaaaattgcccgccgttatggcaatcgtggtctggcgttgctagaccttatcgaagagggcaacctggggctgatccgcgcggtagggaagtttgacccggaacgtggtttccgcttctcaacatacgcaacctggtggattcgccagacgattgaatgggcgattatgaaccaaacccgtactattcgtttgccgattcacatcgtaaaggagctgaacgtttacctgcgaaccgcacgtgagttgtcccataagctggaccatgaaccaagtgcggaagagatcgcagagcaactggataagccagttgatgacgtcagccgcatgcttcgtcttaacgagcgcattacctcggtagacaccccgctgggtggtgattccgaaaaagcgttgctggacatcctggccgatgaaaaagagaacggtccggaagataccacgcaagatgacgatatgaagcggagcatcgtcaaatggctgttcgagctgaacgccaaacagcgtgaagtgctggcacgtcgattcggtttgctggggtacgaagcggcaacactggaagatgtaggtcgtgaaattggcctcacccgtgaacgtgttcgccagattcaggttgaaggcctgcgccgtttgcgcgaaatcctgcaaacgcaggggctgaatatcgaagcgctgttccgcgagtaaatgagtcagaatacgctgaaagttcatgatttaaatgaagatgcggaatttgatgagaacggagttgaggtttttgacgaaaaggccttagtagaacaggaacccagtgataacgatttggccgaagaggaactgttatcgcagggagccacactgcgtgtgttggacgcgactcagctttaccttggtgagattggttattcaccactgttaacggccgaagaagaagtttattctgcgcgtcgcgcactgcgtggagatgtcgcctctcgccgccggatgatcgagagtaacttgcgtctggtggtaaaaattgcccgccgttatggcaatcgtggtctggcgttgctagaccttatcgaagagggcaacctggggctgatccgcgcggtagggaagtttgacccggaacgtggtttccgcttctcaacatacgcaacctggtggattcgccagacgattgaatgggcgattatgaaccaaacccgtactattcgtttgccgattcacatcgtaaaggagctgaacgtttacctgcgaaccgcacgtgagttgtcccataagctggaccatgaaccaagtgcggaagagatcgcagagcaactggataagccagttgatgacgtcagccgcatgcttcgtcttaacgagcgcattacctcggtagacaccccgctgggtggtgattccgaaaaagcgttgctggacatcctggccgatgaaaaagagaacggtccggaagataccacgcaagatgacgatatgaagcggagcatcgtcaaatggctgttcgagctgaacgccaaacagcgtgaagtgctggcacgtcgattcggtttgctggggtacgaagcggcaacactggaagatgtaggtcgtgaaattggcctcacccgtgaacgtgttcgccagattcaggttgaaggcctgcgccgtttgcgcgaaatcctgcaaacgcaggggctgaatatcgaagcgctgttccgcgagtaa
SEQ ID NO.22 Rpos-M2氨基酸序列SEQ ID NO.22 Rpos-M2 amino acid sequence
msqntlkvhdlnedaefdengvevfdekalveqepsdndlaeeellsqgatlrvldatqlylgeigysplltaeeevysarralrgdvasrrrmiesnlrlvvkiarrygnrglalldlieegnlgliravgkfdpergfrfstyatwwirqtiewaimnqtrtirlpihivkelnvylrtarelshkldhepsaeeiaeqldkpvddvsrmlrlneritsvdtplggdsekalldiladekengpedttqdddmkrsivkwlfelnakqrevlarrfgllgyeaatledvgreigltrervrqiqveglrrlreilqtqglniealfremsqntlkvhdlnedaefdengvevfdekalveqepsdndlaeeellsqgatlrvldatqlylgeigysplltaeeevysarralrgdvasrrrmiesnlrlvvkiarrygnrglalldlieegnlgliravgkfdpergfrfstyatwwirqtiewaimnqtrtirlpihivkelnvylrtarelshkldhepsaeeiaeqldkpvddvsrmlrlneritsvdtplggdsekalldiladekengpedttqdddmkrsivkwlfelnakqrevlarrfgllgyeaatledvgreigltrervrqiqveglrrlreilqtqglniealfre
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610079480.4A CN105820990B (en) | 2016-02-04 | 2016-02-04 | A method for in vivo evolution of target proteins using iterative homologous recombination |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610079480.4A CN105820990B (en) | 2016-02-04 | 2016-02-04 | A method for in vivo evolution of target proteins using iterative homologous recombination |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105820990A CN105820990A (en) | 2016-08-03 |
CN105820990B true CN105820990B (en) | 2019-10-11 |
Family
ID=56987430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610079480.4A Expired - Fee Related CN105820990B (en) | 2016-02-04 | 2016-02-04 | A method for in vivo evolution of target proteins using iterative homologous recombination |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105820990B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020046215A1 (en) * | 2018-08-31 | 2020-03-05 | Agency For Science, Technology And Research | Methods for terpenoid production |
CN118086285B (en) * | 2024-04-23 | 2024-07-19 | 天津凯莱英生物科技有限公司 | Method for directed evolution of proteins |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1414105A (en) * | 2002-07-30 | 2003-04-30 | 复旦大学 | Method of constructing genetic engineering organism based on in vivo isogenesis recombination |
CN101550605A (en) * | 2009-05-15 | 2009-10-07 | 江南大学 | Method for establishing saccharomyces integrated gene mutation library based on in vivo homologous recombination |
-
2016
- 2016-02-04 CN CN201610079480.4A patent/CN105820990B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1414105A (en) * | 2002-07-30 | 2003-04-30 | 复旦大学 | Method of constructing genetic engineering organism based on in vivo isogenesis recombination |
CN101550605A (en) * | 2009-05-15 | 2009-10-07 | 江南大学 | Method for establishing saccharomyces integrated gene mutation library based on in vivo homologous recombination |
Non-Patent Citations (3)
Title |
---|
PCR 依赖型方法构建高质量酵母基因突变文库;王睿等;《生物工程学报》;20110925;第27卷(第9期);第1326-1336 * |
Programming cells by multiplex genome engineering and accelerated evolution;Harris H. Wang et al.;《NATURE》;20090726;第460卷;第894页左栏第1段及最后1段,第896页左栏最后1段至右栏第2段,第897页左栏第1段 * |
蛋白质定向进化的研究进展;王晓玥等;《生物化学与生物物理进展》;20151231;第42卷(第2期);第123-131页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105820990A (en) | 2016-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sawitzke et al. | Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering | |
CN102703424B (en) | A kind of method of genome of E.coli point mutation of recombined engineering mediation | |
WO2018170614A1 (en) | New technique for genomic large fragment direct cloning and dna multi-molecular assembly | |
CN101633901B (en) | Escherichia coli strain for recombined engineering | |
Muñoz et al. | Stable transformation of the green algae Acutodesmus obliquus and Neochloris oleoabundans based on E. coli conjugation | |
CN105603537A (en) | Method for constructing promoter library and application thereof | |
Choi et al. | Development of a high-copy-number plasmid via adaptive laboratory evolution of Corynebacterium glutamicum | |
CN110343709B (en) | Nocardiopsis arctica lasso peptide gene cluster and cloning and expression method thereof | |
CN108977890B (en) | A promoter library and a method for using the same to construct expression systems of different strengths in bacteria | |
CN105820990B (en) | A method for in vivo evolution of target proteins using iterative homologous recombination | |
WO2019120132A1 (en) | Engineered strain for efficient heterologous expression of disorazole z, gene cluster for constructing the strain and applications thereof | |
CN108424907B (en) | A high-throughput DNA multi-site precise base mutation method | |
CN105176899B (en) | Method for constructing recombinant bacteria producing or high-yielding target gene product, and the constructed recombinant bacteria and application | |
WO2017128509A1 (en) | Method for in situ target protein evolution within escherichia coli cell | |
CN118389385A (en) | A kind of Escherichia coli for synthesizing blue and its construction method and application | |
CN108866057B (en) | Escherichia coli pressure response type promoter and preparation method thereof | |
CN113621634B (en) | Base editing system and base editing method for increasing mutation rate of genome | |
CN105002105B (en) | High-biomass and/or Seedling height speed recombinant bacterium and its construction method and application | |
CN116121160A (en) | Genetically engineered bacteria overexpressing pyrB gene and method for producing L-arginine | |
US20200024609A1 (en) | Mating type switch in yarrowia lipolytica | |
CN110408641A (en) | A kind of genetic transformation method and application of pseudonocardia strain | |
US6635457B1 (en) | Selection for more efficient transformation host cells | |
KR100674092B1 (en) | Heat resistant tyrosine phenolase variants and preparation method thereof | |
US20210355434A1 (en) | Methods of Producing Cannabinoids | |
WO2006055836A2 (en) | In vivo alteration of cellular dna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20191011 Termination date: 20210204 |